
Received May 4, 2022, accepted May 24, 2022, date of publication May 30, 2022, date of current version June 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3178951

Two-Argument Activation Functions Learn Soft
XOR Operations Like Cortical Neurons
JUHYEON KIM 1, EMIN ORHAN2, KIJUNG YOON 1, AND XAQ PITKOW 3,4
1Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
2Center for Data Science, New York University, New York, NY 10011, USA
3Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
4Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA

Corresponding authors: Kijung Yoon (kiyoon@hanyang.ac.kr) and Xaq Pitkow (xaq@rice.edu)

This work was supported in part by the National Research Foundation of Korea (NRF) under Grant NRF-2018R1C1B5086404 and Grant
NRF-2021R1F1A1045390; in part by the Brain Convergence Research Program of the National Research Foundation (NRF) through the
Korean Government [Ministry of Science and ICT (MSIT)] under Grant NRF-2021M3E5D2A01023887; in part by the Technology
Innovation Program (Development of Industrial Intelligent Technology for Manufacturing, Process, and Logistics) through the Ministry of
Trade, Industry and Energy (MOTIE), South Korea, under Grant 20013726; in part by the Research Fund of Hanyang University under
Grant HY-201900000000933; in part by NSF CAREER under Grant 1552868; in part by NSF NeuroNex under Grant 1707400; in part by
the National Institutes of Health (NIH) BRAIN Initiative Grant under Grant 5U01NS094368; in part by the Award from the McNair
Foundation; and in part by the Intelligence Advanced Research Projects Activity (IARPA) through the Department of Interior/Interior
Business Center (DoI/IBC) under Contract D16PC00003.

ABSTRACT Neurons in the brain are complex machines with distinct functional compartments that interact
nonlinearly. In contrast, neurons in artificial neural networks abstract away this complexity, typically down to
a scalar activation function of a weighted sum of inputs. Here we emulate more biologically realistic neurons
by learning canonical activation functions with two input arguments, analogous to basal and apical dendrites.
We use a network-in-network architecture where each neuron is modeled as a multilayer perceptron with two
inputs and a single output. This inner perceptron is shared by all units in the outer network. Remarkably, the
resultant nonlinearities often produce soft XOR functions, consistent with recent experimental observations
about interactions between inputs in human cortical neurons.When hyperparameters are optimized, networks
with these nonlinearities learn faster and perform better than conventional ReLU nonlinearities with matched
parameter counts, and they are more robust to natural and adversarial perturbations.

INDEX TERMS Biological and artificial neurons, activation functions, exclusive-or operation, adversarial
robustness.

I. INTRODUCTION
Neurons in the brain are not simply linear filters followed
by a half-wave rectification, and exhibit properties like
divisive normalization [1], [2], coincidence detection [3], [4],
and history dependence [5], [6]. Instead of fixed canonical
nonlinear activation functions such as sigmoid, tanh,
and ReLU, other nonlinearities may be both more realistic
and more useful [7]–[9]. We are particularly interested in
multivariate nonlinearities like f (w>1 x,w

>

2 x, . . .), where the
arguments could correspond to inputs that arise, for example,
from multiple distinct pathways such as feedforward, lateral,
or feedback connections, or from different dendritic compart-
ments. Such multi-argument nonlinearities could allow one
feature to modulate the processing of the others.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sunil Karamchandani .

Recent work showed that a single dendritic compartment
of a single neuron can compute the exclusive-or (XOR)
operation [10]. The fact that an artificial neuron could
not compute this basic computational operation discredited
neural networks for decades [11]. Although XOR can be
computed by networks of neurons, the finding that even single
neurons can also implement XOR highlights the possibility
that individual neurons may be much more sophisticated
than is often assumed in machine learning [9], [12]. Many
single-argument nonlinearities permit universal computation,
but the right nonlinearity could allow faster learning and
better generalization, both for the brain and for artificial
networks.

To investigate this, we parameterize the nonlinear
input-output transformation flexibly by an ‘‘inner’’ neural
network, which becomes a ‘subroutine’ called from the
conventional ‘‘outer’’ network made of many of these
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FIGURE 1. Multi-argument nonlinearities in artificial neurons.
Schematic of architecture including a multi-argument nonlinear activation
function (purple triangles). These functions’ two arguments are different
linear weighted sums of features, and may correspond to distinct inputs
such as apical and basal dendrites.

complex neurons with parameters that are shared across
all layers and all nodes of a given cell type (Figure 1).
We evaluate fully-connected and convolutional feedforward
networks on image classification tasks given a diverse
set of random initial conditions. We focus especially
on two-argument nonlinearities learned from MNIST and
CIFAR-10 datasets.

II. RELATED WORK
Numerous recent studies have focused on developing novel
activation functions, building on the simplicity and reliability
of ReLU [13]–[16]. These studies can be distinguished by the
type of learning algorithm used for optimizing the activation
function and the size of the search space. Many recent
modifications such as PReLU [17], ELU [18], SELU [19],
GELU [20], RelTanh [21], and Isigmoid [22] provide
single-argument activation functions with a small number of
parameters. However, such hand-designed functional forms
result in restricted expressivity. Swish [23] is noteworthy
in this respect, because its activation function is discovered
by a combination of exhaustive search and reinforcement
learning. The search space in this case is based on a set
of predetermined one- and two-argument functions, so this
approach can span a broader class of nonlinearities than past
work, although it is limited by the specific basis set and the
combination rules chosen.

More closely related to our work, the network-in-network
architecture proposes to replace groups of simple ReLUs
with a fully connected network [24]. This activation function
allows arbitrary dimensional inputs and outputs; thus it
is essentially the most general and expressive nonlinear
function. However, our work is primarily motivated by
neurons in the brain, which can be formalized as multi-input
and single-output nonlinear units. As in network-in-network,
we parameterize the nonlinear many-to-one transformation
by a fully-connected multi-layer network to examine the

learned spatial activation function without sacrificing its
representational power.

The multi-argument nonlinear transformation is also a
canonical operation subsumed under the emerging net-
work architectures such as graph neural networks (GNNs)
[25]–[28] and transformers [29], [30]. As conceptual exten-
sions from scalar to vector-valued inputs, the message
functions in GNNs are multi-input nonlinearities while the
scaled dot-product attention in transformers can be viewed
as a three-input argument nonlinearity. Although these
architectures evaluate performance benefits of specific multi-
argument activations, to the best of our knowledge, ours
is the first study to characterize the emergent properties
of multivariate nonlinear activation functions and their
connection to the neuronal nonlinearities in the brain.

III. MODEL STRUCTURE
To define our multi-argument nonlinearity, we introduce the
concepts of inner network and outer network. The inner
network aims to learn an arbitrary multivariate nonlinear
function f (x1, . . . , xn) with n inputs and a single output. This
will replace the regular scalar activation functions like ReLU.
The outer network refers to the rest of the model architecture
aside from the activation function. Our framework, composed
of two disjoint networks, is flexible and general since
diverse neural architectures can be used as outer networks,
such as multilayer perceptrons (MLPs), convolutional neural
networks (CNNs), ResNets, etc. On the other hand, for the
inner network, we use MLPs that have two hidden layers
with 64 units followed by ReLU nonlinearities. The MLP
is shared across all layers, analogous to the fixed canonical
nonlinear activation functions commonly used in feedforward
deep neural networks. When we test a CNN-based outer
network, we use 1× 1 convolutions instead of MLPs for the
inner network to make the model fully convolutional, but the
inner network is otherwise the same as we used in the two-
layer MLP. In this framework, the 1 × 1 conv implies that
the inputs to the inner network are channel-wise features,
which is similar to the idea of mixing channel information per
location in the recent MLP mixer architecture [31]. Figure 2
summarizes how the inner network is incorporated into the
outer network.

IV. EXPERIMENTS
To quantify the value of flexible multi-argument activation
functions, we run a series of controlled experiments for
different datasets and architectures. Our experiments have
multiple training phases to ensure that we are isolating the
consequences of the learned activation functions. We first
pretrain a network to a random function to establish desired
initial conditions, and then train both the inner and outer
networks to determine the activation functions. With this
activation function fixed, we then re-initialize and re-train the
outer network, and only then dowe evaluate its consequences.
We compare performance to other activation functions, test
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FIGURE 2. Overview of the proposed model structures. (a) Scalar nonlinear activation function ReLU (top) and MLP-based outer network with ReLU
nonlinearities (bottom), (b) n-arg input MLP-based inner network (top; n = 2 in this figure) and the MLP-based outer network that replaces ReLU with the
inner network above (bottom). The activation functions are color-coded by red boxes and the rest of the black other than the red boxes represents the
elements of outer network, (c) 1× 1 conv-based inner network (top) merged into conv-based outer network (bottom). The inner network takes inputs
from different feature maps; thus the conv-based outer network requires slice and concatenation operations from the depth dimension before and after
the inner network. The model schematics assume a two-input argument nonlinearity.

FIGURE 3. Training procedure. (a) Pretraining. Schematic of two-input argument inner network (green) trained to predict a smoothed random initial
activation map (bottom). (b) Simultaneously training inner (red) and outer (black) networks. (c) Retraining outer network (black) with frozen inner
networks (gray).

robustness to common corruptions and adversarial attack, and
analyze the properties of the learned activation functions.

A. TRAINING PROCEDURE
1) PRETRAINING (SESSION I)
We first generate a random activation function and then use
supervised learning to pretrain our inner network to match it
(Figure 3a). The motivation for this inner network pretraining
stage is to initialize the inner network to have a spatially
complex nonlinearity as opposed to common initialization
methods [32], [33], and to perform control experiments
showing that even such a complex initialization quickly learns
a smooth structure. To start with a sufficiently complex
initial nonlinearity, we create a piecewise constant random
output sampled uniformly from [−1, 1] over a 5 × 5 grid
of unit squares tiling the input space. We blur this by a 2D
gaussian kernel (σ = 3 units) to define a random smooth
activation map. This function serves as the target for the inner
network to match (Figure 3a). Example activation functions
after pretraining are shown in Figure 4b. This produces our

initialized inner network, whose parameters are transferred
to the next phase of training.

2) TRAINING INNER AND OUTER NETWORKS (SESSION II)
Next we merge the pretrained inner network with outer
network via parameter sharing (Figure 3b) and apply this
general network-in-network architecture to the task of image
classification. In this session, both networks are trained
simultaneously so that the entire network is made to learn
over what might be analogous to an evolutionary timescale on
which nonlinear cell properties emerge (Figure 3b). As our
baseline outer networks, we use (1) MLPs that have three
hidden layers with 64 units or (2) CNNs that have four
convolutional layers with [60, 120, 120, 120] kernels of size
3 × 3 and a stride of 1, using 2 × 2 max-pooling with a
stride of 2. Aside from the MLPs or convolutional layers, the
outer network uses other standard architectural components:
layer normalization [34] (placed before inner networks) and
dropout [35] (placed after each hidden/convolutional layer;
p = 0.5). Our models are trained on the MNIST and
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FIGURE 4. Learned nonlinearities learn tasks faster. Examples of (a) input distribution, (b) pretrained random initial
nonlinearities, and (c) learned two-argument activation functions trained on two different data sets, CIFAR-10 and MNIST, within
two different architecture types, a convolutional network and a multi-layer perceptron. Colors indicate the output of activation
function, masked to the best-trained part of the input distribution, i.e. for the 99% of input values that are most common. White
bands showing the crossing point between positive (blue) and negative (red) outputs. (d) Average test accuracy (solid line) ±1 SD
(shaded region; n = 4 samples) of the 2-arg (red) and 1-arg (green) activation model and the baseline (blue: ReLU) in session II
(200 epochs) and session III (400 epochs). Networks with these learnable nonlinearities learn faster than a fixed canonical
nonlinear function.

CIFAR-10 datasets using ADAM [36] with a learning rate
of 0.001 until the validation error saturates; early-stopping
is used with a window size of 20. We freeze the learned
nonlinearity finner-net(·) at the time of saturation or at a
maximum epoch. Examples of learned nonlinearities are
shown in Figure 4c.

To obtain some intuition about the learned 2-arg input
nonlinearities, we first collect the values of every input to the
nonlinearities (i.e. to the inner networks) over all test data
at inference time. For display, we compute the pre-activation
input distribution (Figure 4a), and show the nonlinearities
over the region enclosing 99% of the input distribution
(Figure 4b–c). If two-argument nonlinearities learned what is
essentially a one-argument structure, we would see parallel
bands of constant color. Instead, notably, all the examples
show nontrivial two-dimensional structure, reflecting inter-
actions between the two input arguments (see Section IV-C).

3) TRAINING OUTER NETWORK FOR FIXED INNER
NETWORK (SESSION III)
Having learned multi-argument nonlinear activation func-
tions, we now fix these inner networks and retrain the

outer network to use them on new task data. We borrow
the finner-net(·) from its parameters trained in session II,
freeze the inner network, and then re-initialize the outer
network. In this session, only the outer network is trained
as for typical training of a deep neural network with a
canonical activation function (Figure 3c). The training curves
in this stage are not qualitatively different from what we
observed in session II (Figure 4d), indicating that most of
the learning over long time intervals (epochs) is attributable
to the change of parameters in outer network. In other
words, the learning of multi-argument nonlinear activation
function may be terminated in an early stage and the rest
of learning may be dedicated to solving the classification
tasks.

We thus look for evidence of structural stability of
inner network in early development by plotting the learned
nonlinearities every epoch in session II. We find that
the two-argument activation functions mature into typical
two-dimensional spatial patterns within 1-5 epoch in general
(Figure 5), suggesting that the overall spatial structure of the
activation function emerges quite rapidly from pressures that
arise early in the learning process.
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FIGURE 5. Evolution of learned two-argument activation functions. (a) Snapshot of random initial and learned nonlinear activation functions across
development. (b) The same evolution of nonlinearity when it is Xavier-initialized.

FIGURE 6. Baseline architecture for parameter counts. (a) MLP-based outer network that have L hidden layers with h` units (green) along with
n-arg input nonlinearities (red). (b) Baseline model architecture with ReLU composed of L hidden layers with b

√
nh`c + β units (blue) in each

layer `.

B. COMPARING TO OTHER NONLINEARITIES
With the aim of providing context for the performance
of our proposed approach we compare against a single-
argument nonlinearity. For fair comparison, we train the
baselinemodels, whose architectures are depicted in Figure 6,
just as we train our outer networks. The baseline models
all involve the same MLP or CNN architecture, i.e. they
use the same type and number of outer network layers as
our proposed model. We keep the depths of our networks
matched, even though the inner network nominally creates
additional layers, because that inner network is frozen during
our second phase of training. This approach allows us to
compare the consequences of our new activation functions to
other more conventional ones.

When comparing different architectures we take care to
use comparable numbers of learnable parameters in the
classification tasks by systematically adjusting the number
of hidden units or feature maps in each layer. Specifically,
the MLP-based outer network with n-arg input nonlinearities
(Figure 5a) contains x(nh1 + 1) +

∑L−1
`=1 nh`h`+1 + hLy +

(65n+4288) parameters, where x, y, and h` are the number of
inputs, outputs, and units in hidden layer `, respectively. The
last term represents the number of inner network parameters;

this is independent of input and output dimensions as well
as the number of hidden layers L, so it does not increase the
model complexity (due to parameter sharing). In contrast, the
second term

∑L−1
`=1 nh`h`+1 dominates the parameter count.

We fix the number of layers to L for all networks, but scale the
width of each layer to maintain the same parameter count for
the outer networks (Figure 6b). We scale all layer widths by
the same global factor so the relative profile of layer widths
h`/

∑
k hk are preserved for every network. This scaling

factor is
√
n for an n-arg nonlinearity, because the weights

scale as the product of layer widths: b
√
nh`c × b

√
nh`+1c ≈

nh`h`+1. To compensate for the different scaling from the
fixed input layer, and for the small discrepancy between
this desired irrational scaling and the integer numbers of
hidden units, we adjust the widths by a small additive term β.
To match parameter counts across networks, each layer thus
comprises b

√
nh`c + β hidden units. This way of matching

parameter counts in MLP-based outer network applies also to
CNN-based models, by setting h` to be the number of feature
maps in convolutional layer ` instead of hidden units.

Figure 4d compares training performance of the two-input
argument nonlinearity to networks using a ReLU or single-
argument nonlinearity. We repeat the training of the
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FIGURE 7. Gating operations emerge naturally from learnable multi-argument nonlinear structures. (a-d) Left: Examples of learned multi-argument
activation functions trained on CIFAR-10 and MNIST, within two different architecture types, CNN and MLP. Each row is a different repetition of the
learning experiment. All examples show nontrivial two-dimensional structure, reflecting interactions between two input arguments. The majority show a
(potentially rotated) white X shape, indicating a multiplicative interaction between the input features, and consistent with a gating interaction or soft
XOR. (a-d) Right: The best-fit quadratics of the corresponding left nonlinearities. (e) Random activation functions generated from Xavier weight
initialization. (f) Cumulative Distribution Function (CDF) of nonlinearity curvature. (g) Fraction of nonlinearities with negative (XOR-like) curvature. Even a
set of random functions may by chance have nonzero average curvature. The CONV architectures show deviations that are outside of the 95% Confidence
Interval (CI) of the null distribution (binomial distribution with probability of 1/2 for positive or negative curvature, for 24 trials).

nonlinearities on MNIST and CIFAR-10 4 times, which
produces 4 different samples of model performance.We aver-
age the results across 4 samples and find that the models
with learned activation functions achieve an overall strong
performance (Figure 4d). Notably, at any given epoch in
Figure 4d, performance of the learned nonlinearities is better
than the performance of the baseline ReLU nonlinearity.
The result suggests that our proposed network learns faster
than the ReLU network and achieves better asymptotic
performance, providing evidence for a better inductive bias in
the network due to the learned multi-argument nonlinearities.

C. EXPLICIT POLYNOMIAL NONLINEARITIES
The results outlined in the previous section focus on the
predictive performance of multivariate nonlinear functions.
We next turn our attention to the analysis of the structure
learned by our multi-argument nonlinearities. We repeat four
different trials of the learning experiment and collect samples
of two-argument activation functions trained on MNIST and
CIFAR-10, withinMLP and CNN outer networks. Figure 7a–
d (left columns) demonstrates that learned two-argument
nonlinearities are reliably shaped like quadratic functions,
varying by shifts and/or rotations. We therefore fit an
algebraic quadratic functional form, f (x1, x2) = c1x21 +
c2x22+c3x1x2+c4x1+c5x2+c6, to the learned inner-network
nonlinearities and find that the learned nonlinearity and
its best-fit quadratics have extremely similar structure
(Figures 7a–d right). This is the case even though the spatial
patterns have different rotations (Figures 7a–d).

We next validate the specificity of the observed inner
network output responses. It is clear by eye that the
learned nonlinearities are substantially different than those
produced by random functions (Figure 4b–c). However,

this regular pattern of learned nonlinearities might also be
obtainable by popular network initialization methods, such
as Xavier weight initialization. To differentiate between
these two possibilities, we therefore compare the learned
nonlinearities with inner nets initialized with Xavier random
initialization [32] (Figure 7e).We find that the Xaiver random
initial activations, although not as ‘‘random’’ as those we
generated ourselves (Figure 4b), are far from the regular
quadratic patterns observed in the learned nonlinearities
(Figure 7e). They instead evolve to display such smooth
quadratic patterns (Figure 5b), suggesting that the quadratic
structures we observe are not captured by standard weight
initialization schemes, but are favored by the optimization
process instead.
To test whether the learned quadratic functions have sta-

tistically significant sub-structure (for example, hyperbolic
vs. elliptical or negative vs. positive curvature), we computed
the curvature implied by the quadratic form above, c1c2 −
c23/4 (Figure 7f–g). The convolutional architecture learned
nonlinearities with negative curvatures for both tasks, a total
of 78% of 48 trials (p = 0.007 according to a binomial
null distribution with even odds of either curvature). This
indicates a multiplicative interaction between the input
features, and is consistent with a gating interaction or soft
XOR. In contrast, the multilayer perceptron architecture
produced more positive curvatures, but these were not
statistically significant (p = 0.06 by the same test).

D. SPECTRAL ANALYSIS
In principle, these multi-argument nonlinearities could have
learned a one-argument function, with a response that is
invariant to a second filter dimension. This would essentially
replicate the structure of a pure one-argument activation

58076 VOLUME 10, 2022



J. Kim et al.: Two-Argument Activation Functions Learn Soft XOR Operations Like Cortical Neurons

FIGURE 8. Spectral Analysis. Nonlinearities for various architectures and tasks for (a) two-argument and (b) three-argument inner networks. (c–d) Power
spectra for these learned functions (black curves) reveal larger power at ` = 2 than spectra for Xavier-initialized inner networks (red), consistent with
stronger quadrupolar structure. For the two-argument case, we used 64 learned functions and 24 randomly initialized functions. For the three-argument
case, we used 8 learned functions for each. Example basis functions are shown beneath the horizontal axis to illustrate the spatial structure quantified
by the frequency number.

function. However, this would waste many of the degrees of
freedom that the outer network could use for learning useful
projections of its input layer. We selected our architectural
hyperparameters to match the total number of parameters
for one-argument and multi-argument cases, so if a unit’s
response is invariant to some of its input projections, then
the one-argument nonlinearity would have been able to
capture that structure just as well, but with more distinct
filters. The multidimensional nonlinearity therefore is incen-
tivized to produce nontrivial interactions between its input
arguments.

To characterize the structure of learned nonlinearities,
we performed a spectral analysis on them. We then compared
the spectra of learned nonlinearities to those of Xavier-
initialized ones. Additionally, to check the generality of
these results, we also optimized three-argument activa-
tion functions and compared them with the two-argument
case. This allowed us to examine whether the quadratic

structure is preserved even in higher-order input argument
nonlinearities.

We computed spectra using basis functions φ(x) appropri-
ate for the symmetry and boundary conditions of the nonlin-
earities: we used Hermite-Bessel functions [37] for the two-
argument functions, and solid harmonics for three-argument
activation functions. We only evaluated the power in regions
of the input space that were explored by the distribution p(x)
of their actual inputs. The power was therefore computed
according to P`[f (x)] =

∑
m ‖

∫
dx p(x)f (x)φ`m(x)‖2, where

` is the analog of spatial frequency for these basis functions
and m is analogous to spatial phases.

Figure 8 shows that the learned multi-argument nonlin-
earities have more higher-order structure than the Xavier
initialized ones. Randomly initialized networks favor strong
dipole structure with ` = 1. In contrast, the power spectra
of learned nonlinearities are consistent with an underlying
quadrupole structure, which has its strongest frequency
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content at ` = 2. A soft XOR can be described by f (x1, x2) =
x1x2 or its rotations, which produces positive outputs in
two opposite quadrants and therefore creates a quadrupole
moment with negative curvature.

E. GENERALIZATION
We now consider out-of-distribution generalization per-
formance of the models for image classification with
multi-argument nonlinear functions. In particular, we test
whether these activation functions make the learned repre-
sentations more robust against common image corruptions
and adversarial perturbations. We quantify the robustness of
the models against common corruptions and perturbations
using the recently introduced CIFAR-10-C benchmark [38]
and AutoAttack [39], a parameter-free ensemble of black-
and white-box attacks. We refer to [38] and [39] for their
description of how these benchmark datasets and attacks were
developed.

1) ROBUSTNESS AGAINST COMMON IMAGE CORRUPTIONS
CIFAR-10-C was designed to measure the robustness of
classifiers against common image corruptions and contains
15 different corruption types applied to each CIFAR-
10 validation image at 5 different severity levels. The
robustness performance on CIFAR-10-C is measured by
the corruption error (CE). For each corruption type c,
the classification error of the two-argument network is
averaged over different severity levels s and then divided
by the average classification error of a reference classifier
(conv-based outer network with ReLU): i.e. CE2-arg

c =(∑5
s=1 E

2-arg
s,c

)/(∑5
s=1 E

ReLU
s,c

)
. The mean corruption error

is then obtained by averaging over the corruption types:
mCE = 〈CE2-arg

c 〉c. We also compute a relative mCE
score by subtracting the clean classification error of the
classifiers from the corruption errors: Relative CE2-arg

c =(∑5
s=1 E

2-arg
s,c − E

2-arg
clean

)/(∑5
s=1 E

ReLU
s,c − EReLU

clean

)
and then

averaging over different corruption types as before results
in the relative mCE = 〈relative CE2-arg

c 〉c. This measures
the relative enhancement on corrupted images in comparison
with clean images.

As seen in Figure 9, two-input argument nonlinearities
significantly improve the robustness over the ReLU baseline
model (mCE = 91.3%). Note that mCE scores lower
than 100 indicate more success at generalizing to corrupted
distribution than the referencemodel. Moreover, the observed
relative mCE (= 99.5%, which is less than 100) shows that
the accuracy decline of the proposed model in the presence of
corruptions is on average less than that of the network with
ReLU. The results suggest that this corruption robustness
improvements be attributable not only to the simple model
accuracy improvements on clean images, but to stronger
representations of the learnable multivariate nonlinearity than
ReLU against natural corruptions. These relative measure
are standard performance metrics chosen to highlight real
robustness benefits, properly accounting for confounds like
overall performance [38].

FIGURE 9. Robustness of two-argument nonlinearities against common
image corruptions. Corruption error (CE; bars), mCE (black solid line),
and relative mCE (black dashed line) of different corruptions on
CIFAR-10-C and Conv-based outer networks. The mCE is the mean
corruption error of the corruptions in Noise, Blur, Weather, and Digital
categories. Models are trained only on clean CIFAR-10 images.

TABLE 1. Robustness of adversarial defenses by AutoAttack. Numbers
indicate average classification accuracy from 4 trials.

2) ADVERSARIAL ROBUSTNESS
We next consider both black-box and white-box attacks to
measure the robustness of the model against adversarial
perturbations. We use the recently introduced AutoAt-
tack [39] combining two parameter-free versions of Projected
Gradient Descent (PGD) [40] algorithm with two existing
complementary Fast Adaptive Boundary (FAB) [41] and
Square [42] attacks. AutoAttack is carried out with an
ensemble of the four aforementioned attacks to reliably
evaluate adversarial robustness where the hyperparameters of
all attacks are fixed for all experiments across datasets and
models.

In Table 1, we report the results on 6 models (∈
{MLP, Conv}outer-net × {2-arg, 1-arg, ReLU}inner-net) trained
for `∞-robustness. For each classifier we report the accuracy
on the robustness test, at the ε specified in the table, on the
whole test set obtained by the ensemble AutoAttack. This
method counts an attack successful when at least one of the
four attacks finds an adversarial example (worst case evalua-
tion). Additionally, we compute the difference in robustness
between the network with two-input argument nonlinearities
and the baseline model using ReLU nonlinearities. Positive
differences are highlighted in blue in the last column
of Table 1, and indicate improved robustness compared
to the baseline model. In all cases, AutoAttack reveals
greater robustness in networks with the learned two-argument
nonlinearities than in the baseline networks with ReLU. This
suggests that the learned two-argument nonlinearities provide
a better inductive bias against adversarial perturbations.

V. DISCUSSION
The neurons in biological neural networks are much more
intricate machines than the units they inspired in machine
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learning. Instead, neural networks in machine learning have
been dominated by scalar activation functions. At the same
time, it is widely acknowledged that different design choices
here can lead to different inductive biases, and architectures
with new neural elements are proposed frequently. These ele-
ments are usually based on guesses or intuition. Interestingly,
one of the most influential elements has been a multiplicative
gating nonlinearity, seen in LSTMs [43], GRUs [44],
and transformers [29]. Our experiments demonstrated that
gating-like functions emerge automatically from learned
multi-argument nonlinear activation functions, as the soft
XOR can be interpreted as an output that selects one input
dimension of its input and modulates or gates that output
by another input dimension. These learned functions have
properties resembling dendritic interactions in biological
neurons [10]. Networks endowed with these functions learn
faster and are more robust.

Although these learnable nonlinearities add some com-
plexity to a network, overall these extra inner network
parameters are few in number since they are shared across
all neurons in the outer network. Moreover, using algebraic
polynomial approximations to the learned nonlinearities, as in
section IV-C, can reduce both the number of parameters and
the memory requirements of the inner networks in practical
applications.

Nontrivial computations in a multilayer network require
some sort of nonlinearity, since otherwise the whole network
merely performs one linear transformation. The simplest
nonlinearity is quadratic, whether the quadratic has negative
curvature like a soft XOR, or a positive curvature like
coincidence detection. It is interesting that even when
allowing for more input arguments, the resultant learned
nonlinearities still favor low-order quadratic functions (Fig-
ure 8b–d). This could be explained by an implicit bias toward
smooth functions [45], [46] while still bending the input
space to provide useful computations. Perhaps the learned
nonlinearities are as random as possible while fulfilling
these minimal conditions. It will be interesting to test this
hypothesis by examining the transformations of multiple cell
types, or those produced by higher-dimensional functions like
network-in-network [24], and to see whether different tasks
incentivize different computations.

VI. CONCLUSION
Our study demonstrates that flexible multi-argument activa-
tion functions converge to reliable and interpretable patterns
and provide computational benefits. However, our study has
important limitations that should be addressed in future
work. The performance benefits should be evaluated in more
architectures and tasks, and at larger scales. There might
be synergistic benefits from additional features like skip
connections or global modulation. Some of the additional
complexity afforded by multi-argument activation functions
might be more useful when used in richer architectures,
including those with recurrence, dedicated input types
(e.g. distinct feedforward, feedback, and lateral interaction

arguments), multiple cell types [47], [48], and more intricate
dendritic substructures [7], [12]. Such biologically-inspired
additions to neural network architectures could provide
inductive biases closer to the inductive biases in biological
brains [49], [50].
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