
Received April 14, 2022, accepted May 12, 2022, date of publication May 18, 2022, date of current version May 31, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176003

NAS-TasNet: Neural Architecture Search for
Time-Domain Speech Separation
JOO-HYUN LEE1, JOON-HYUK CHANG 1, (Senior Member, IEEE),
JAE-MO YANG2, AND HAN-GIL MOON2
1Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
2Samsung Electronics, Suwon-si, Gyeonggi-do 16677, South Korea

Corresponding author: Joon-Hyuk Chang (jchang@hanyang.ac.kr)

This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by
the Korean Government [Ministry of Science and ICT (MSIT)], development of ultra-high speech quality technology for remote
multi-speaker conference system, under Grant 2021-0-00456.

ABSTRACT The fully convolutional time-domain speech separation network (Conv-TasNet) has been used
as a backbone model in various studies because of its structural excellence. To maximize the performance
and efficiency of Conv-TasNet, we attempt to apply a neural architecture search (NAS). NAS is a branch of
automated machine learning that automatically searches for an optimal model structure while minimizing
human intervention. In this study, we introduce a candidate operation to define the search space of NAS for
Conv-TasNet. In addition, we introduce a low computational cost NAS to overcome the limitations of the
backbonemodel that consumes large GPUmemory for training. Next, we determine the optimized separation
module structures using two search strategies based on gradient descent and reinforcement learning.
In addition, when NAS is simply applied, there is an imbalance in the updating of architecture parameters,
which are NAS parameters. Therefore, we introduce an auxiliary loss method that is appropriate for the
Conv-TasNet architecture for a balanced architecture parameter update of the entire model. Furthermore,
we determine that the auxiliary loss technique mitigates the imbalance of architecture parameter updates
and improves the separation accuracy.

INDEX TERMS Automated machine learning (AutoML), convolutional neural network (CNN), deep
learning, end-to-end, speech processing, speech separation, neural architecture search, time-domain speech
separation.

I. INTRODUCTION
Speech communication in the real world frequently occurs
in crowded multispeaker settings. Speech processing systems
should be able to differentiate speech from distinct speakers
in such situations. Speech separation aims to separate monau-
ral speech recordings into their constituent sounds. Automatic
speech separation allows machines to listen selectively to
distinct sounds in an acoustic mixture. Selective machine lis-
tening enables robust sound processing in real-world acoustic
environments. Applications such as speech communication
and automatic speech recognition often require automated
source separation for robustness.

Most previous speech separation approaches operate on the
time-frequency domain separation that uses a spectrogram

The associate editor coordinating the review of this manuscript and

approving it for publication was Joanna Kołodziej .

of the mixture signal, estimated using the short-time Fourier
transform (STFT) [1]. Former methods that use spectro-
grams as inputs estimate the spectrogram representation of
each source and use clean-source spectrograms as the target
[2], [3]. The mask estimation approach is an alternative
method that separates a mixture signal from the spectro-
gram of each source by estimating the weighting function
(mask) and multiplying it by the mixture representation.
In recent years, deep learning has achieved significant
improvements in the performance of masking methods
[4]–[12]. However, the spectrogram method has two major
issues. First, the reconstruction of the clean source phase
is also a nontrivial problem. The error in estimating the
phase results in an upper bound of the separation per-
formance. Second, successful separation from the spec-
trogram requires high-resolution frequency decomposition,
and a long temporal window is necessary for the STFT

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 56031

https://orcid.org/0000-0003-2610-2323
https://orcid.org/0000-0002-5181-8713

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

of the mixture signal for better separation performance.
High-resolution STFT limits its applicability in real-time,
resulting in low-latency applications. Thus, direct separa-
tion in the time domain [13]–[16] has been attempted to
overcome the disadvantages of time-frequency domain sep-
aration. Among several time-domain separation techniques,
the fully convolutional time-domain speech separation net-
work (Conv-TasNet) [17] has received interest from many
researchers because of its remarkable performance improve-
ment compared to the previous methods.

Conv-TasNet is a time-domain mask estimation speech
separation model composed of a temporal convolutional net-
work (TCN) [18]–[20]. Stacked dilated 1-D convolutional
neural network (CNN) blocks can cover a long receptive
field, showing better performance than the previous method.
In addition to its separation performance, convolution allows
parallel processing and accelerates the separation. Models
using recurrent neural networks [21], U-Nets [22], and trans-
formers [23], [24] have been proposed. As various models
have been introduced, Conv-TasNet appears to be outdated.
However, considering the trade-off between various factors
such as model size and latency owning to computational
complexity, it is still a superior model compared to latest
models. Owning to its excellent structure, Conv-TasNet is
used for speech and the sound source separation of other
domains using some modifications [25]–[27] and continues
to be used as a reference model for new separation model
training methods [28]–[30].

Deep learning has significantly impacted almost all fields,
including the speech separation domain, and recent deep
learning models have outperformed existing methods. How-
ever, as deep learning models mature, the complexity of
the model is getting incorporated. Thus, considerable field
knowledge and time are often required to design models
with excellent performances. Consequently, the importance
of the neural architecture search (NAS), which automates
deep learning architectural engineering, has become more
prominent. NAS can be a sub-field of automated machine
learning (AutoML), similar to hyperparameter optimization
and meta-learning. Models found by NAS with efficient con-
figurations with fewer parameters have outperformed man-
ually designed architectures in tasks such as image classifi-
cation and language modeling [31]–[43]. Manually designed
models generally use common model hyperparameters. For
example, in a general model composed of CNN layers, all lay-
ers share the same kernel size or the model is constructed by
increasing the number of kernels per layer at a specific rate. In
contrast, the optimized model with an intricately configured
combination of model hyperparameters, searched through
NAS, shows performance and efficiency that exceed manu-
ally designed models. Finding complex combinations manu-
ally, as designed by NAS, requires enormous time and com-
puting resources. Therefore, NAS is essential for optimizing
the model structure to the extreme. Conv-TasNet also com-
prises various model hyperparameters. A previous study [17]
attempted to use different model hyperparameters to derive

optimal performance. The experiment in [17] demonstrated
that the performance difference depended on the hyperparam-
eter combination. However, attempts have not been made to
find the optimal combination by varying the hyperparameters
for each layer (1-D convolutional block). As architecture
search has shown remarkable results in designing models,
we can expect Conv-TasNet to have better performance and
efficiency if the optimal combination of hyperparameters is
found for each layer using the NAS.

As NAS has recently gained efficiency and become popu-
lar, research on NAS, which was active only in the existing
image classification or language modeling fields, is being
conducted in various fields. Recently, NAS has proven its
excellence in the medical fields [44]–[47] and image seg-
mentation [48]–[50]. However, the application of NAS in the
audio deep learning field has scarcely been studied, except
for a few cases applied to automatic speech recognition
tasks [51], [52]. Therefore, we intended to prove the value of
NAS research in the audio deep learning field by validating
its effectiveness in speech separation tasks.

In this study, we introduce the method of applying NAS
to Conv-TasNet and the results of the application. To apply
NAS to Conv-TasNet, the candidate operations that define
the NAS search space are determined. Additionally, efficient
low computational cost NAS will be applied as the back-
bone model consumes a high GPU memory for training.
Moreover, an imbalanced update of the architecture param-
eters, which are the NAS parameters throughout the model,
is observed if NAS is simply applied. To address this issue,
we exploit the auxiliary loss in the Conv-TasNet structure,
which is a method used to improve the ability to capture
long-term dependencies [53] or train deep models [54].
In addition, the application of auxiliary loss in Conv-TasNet
model training significantly improved the separation perfor-
mance. Finally, we induce models through gradient-based or
reinforcement-learning-based NAS, outperforming the ref-
erence network. Similar to the model proposed in a pre-
vious study, NAS-Unet [44], the derived model is denoted
as NAS-TasNet. The contributions of this study are as
follows.

1) To the best of our knowledge, this study is the first
approach to apply neural architecture search to the
speech separation model.

2) We define an appropriate search space for Conv-TasNet
NAS and propose a NAS application method that over-
comes the high GPU memory requirement to train the
model.

3) A loss computation method suitable to Conv-TasNet
is devised to improve the separation model’s neural
architecture search and training.

4) We demonstrate that the performance of our searched
model, NAS-TasNet, has fewer parameters and out-
performs Conv-TasNet and its improved version
(TDCN++) on the WSJ0-2mix dataset and its perfor-
mance is similar to the existing performance on the
WSJ0-3mix dataset.

56032 VOLUME 10, 2022

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

II. RELATED WORKS
As deep learning models for different tasks develop and
model designs become complex, designing networks requires
considerable effort from experts. Therefore, some industry
experts and scholars have focused on algorithmic solutions
to automate the manual architectural design process. NAS is
a field that automates the design of deep learning models.
NAS has proven its capabilities by automatically discov-
ering image classification CNN and recurrent neural net-
work (RNN) designs in the language field to discover model
designs that are superior to existing models.

NASmethods can be categorized into search spaces, search
strategies, and performance-estimation strategies [55]. The
search space is defined to determine the candidate elements
of the model to be optimized. Incorporation of prior knowl-
edge of the typical properties of architectures adequate for
a task to determine the candidate element, can simplify the
search by reducing the size of the search space. However,
such reflection on prior knowledge and human bias makes it
impossible for NAS to determine a newmodel beyond human
knowledge. The determination of a search strategy incorpo-
rates a similar exploration-exploitation trade-off problem in
determining the search space. The best strategy is an algo-
rithmic solution that quickly searches for an optimal model,
while avoiding rapid convergence to a region of suboptimal
architectures. Search algorithms mainly include evolution-
ary algorithms [31]–[33], reinforcement learning [34]–[37],
[43], and gradient-based methods [39]–[41], [43]. The per-
formance estimation strategy measures the performance of a
derived model on unseen data during the NAS process. The
most straightforward method is to build a sampled model,
run standard training from scratch until the performance con-
verges, and evaluate the architecture on a test split. How-
ever, this naïvemethod is computationally expensive, limiting
the search for various architectures. Consequently, recent
studies have focused on developing strategies to lower the
cost of these performance assessments. For example, some
studies [38]–[41], [43] have proposed a method that repre-
sents an architecture as a directed acyclic graph (DAG) and
construct an over-parameterized network with all candidate
operations. Using this approach, different architectures can
be constructed by simply changing the edges and nodes of
an over-parameterized network. Thus, multiple model perfor-
mance can be measured without rebuilding and re-training.

Some attempts have been made the NAS process faster
and more resource-efficient. GPU-days is a measure of
NAS efficiency, defined as GPU-days = N × D, where
N represents the number of GPUs and D represents the
actual number of days spent searching. The conventional
NAS algorithm required 22,400 GPU-days (800 GPUs ×
28 days). Consequently, operating NAS is difficult for indi-
viduals or small research groups. However, the efficiency of
NAS significantly improved after the over-parameterized net-
work DAG approach was introduced. For example, the effi-
cient neural architecture search (ENAS) [38] outperformed
existing methods with only 0.45 GPU-days by utilizing

the over-parameterized network DAG concept, even though
it employed the same reinforcement-learning-based search
strategy as the conventional NAS. By taking advantage
of the characteristics of the over-parameterized network
concept, differentiable architecture search (DARTS) [39],
assigning weights to candidate computation edges of over-
parameterized networks, and optimizing the weights through
gradient descent, have been proposed. DARTS is a relatively
intuitive method that searches for a model with good perfor-
mance within a few GPU-days. Subsequently, a more effi-
cient DARTSmethod that reduces the GPU consumption [43]
was proposed. The constraint that restricts execution for NAS
with large input dimensions was resolved by reducing GPU
memory consumption.

III. SEARCH SPACE CONFIGURATION FOR
SEPARATION NETWORK
Single-channel speech separation can be defined as the esti-
mation of N sources s1, . . . , sN ∈ R1×T in a mixture wave-
form x ∈ R1×T :

x =
N∑
i=1

si. (1)

Conv-TasNet [17] is composed of three instances: encoder,
separator, and decoder. Figure 1 overviews the Conv-TasNet
architecture. Encoder E transforms the input mixture signal
x into a latent representation vx = E(x) ∈ RCE×L . Sep-
arator S estimates the corresponding masks m̂i ∈ RCE×L

for each of the N sources s1, . . . , sN ∈ RT that constitute
the mixture. The estimated latent representation for each
source in latent space v̂i is retrieved by multiplying the
element-wise estimated mask m̂i with the encoded mixture
representation vx. Decoder D estimates the target sources
from latent space vectors ŝi = D(̂vi). The separator consists
of stacked 1-D dilated convolutional blocks motivated by
a TCN [18]–[20]. Each 1-D convolutional block consists
of a convolution with an exponentially increasing dilation
factor d . This method allows the model to efficiently have
a large receptive field. Consequently, the dilated convolu-
tional network has a sufficiently large temporal context win-
dow to handle the long-term dependencies of inputs. The
separation model consists of X convolutional block stack
repeats R. Moreover, we used an advanced version of Conv-
TasNet’s separation module (TDCN++) [25] as our back-
bone network, rather than the original Conv-TasNet. This
improved architecture enabled three additional improvements
over the original network. First, global layer normalization
within 1-D convolutional blocks, which normalizes the over-
all features and frames, was replaced with feature-wise layer
normalization over the frames. The second improvement
was the longer-range skip-residual connections from earlier
block-stack repeat inputs to later repeat inputs after passing
them through dense layers. The third advancement was the
learnable scaling parameter. The scaling parameter, which
was applied immediately before the residual connection for

VOLUME 10, 2022 56033

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

FIGURE 1. Conv-TasNet architecture for the separation of two sources.

the second 1-D convolutional block in each repeat, was ini-
tialized to an exponentially decaying scalar equal to 0.9X ,
where X was the index of the block of a stack repeat.

Table 1 lists the hyperparameters of Conv-TasNet. Except
for variables N and L, all hyperparameters are related to the
separation module. The previous study [17] demonstrated
that the performance varies with combinations of hyper-
parameter values through many attempts. The experiments
in [17] attest that the autoencoder variables (N and L) are also
essential performance factors. However, owing to the com-
plexity, we intend to apply NAS only to 1-D convolutional
block-based separation modules. In this study, we design the

TABLE 1. Network hyperparameters.

NAS to determine the optimal combination ofH , P, X , and R
of the separation model.

Two types of search spaces exists: the network- and cell-
based. The network-based method explores the entire net-
work, whereas the cell-based method constructs a network
by conducting NAS for cells and repeating the cell structures
with a fixed number. This study employed a network-based
approach; thus, each 1-D convolutional block was given indi-
vidual model hyperparameters.

Our search space consist of the design choices for ker-
nel size P and expansion ratio H . We allow a set of 1-D
convolutional blocks with various kernel sizes {3, 5} and
expansion ratios {×1, ×2, ×4} (Figure 2(a)). The expansion
ratio represents multiple kernels compared with the number
of input channels.Moreover, we add a zero layer (Figure 2(b))
to the group of candidate operations to design the NAS for
layers and repeat counts (X and R). The zero layer outputs
zero tensors in the same dimension as the input. Because
all 1-D convolutional blocks consist of residual and skip
connections, the placement of a zero layer between blocks
has the same effect as omitting one block. Adjustment of the
layer count in a repeat may break the exponentially increasing
dilation pattern proposed in [17]. Accordingly, the dilation of
each 1-D convolutional block was adjusted by re-assigning
the index of one repeat layer, except for the zero layer before
a forward operation. A mixed operation constitutes of seven
candidate operations: two cases for the kernel size, three cases
for 1-D convolutional block channel numbers, and a zero
layer.

56034 VOLUME 10, 2022

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

FIGURE 2. Candidate operations compose search space: (a) 1-D
convolutional block with various kernel sizes and expansion ratios.
(b) Zero layer that controls the depth of a repeat.

Note that B, Rmax, and Xmax are the NAS hyperparameters,
where B is the bottleneck size of separator S, and we set it
to 128, which is the best performance value in [17]. Rmax
represents the maximum number of repeats and Xmax is the
maximumnumber of 1-D convolutional blocks in each repeat.
We fix the value of Xmax to 8, which is the value of the best
performance in [17]. In the case of Rmax, experiments are
conducted for two cases: 3 and 4.

IV. ARCHITECTURE SEARCH STRATEGY
This section describes how we conduct an architecture
search on the network-based search space determined in
the previous section. First, we describe the implementation
of DARTS [39] and the construction of a mixed opera-
tion network with all candidate paths. Next, we describe
how we conduct the computationally cost-efficient gradient-
based NAS (ProxylessNAS) proposed by Cai et al. [43].
Subsequently, we introduce an objective function for the
architecture parameter update that considers the perfor-
mance and model size during the architecture search. Finally,
we describe a reinforcement learning-based search imple-
mentation as a REINFORCE-based search that can be per-
formed on our mixed operation network.

A. DIFFERENTIABLE ARCHITECTURE SEARCH
DARTS proposes the relaxation of the discrete set of a
candidate operations. DARTS relaxes the categorical choice
of a particular operation to a softmax function over all
possible operations. Because relaxation makes the search
space continuous, architecture optimization through gradient
descent is possible. To proceed with DARTS, we configure
an over-parameterized network with mixed operations that
contains all candidate operations and architecture parameters
α. An over-parameterized network is also called a mixed
operation network. We represent the architecture as a DAG,

denoting a mixed operation network as N (e, . . . , en), where
ei represents a certain edge in the DAG. To construct a mixed
operation network that includes any architecture in the search
space, we set each edge as a mixed operation, mO, with the
set of candidate primitive operations denoted asO = {oi} and
the network expressed as N (e = m1

O, . . . , en = mnO).
If a mixed operation and its input are defined as x and

mO, respectively, in DARTS, mO(x) is the weighted sum of
{oi(x)}, where the weights are calculated by applying softmax
to N real-valued architecture parameters αi, such that

mO(x) =
N∑
i=1

pioi(x) =
N∑
i=1

exp(αi)∑
j exp(αj)

oi(x). (2)

The architecture parameter αi determines the probabilities
of the corresponding candidate operations in a mixed opera-
tion via using softmax. With an over-parameterized network,
DARTS alternately updates the model parameters (weight,w)
and architecture parameters α to minimize the objective
function of the architecture (bi-level optimization). As the
training progresses, the αi of an operation that improves the
performance increases, and the rest decreases. After model
training, we prune all operations, except candidate operations
with the largest alpha from mixed operations and determine
it as an optimized cell architecture. 3 illustrates the DARTS
procedure.

B. ARCHITECTURE SEARCH WITH GPU MEMORY SAVING
As shown in Eq. (2), the output feature maps of all N paths
are calculated and stored in memory, whereas the training of
a compact model involves only one path. DARTS requires
approximately N times the GPU memory and GPU hours
compared with training a compact model. This computa-
tional approach leads to out-of-memory issues for large-scale
input datasets and extends the pool of candidate operations.
Because the input of the time-domain speech separation
model is large raw audio data, regular DARTS cannot be con-
ducted on the separation model owing to the memory overuse
of DARTS’s weighted sum computation. Instead of regular
DARTS, we applied ProxylessNAS [43], a memory-efficient
method, to proceed with DARTS, reducing the memory foot-
print by maintaining only one path in an over-parameterized
mixed operation network through binarization. To binarize
the paths, we transform N real-valued path weights {αi} into
binary gates as follows:

g = binarize(p1, . . . , pN) =

[1, 0, . . . , 0]. . .

[0, 0, . . . , 1]
. (3)

The output of a mixed operation that applied binary gates g,
is given by:

mBinary
O (x) =

N∑
i=1

gioi(x) =

o1(x). . .

oN (x)
. (4)

In a mixed operation with a binary gate, only one path
of activation is active in the memory at runtime; thus, the

VOLUME 10, 2022 56035

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

FIGURE 3. Overview of DARTS: (a) Continuous relaxation of the search space by placing a mixture of candidate operations on each edge.
(b) Joint optimization of mixing probabilities (architecture parameters) and network weights by bi-level optimization. (c) Deriving the final
compact model from the learned mixture probabilities.

FIGURE 4. Overview of ProxylessNAS: (a) Continuous relaxation of the search space by placing a mixture of candidate operations on each
edge. (b) Joint optimization of mixing probabilities and network weights by solving a bi-level optimization problem.

memory requirement to train the over-parameterized network
is reduced to the same level of training a compact model.

Figure 4 shows the training procedure for the binarized
architecture parameters in themixed operation network. First,
to train the network weight parameters, the architecture
parameters (α) are frozen and binary gates are stochasti-
cally sampled for each batch of input data. Subsequently, the
weight parameters of the active paths are updated via standard
gradient descent on the training dataset (Figure 4(a)). To train
the architecture parameters (α), the weight parameters (w)
are frozen, the binary gates are reset, and the architecture
parameters are updated on the validation split (Figure 4(b)).
Unlike weight parameters w, the architecture parameters α
are not directly involved in the mixed operation computa-
tion; therefore, they cannot be updated using regular gradient
descent. Nevertheless, the binary gates (g) involved in the
computation graph, ∂mBinary

O (x)/∂g can be calculated using
backpropagation, as shown in Eq. (4). However, computing
∂mBinary

O (x)/∂g requires calculating and storing the output of
mixed operations (mBinary

O (x)). Thus, updating the architec-
ture parameters still require approximately N times the GPU

memory compared with training a compact model. To solve
this problem, the task of choosing one path out of N candi-
dates is factorized into multiple binary selection operations,
assuming that, if a path is the best choice in a particular
position, it must have been a better choice than any other
path. Accordingly, we first sample two paths based on the
multinomial distribution (p1, . . . , pN) and mask all the other
paths. Consequently, the number of candidates temporarily
decreases from N to 2, meaning that the number of paths
involved in the mixed operation and feature maps cast on the
GPU is reduced from N to 2. Thus, the architecture param-
eters of these two sampled paths are updated. The update
steps for these two weight and architecture parameters are
alternatively performed.When the training of the architecture
parameters is completed, a compact architecture is derived by
pruning redundant paths.

C. MODEL SIZE-AWARE OBJECTIVE FUNCTION
The separation task aims to maximize the scale-invariant
source-to-distortion ratio (SI-SDR) [56]. Thus, as an objec-
tive function, we use the negative permutation-invariant

56036 VOLUME 10, 2022

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

SI-SDR [8]. The loss function L−SI-SDR is defined between
the target clean source t and estimates ŝ as follows:

L−SI-SDR = −SI-SDR(t∗, ŝ) = −10log10

(
‖αt∗‖2

‖αt∗ − ŝ‖2

)
,

(5)

where t∗ denotes the permutation of the sources that maxi-
mizes the SI-SDR and α = ŝ>t∗/ ‖t‖2 is a scalar. In addition
to SI-SDR, we attempt to optimize the model size with fewer
parameters during the architecture search. As in [57], an effi-
cient architecture can be designed by considering the num-
ber of floating-point operations (FLOPs). However, unlike
negative SI-SDR, can be optimized with the gradient of the
objective function, FLOPs are non-differentiable. To solve
this problem, we use the architecture search object function
that considers the FLOPs in which the loss function term
proposed by ProxylessNAS was applied.

Consider amixed operationwith a candidate set {oj}, where
each oj is associated with a path weight pj that represents the
probability of selecting oj. Thus, the expected FLOPs of a
mixed operation can be defined as

E[FLOPsi] =
∑
j

pij × F(o
i
j), (6)

where E[FLOPsi] is the expected FLOPs of the ith mixed
operation, F(·) is the FLOPs prediction function, and F(oij)
is the predicted latency of oij. With Eq. (6), the estimated
FLOPs can be differentiated with respect to the architecture
parameter and the gradient of E[FLOPsi] can be expressed
as ∂E[FLOPsi]/∂pij = F(oij). The expected FLOPs for the
entire network with a sequence of mixed operations can be
expressed as the sum of the estimated FLOPs of the mixed
operations:

E[FLOPs] =
∑
i

E[FLOPsi]. (7)

Thus, the expected latency of the network is added to a
negative SI-SDR loss function by multiplying by a scaling
factor λ2(>0), that controls the trade-off between accuracy
and latency. The final loss function is given as

L = L−SI-SDR + λ1 ‖w‖22 + λ2E[FLOPs], (8)

where λ1 ‖w‖22 is the weight decay term.

D. REINFORCE-BASED APPROACH
With the architecture search settings mentioned in the previ-
ous subsections, REINFORCE [58] can be applied to train the
architecture parameters. The main objective of updating the
binarized parameters is to determine the optimal binary gates
that maximize a certain reward, denoted as R(·). We adopt the
reward function presented in [59] by changing the accuracy
term to the SI-SDR and latency to the FLOPs of a model.
The reward function obtained by applying the existing reward
function is as follows:

R(Ng) = SI-SDR(Ng)×
[
FLOPs(Ng)

Tref

]w
, (9)

whereNg denotes a currently sampled network with sampled
binary gates, Tref is the reference target FLOPs of a network
that functions as a hard constraint, and w is a weight factor
that adjusts the trade-off between SI-SDR and FLOPs. Thus,
the reward function maximizes SI-SDR under a hard con-
straint. In this study, We set Tref as the estimated total FLOPs
of Conv-TasNet and w = −0.07.

Based on REINFORCE, we accomplish the following
updates for the binarized parameters in a mixed operation
network:

J (α) = Eg∼α[R(Ng)] =
∑
i

piR(N (e = oi)),

∇αJ (α) =
∑
i

R(N (e = oi))∇αpi,

=

∑
i

R(N (e = oi))pi∇αlog(pi),

= Eg∼α[R(Ng)∇αlog(p(g))],

≈
1
M

M∑
i=1

R(Ngi)∇αlog(p(g
i)). (10)

where gi denotes the ith sampled binary gate, p(gi) is the
probability of sampling (policy) according to Eq. (3), andNgi

is a compact network based on the binary gates gi. M is the
hyperparameter of the REINFORCE-based NAS, the number
of different architectures sampled in one mini-batch. In this
study, M is set to 4, meaning that we sample 4 models for a
mini-batch from the current policy and evaluate the estimated
reward of the policy from the average reward of the four mod-
els. Because Eq. (10) does not requireNgi to be differentiable
with respect to g, it can handle non-differentiable objectives.

V. AUXILIARY LOSS
In this section, we introduce auxiliary loss, which alleviates
the architecture parameter update imbalance between mixed
operations during NAS and improves the separation perfor-
mance of the model. As described in Section IV-A, the archi-
tecture parameters are assigned to eachmixed operationwhen
performing the gradient descent-based search. The output
of a mixed operation is the weighted sum of the candidate
operation outputs. The weights are the values obtained by
applying the softmax function to the architecture parameter.
As NAS progresses, the weights are modified by updating the
architecture parameters, and the weight of the most appro-
priate operation for the corresponding position among the
candidate operations increases. The weight of each mixed
operation can be a confidence level for a specific candidate
operation and as the weight increases, the entropy of the
weight distribution decreases. The entropy is the level of
randomness or uncertainty of a probability distribution, and
the entropy of a discrete probability distribution is defined as

H = −
N∑
i=1

piln(pi), (11)

VOLUME 10, 2022 56037

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

where H is the entropy of the probability distribution, and
pi denotes the probability of corresponding candidate oper-
ations in a mixed operation. pi is the weight of the weighted
sum of a mixed operation in DARTS. N denotes the number
of candidate operations. We monitor the entropy reduction
of each weight distribution of the mixed operation for each
NAS epoch to observe the progress of NAS. Through entropy
decrease monitoring, an architecture parameter update imbal-
ance is observed. The entropies of the mixed operations
located at the front barely decrease, while those located at
the last position reduce rapidly and excessively. This phe-
nomenon indicates that the architecture parameter updates
differ depending on the location of the mixed operation.
We presumed that as the separation module is given a
large depth, the layers in the front cannot provide a dis-
criminative feature because the gradients are ineffectively
back-propagated through all layers. Consequently, in earlier
mixed operations, because each candidate operation cannot
provide a discriminating feature, determining the preference
among the candidates is impossible; thus, candidates are
randomly selected.

To alleviate the parameter update imbalance between
mixed operations placed in different locations and prevent
random decisions in mixed operations of specific locations,
we apply auxiliary loss, which is the method used to train
deepmodels [54] or improve their ability to capture long-term
dependencies [53]. Auxiliary loss is obtained by estimating
the mask for each repeat and aggregating the losses. Figure 5
illustrates the acquisition of the auxiliary loss designed for
the Conv-TasNet architecture. We denote the result of the
element-wise sum of the output skip-connections of the layers

FIGURE 5. Schematic of auxiliary loss. Auxiliary loss is obtained by
estimating the mask for each repeat and aggregating the losses.

of each repeat as yRn and the loss from each repeat as
LRn . With LRn , we compute as much losses as the num-
ber of repeats by reusing the existing mask network and
decoder, without creating additional model. The losses, LRn ,
are aggregated with the exponentially weighted moving aver-
age. We assume that the mask estimation from the earlier
1-D convolutional block repeats have relatively higher losses
than the losses of the later repeats. Thus, we use the weighted
average to control the influence of the front repeats instead of
regular averaging. The moving average is employed instead
of simple averaging to maintain the weighting pattern, even
if the number of repeats is adjusted. The auxiliary loss Laux is
expressed as follows:

Laux = LRt =
{
LRt , t = 1
αLRt + (1− α)LRt−1 t > 1

, (12)

where coefficient α is a smoothing constant between 0 and 1,
indicating the degree of weight reduction; if α is large, losses
from earlier repeat decay are faster. The best performance is
observed when α is 0.4. Auxiliary loss is introduced only in
model training, and during inference, it estimates a mask only
at the last repeat.

VI. EXPERIMENT AND RESULTS
A. DATASET
We evaluated our system on a two-speaker speech separa-
tion task using the widely used WSJ0-2mix and WSJ0-3mix
datasets [5]. The datasets consisted of 30 h of training, 10 h
of validation, and 5 h of evaluation splits generated from
the Wall Street Journal (WSJ0) si_tr_s, si_dt_05, and
si_et_05 sets. Speech mixtures were generated by ran-
domly mixing speech utterances from two and three active
speakers at random signal-to-noise ratios (SNRs) between
-5 dB and 5 dB. All waveforms were resampled at 8 kHz.

B. EXPERIMENTAL DETAILS
As mentioned, the Conv-TasNet structure consists of an
autoencoder (encoder and decoder) and a separator. Because
we applied NAS only to the separator, we determined sev-
eral model configurations that needed to be fixed, including
the settings of the autoencoder. The hyperparameters of the
model were set by referring to the Conv-TasNet hyperparam-
eters with the best performance reported in [17]. The encoder
consisted of a 1-D CNN layer with an activation function.
For 1-D CNN encoder configurations, we set the kernel size
to L = 16, and converted this length to seconds, giving
2 ms (Lfs =

16
8000 = 0.002s); the stride size was 50% of the

kernel size. Thus, the stride size was 8 (L2 = 8). The number
of filters in the encoder was 512. The nonlinear activation
function for the encoder was a rectified linear unit (ReLU).
The decoder was a 1-D transposed CNN and the kernel and
stride sizes of the decoder were set to be identical to those
of the encoder. The separator comprised a bottleneck CNN,
separation module, and mask CNN. The bottleneck CNNwas
a point-wise CNN with B channels and we set B as 128 in
this study. The mask CNN was composed of a 1 × 1 CNN

56038 VOLUME 10, 2022

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

TABLE 2. Comparison with backbone networks on the WSJ0-2mix and WSJ0-3mix datasets.

and mask activation function. For the mask CNN, we set the
channel counts to be the same as B = 128 and used the
ReLU for the mask activation function. For the separation
module, we defined two hyperparameters: maximum number
of blocks in each repeat (Xmax) and maximum number of
repeats (Rmax). We set Xmax as 8, that is, we searched for the
appropriate number of layers among a maximum of 8 layers
for each repeat. For Rmax, we conducted experiments with
Rmax = 3 and Rmax = 4.
The weight parameters were updated using the Adam

optimizer throughout the process. The initial learning rate
was set to 0.001 and the learning rate was halved if the
validation score did not improve in 3 consecutive epochs.
In addition, gradient clipping with a maximum L2 norm of
5 was applied. NAS was performed in three stages: warm-
up, search, and evaluation. In the warm-up phase, we froze
the architecture parameters to avoid updating them. Subse-
quently, we randomly sampled a model in each step and
trained the weight parameters of the sampled candidate oper-
ations. This phase aimed to converge theweight parameters of
the candidate operations to render the performance between
the candidate operations more discriminative. Thirty training
epochs were performed during the warm-up phase. In the
search phase, we alternatively trained the weight and archi-
tecture parameters. The Adam optimizer was used to train
the architecture parameters, with a learning rate of 0.006 for
the gradient-based algorithm and 0.01 for the REINFORCE-
based algorithm. The number of search epochs was 40, which
is sufficient for the model to converge. Finally, in the evalu-
ation phase, the model induced from the search phase was
trained. The auxiliary loss method was used to train the
network during the evaluation stage. Early stopping was used,
and the training was terminated if performance improvement
did not improve for 7 consecutive epochs. Additionally, to test
the generalization performance of the retrieved model for
various tasks, the model induced from the architecture search
from WSJ0-2mix was trained on WSJ0-3mix and evaluated.
During the entire procedure, we used a mini-batch size of 8.

C. EXPERIMENTAL RESULTS OF ARCHITECTURE SEARCH
We report the degree of improvement in the signal fidelity
measured by the improvements in the signal-to-distortion
ratio (SDRi) [60] and SI-SNR (SI-SNRi), as follows:

SI-SDRi(si, ŝi, x) = SI-SDR(si, ŝi)− SI-SDR(si, x). (13)

Eq. (5) defines SI-SDR, where SI-SDRi indicates the SI-SDR
gain over the original mixture. Table 2 shows the results
comparing the searched model with the proposed system
and backbone network. First, we implemented the models
presented in [17], [25] to generate a comparison to verify the
performance improvement of the proposedmodel.We trained
the reconstructed model from scratch and conducted tests
to verify its performance. For Conv-TasNet, the test result
was higher than the performance reported in [17]; however,
this was an expected result, as we observed a similar result
here [61]. By comparing Conv-TasNet with R = 3 and
R = 4, we determined that performance improved as the
number of repeats increased. For the TDCN++ configura-
tion [25], because definitive hyperparameters were not pro-
vided, we set all hyperparameters, except the number of
repeats (R), to the same value as in Conv-TasNet. Because
TDCN++ is an improved form of Conv-TasNet, it showed
better performance, as expected. NAS-TasNets refer to mod-
els searched through NAS, and NAS-TasNet-GD and NAS-
TasNet-RL resulting fromNAS, are based on gradient descent
and reinforcement learning-based algorithms, respectively.
Figure 6 shows the final compact separation modules derived
from NAS. In the case of NAS-TasNet-GD, the model size
was adjusted using zero layers, whereas for NAS-TasNet-
RL, no zero layer was used; however, the model size was
restrained by controlling the channel expansion ratios of each
layer. In addition, candidate operations with a higher number
of parameters were preferred as the front layers for each
repeat.

We inferred that NAS effectively determined an excellent
performance model with few parameters. In particular, the
model searched by reinforcement learning had a 2M smaller

VOLUME 10, 2022 56039

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

FIGURE 6. NAS-TasNets: models searched by NAS with gradient descent and reinforcement learning-based methods. We refer to these
models as NAS-TasNet-GD (gradient descent) and NAS-TasNet-RL (reinforcement learning).

model size, but showed better performance on the WSJ0-
2mix dataset. Also, we trained with the WSJ0-3mix dataset
and compared the results to examine the generalization per-
formance of the searched model. By comparing models with
the same number of 1-D CNN block repeats, the searched
model demonstrated similar performance to the backbone
model and indicated that the searched models did not overfit
the WSJ0-2mix dataset. The warm-up to evaluation phase
required approximately two days with 4 RTX 2080 Ti GPUs.
That is, the estimated efficiency of the NASwas 8GPU-days.

D. AUXILIARY LOSS EFFECT
As mentioned in Section V, auxiliary loss alleviates the prob-
lem of architecture parameter update imbalance between
mixture operations and prevents the operation of some layers
from being randomly selected. To investigate the effect of
auxiliary loss, we compared the average entropy reduction
for each repeated mixed operation with and without auxiliary
loss. For the experiment, a mixed operation network was
composed of four mixed operation repeats and each repeat
was composed of 8 mixed operations. A search stage of

80 epochs was performed and the average entropy of each
repeat was computed for every epoch.

Figure 7(a) depicts the decrease in the average entropy
for each repeated mixed operation when auxiliary loss was
not applied. The most significant decrease in entropy was
observed in repeat 4 located at the end of the network,
whereas the least entropy reduction was observed in repeats
1 and 2 located at the front of the network. The results
indicated that the operations at the front of the network were
selected almost randomly and the operations at the end of
the network converged early, such that various operations
could not be attempted. Figure 7(b) shows the experiment
using the auxiliary loss method. The average entropies of
all mixed operation repeats decreased to a similar level,
indicating that the architecture parameter updates in the entire
mixed operation network were balanced. The randomness of
repeats 1 and 2 can be regarded as significantly reduced by
utilizing the auxiliary loss method. Figure 7(c) compares the
average entropy reductions for the entire separation module
during NAS, with and without auxiliary loss. We observed
that with or without auxiliary loss, the entropy reductions for

56040 VOLUME 10, 2022

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

FIGURE 7. Visualizations of the observed average entropy during the search stage composed of four mixed operation repeats (Rmax = 4) and each
mixed operation repeat consisted of 8 mixed operations (Xmax = 8). In (a) and (b), each average entropy for each mixed operation repeat is
depicted by different lines. (a) shows the average entropy decrease during the search stage when the auxiliary loss was not applied; an imbalance
in the average entropy for each repeat was observed as the search proceeded. (b) is when the auxiliary loss was used. The deviation of the average
entropy between each repeat was less than in (a). (c) is a visualization of the comparison of the mean entropy reduction for the entire mixed
operation network during the search stage with and without auxiliary loss, in both cases decreasing to a similar level.

TABLE 3. Separation performance comparison of the explored model and the backbone (TDCN++) model with and without the auxiliary loss method
training.

the entire separation module were similar. To summarize the
analysis of all plots in Figure 7, the auxiliary loss method can
be concluded to reduce the entropy deviation between each
repeated mixed operation, and the method prevents mixed
operations in specific locations from randomly determining
an operation.

A separation accuracy improvement experiment accord-
ing to the application of auxiliary loss was also conducted
(see Table 3). First, as the auxiliary loss method could
be applied to regular separation model training, we com-
pared the separation accuracy with and without auxiliary
loss applied to TDCN++ with the same model configura-
tion. A significant performance improvement was observed
on the WSJ0-2mix dataset when the separation model was
trained with the auxiliary loss and a slight performance
improvement was observed for the WSJ0-3mix. Next, NAS-
TasNet-GD and NAS-TasNet-RL were trained without aux-
iliary loss training, and evaluated and compared with the
previous results. The auxiliary loss method also improved
the performance of the explored networks. In particular, for
NAS-TasNet-RL trained with the WSJ0-3mix, a significant
performance difference was observed between the two cases.
Subsequently, we compared NAS-TasNet and TDCN++

without auxiliary loss training. NAS-TasNets exhibited a
better performance with relatively small model sizes. For the
WSJ0-3mix dataset, we observed similar separation perfor-
mance except for NAS-TasNet-RL. Finally, when comparing
the performance of each model subjected to auxiliary loss
training, the performance of TDCN++ was the best, with a
slight difference. We inferred that the auxiliary loss method
designed for Conv-TasNet architecture could significantly
improve separation performance without generating addi-
tional parameters.

VII. CONCLUSION
In this study, we attempted to extend the neural architec-
ture search to a speech separation model. First, we used an
end-to-end mask estimation-based speech separation model
(Conv-TasNet) as the backbone model and applied NAS to
the separation module of the network. To apply NAS, the
search space for the separation module was defined, the net-
work was represented as a DAG, and the edges of the
DAG were configured as mixed operations to construct
an over-parameterized network (mixed operation network)
for NAS. Then, the network was explored by applying
the gradient descent algorithm and reinforcement learning

VOLUME 10, 2022 56041

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

algorithm-based search strategies to the constructed network
for NAS. In this process, the binary gate, a GPU memory-
saving algorithm, was applied to overcome the limitation of
Conv-TasNet that uses excessive memory for training.

Next, when NAS was simply applied, we observed that
operations in certain locations in the network were selected
almost randomly. This phenomenon was derived from the
architecture parameter update imbalance and an auxiliary loss
method appropriate for Conv-TasNet was devised to alleviate
it. We concluded that the auxiliary loss eased the parameter
update imbalance and assisted the separation model training
to improve the separation performance.

Finally, the derived search results, NAS-TasNet-GD and
NAS-TasNet-RL, were evaluated by training from scratch
on the WSJ0-2mix and WSJ0-3mix datasets. The explored
model outperformed or its performance was similar to the
existing performance, with fewer parameters than the base-
line method.

REFERENCES
[1] D. Wang and J. Chen, ‘‘Supervised speech separation based on deep learn-

ing: An overview,’’ IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 26, no. 10, pp. 1702–1726, Oct. 2018.

[2] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, ‘‘An experimental study on speech
enhancement based on deep neural networks,’’ IEEE Signal Process. Lett.,
vol. 21, no. 1, pp. 65–68, Jan. 2014.

[3] Y. Xu, J. Du, L.-R. R. Dai, and C.-H. H. Lee, ‘‘A regression approach to
speech enhancement based on deep neural networks,’’ IEEE Trans. Audio.
Speech. Language Process., vol. 23, no. 1, pp. 7–19, May 2015.

[4] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, ‘‘Speech enhancement based
on deep denoising autoencoder,’’ in Proc. Interspeech, Aug. 2013,
pp. 436–440.

[5] J. R. Hershey, Z. Chen, J. L. Roux, and S. Watanabe, ‘‘Deep clustering:
Discriminative embeddings for segmentation and separation,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2016,
pp. 31–35.

[6] Y. Isik, J. L. Roux, Z. Chen, S. Watanabe, and J. R. Hershey, ‘‘Single-
channel multi-speaker separation using deep clustering,’’ in Proc. Inter-
speech, Sep. 2016, pp. 545–549.

[7] D. Yu, M. Kolbaek, Z.-H. Tan, and J. Jensen, ‘‘Permutation invariant train-
ing of deep models for speaker-independent multi-talker speech separa-
tion,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2017, pp. 241–245.

[8] M. Kolbaek, D. Yu, Z.-H. Tan, and J. Jensen, ‘‘Multitalker speech separa-
tion with utterance-level permutation invariant training of deep recurrent
neural networks,’’ IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 25, no. 10, pp. 1901–1913, Oct. 2017.

[9] Z. Chen, Y. Luo, and N. Mesgarani, ‘‘Deep attractor network for single-
microphone speaker separation,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Mar. 2017, pp. 246–250.

[10] Y. Luo, Z. Chen, and N. Mesgarani, ‘‘Speaker-independent speech sep-
aration with deep attractor network,’’ IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 26, no. 4, pp. 787–796, Apr. 2018.

[11] Z.-Q.Wang, J. L. Roux, and J. R. Hershey, ‘‘Alternative objective functions
for deep clustering,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Apr. 2018, pp. 686–690.

[12] C. Li, L. Zhu, S. Xu, P. Gao, and B. Xu, ‘‘CBLDNN-based speaker-
independent speech separation via generative adversarial training,’’ in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Apr. 2018, pp. 711–715.

[13] S. Venkataramani, J. Casebeer, and P. Smaragdis, ‘‘End-to-end source sep-
aration with adaptive front-ends,’’ in Proc. 52nd Asilomar Conf. Signals,
Syst., Comput., Oct. 2018, pp. 684–688.

[14] D. Stoller, S. Ewert, and S. Dixon, ‘‘Wave-U-Net: A multi-scale neural
network for end-to-end audio source separation,’’ in Proc. Int. Soc. Music
Inf. Retr. Conf. (ISMIR), 2018, pp. 334–340.

[15] S.-W. Fu, T.-W. Wang, Y. Tsao, X. Lu, and H. Kawai, ‘‘End-to-end wave-
form utterance enhancement for direct evaluation metrics optimization by
fully convolutional neural networks,’’ IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 26, no. 9, pp. 1570–1584, Sep. 2018.

[16] Y. Luo and N. Mesgarani, ‘‘TaSNet: Time-domain audio separation net-
work for real-time, single-channel speech separation,’’ in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018, pp. 696–700.

[17] Y. Luo andN.Mesgarani, ‘‘Conv-TasNet: Surpassing ideal time–frequency
magnitude masking for speech separation,’’ IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 27, no. 8, pp. 1256–1266, Aug. 2019.

[18] C. Lea, R. Vidal, A. Reiter, and G. D. Hager, ‘‘Temporal convolutional
networks: A unified approach to action segmentation,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), Oct. 2016, pp. 47–54.

[19] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, ‘‘Temporal con-
volutional networks for action segmentation and detection,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 156–165.

[20] A. V. D. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, ‘‘WaveNet: A generative
model for raw audio,’’ in Proc. ISCA Speech Synth. Workshop, 2016,
p. 125.

[21] Y. Luo, Z. Chen, and T. Yoshioka, ‘‘Dual-path RNN: Efficient long
sequence modeling for time-domain single-channel speech separation,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2020, pp. 46–50.

[22] E. Tzinis, Z. Wang, and P. Smaragdis, ‘‘Sudo RM-RF: Efficient networks
for universal audio source separation,’’ in Proc. IEEE 30th Int. Workshop
Mach. Learn. Signal Process. (MLSP), Sep. 2020, pp. 1–6.

[23] J. Chen, Q. Mao, and D. Liu, ‘‘Dual-path transformer network: Direct
context-aware modeling for end-to-end monaural speech separation,’’ in
Proc. Interspeech, Oct. 2020, pp. 2642–2646.

[24] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong, ‘‘Attention
is all you need in speech separation,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Jun. 2021, pp. 21–25.

[25] I. Kavalerov, S. Wisdom, H. Erdogan, B. Patton, K. Wilson, J. L. Roux,
and J. R. Hershey, ‘‘Universal sound separation,’’ in Proc. IEEE Workshop
Appl. Signal Process. Audio Acoust. (WASPAA), Oct. 2019, pp. 175–179.

[26] E. Tzinis, S.Wisdom, J. R. Hershey, A. Jansen, andD. P.W. Ellis, ‘‘Improv-
ing universal sound separation using sound classification,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020,
pp. 96–100.

[27] D. Samuel, A. Ganeshan, and J. Naradowsky, ‘‘Meta-learning extractors
for music source separation,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2020, pp. 816–820.

[28] E. Tzinis, S. Venkataramani, Z. Wang, C. Subakan, and P. Smaragdis,
‘‘Two-step sound source separation: Training on learned latent targets,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2020, pp. 31–35.

[29] M. W. Y. Lam, J. Wang, D. Su, and D. Yu, ‘‘Mixup-breakdown: A con-
sistency training method for improving generalization of speech separa-
tion models,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2020, pp. 6374–6378.

[30] N. Zeghidour and D. Grangier, ‘‘Wavesplit: End-to-end speech separation
by speaker clustering,’’ IEEE/ACM Trans. Audio, Speech, Language Pro-
cess., vol. 29, pp. 2840–2849, 2021.

[31] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le,
and A. Kurakin, ‘‘Large-scale evolution of image classifiers,’’ in Proc. Int.
Conf. Mach. Learn. (ICML), 2017, pp. 2902–2911.

[32] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, ‘‘Regularized evolution
for image classifier architecture search,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 33, 2019, pp. 4780–4789.

[33] H. Zhu, Z. An, C. Yang, K. Xu, E. Zhao, and Y. Xu, ‘‘EENA: Efficient
evolution of neural architecture,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. Workshop (ICCVW), Oct. 2019, pp. 1891–1899.

[34] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforcement
learning,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2017, pp. 1–16.

[35] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[36] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, ‘‘Practical block-
wise neural network architecture generation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2423–2432.

[37] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, ‘‘Efficient architecture
search by network transformation,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 32, 2018, pp. 2787–2794.

56042 VOLUME 10, 2022

J.-H. Lee et al.: Neural Architecture Search for Time-Domain Speech Separation

[38] H. Pham, M. Guan, B. Zoph, Q. V. Le, and J. Dean, ‘‘Efficient neural
architecture search via parameters sharing,’’ in Proc. Int. Conf. Mach.
Learn. (ICML), 2018, pp. 4095–4104.

[39] H. Liu, K. Simonyan, and Y. Yang, ‘‘DARTS: Differentiable architecture
search,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2019, pp. 1–12.

[40] X. Chen, L. Xie, J. Wu, and Q. Tian, ‘‘Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evalua-
tion,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1294–1303.

[41] X. Dong and Y. Yang, ‘‘Searching for a robust neural architecture in four
GPU hours,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1761–1770.

[42] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, ‘‘Progressive neural architecture
search,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 19–34.

[43] H. Cai, L. Zhu, and S. Han, ‘‘ProxylessNAS: Direct neural architecture
search on target task and hardware,’’ in Proc. Int. Conf. Learn. Represent.
(ICLR), 2019, pp. 1–13.

[44] Y. Weng, T. Zhou, Y. Li, and X. Qiu, ‘‘NAS-UNet: Neural architec-
ture search for medical image segmentation,’’ IEEE Access, vol. 7,
pp. 44247–44257, 2019.

[45] A. Kwasigroch,M. Grochowski, and A.Mikolajczyk, ‘‘Neural architecture
search for skin lesion classification,’’ IEEE Access, vol. 8, pp. 9061–9071,
2020.

[46] X. Yan, Y. Jiang, W. Shi, and C. Zhuo, ‘‘MS-NAS: Multi-scale neu-
ral architecture search for medical image segmentation,’’ in Proc. Med.
Image Comput. Comput. Assist. Intervent (MICCAI), vol. 12261, 2020,
pp. 388–397.

[47] Q. Yu, D. Yang, H. Roth, Y. Bai, Y. Zhang, A. L. Yuille, and D. Xu,
‘‘C2FNAS: Coarse-to-fine neural architecture search for 3Dmedical image
segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 4125–4134.

[48] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and
L. Fei-Fei, ‘‘Auto-DeepLab: Hierarchical neural architecture search for
semantic image segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 82–92.

[49] Z. Xu, S. Zuo, E. Y. Lam, B. Lee, and N. Chen, ‘‘AutoSegNet: An
automated neural network for image segmentation,’’ IEEE Access, vol. 8,
pp. 92452–92461, 2020.

[50] X. Zhang, H. Xu, H. Mo, J. Tan, C. Yang, L. Wang, andW. Ren, ‘‘DCNAS:
Densely connected neural architecture search for semantic image segmen-
tation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 13956–13967.

[51] Y.-C. Chen, J.-Y. Hsu, C.-K. Lee, and H.-Y. Lee, ‘‘DARTS-ASR: Dif-
ferentiable architecture search for multilingual speech recognition and
adaptation,’’ in Proc. Interspeech, Oct. 2020, pp. 1803–1807.

[52] S. Hu, X. Xie, M. Cui, J. Deng, S. Liu, J. Yu, M. Geng, X. Liu, and
H. Meng, ‘‘Neural architecture search for LF-MMI trained time delay
neural networks,’’ IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 30, pp. 1093–1107, 2022.

[53] T. H. Trinh, A. M. Dai, M.-T. Luong, and Q. V. Le, ‘‘Learning longer-term
dependencies in RNNs with auxiliary losses,’’ in Proc. Int. Conf. Learn.
Represent. (ICLR), 2018, pp. 4965–4974.

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[55] T. Elsken, J. H. Metzen, and F. Hutter, ‘‘Neural architecture search: A
survey,’’ J. Mach. Learn. Res., vol. 20, no. 1, pp. 1997–2017, 2019.

[56] J. L. Roux, S.Wisdom, H. Erdogan, and J. R. Hershey, ‘‘SDR—Half-baked
or well done?’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2019, pp. 626–630.

[57] M. Tan and Q. Le, ‘‘EfficientNet: Rethinking model scaling for convolu-
tional neural networks,’’ in Proc. Int. Conf. Mach. Learn. (ICML), 2019,
pp. 6105–6114.

[58] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for
connectionist reinforcement learning,’’ Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992.

[59] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search for
mobile,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2820–2828.

[60] E. Vincent, R. Gribonval, and C. Fevotte, ‘‘Performance measurement in
blind audio source separation,’’ IEEE Trans. Audio, Speech, Language
Process., vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

[61] M. Pariente, S. Cornell, J. Cosentino, S. Sivasankaran, E. Tzinis,
J. Heitkaemper, M. Olvera, F.-R. Stöter, M. Hu, J. M. Martín-Doñas,
D. Ditter, A. Frank, A. Deleforge, and E. Vincent, ‘‘Asteroid: The PyTorch-
based audio source separation toolkit for researchers,’’ in Proc. Inter-
speech, Oct. 2020, pp. 2637–2641.

JOO-HYUN LEE received the B.S. degree in
electrical engineering from Konkuk University,
Seoul, South Korea, in 2018. He is currently pur-
suing the M.S. degree in electronic engineer-
ing with Hanyang University, Seoul. His research
interests include acoustic signal processing and
deep/machine learning.

JOON-HYUK CHANG (Senior Member, IEEE)
received the B.S. degree in electronics engi-
neering from Kyungpook National University,
Daegu, South Korea, in 1998, and the M.S.
and Ph.D. degrees in electrical engineering from
Seoul National University, Seoul, South Korea, in
2000 and 2004, respectively. From 2000 to 2005,
he was with Netdus Corp., Seoul, as CTO.
From 2004 to 2005, he was a Postdoctoral
Researcher with the University of California at

Santa Barbara, Santa Barbara, CA, USA, where he was involved in adaptive
signal processing and audio coding. In 2005, he joined the Korea Institute
of Science and Technology, Seoul, as a Research Scientist, where he was
involved in speech recognition. From 2005 to 2011, he was an Assis-
tant Professor with the School of Electronic Engineering, Inha University,
Incheon, South Korea. He is currently a Full Professor with the School of
Electronic Engineering, Hanyang University, Seoul. His research interests
include speech recognition, deep/machine learning, artificial intelligence
(AI), speech processing, acoustic signal processing, and bio-medical signal
processing. He was a recipient of the IEEE/IEEK IT Young Engineer Award,
in 2011. He is currently serving on the Editorial Board of the Digital Signal
Processing journal (Elsevier).

JAE-MO YANG received the M.S. and Ph.D.
degrees in electrical and electronic engineer-
ing from Yonsei University, Seoul, South Korea,
in 2009 and 2014, respectively. He was an
Intern at Microsoft Research Asia, Beijing, China,
from 2010 to 2011, and Microsoft Research,
Redmond, WA, USA, in 2011. He is currently a
Principal Researcher at the Advanced Audio Lab-
oratory, Samsung Electronics, South Korea. His
research interests include speech/audio signal pro-

cessing, speech enhancement, microphone arrays and machine learning, and
specifically deep learning.

HAN-GIL MOON received the Ph.D. degree
in acoustics and audio engineering from Seoul
National University. In 2005, he joined the Dig-
ital Media and Communications Research and
Development Center. In 2010, he took a short
sabbatical to complete a Postdoctoral Researcher
at Cambridge University, before enrolling on the
Mobile Team, in 2016. He is currently the VP of
technology (Master) and theHead of the Advanced
Audio Laboratory, Samsung’s Mobile Communi-

cations Business, Samsung Electronics. He plays a leading role in developing
audio solutions for Galaxy smartphones, smartwatches, and earbuds. His cur-
rent research interests include wireless audio, speech enhancement, hearing
aids, and AI audio signal processing.

VOLUME 10, 2022 56043

