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Abstract
We stabilize pseudostochastic (G1,G2)-random operator inequality using a class of
stochastic matrix control functions in matrix Menger Banach algebras. We get an
approximation for stochastic (G1,G2)-random operator inequality by means of both
direct and fixed point methods. As an application, we apply both stochastic
Mittag-Leffler andH-fox control functions to get a better approximation in a random
operator inequality.
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1 Introduction and preliminaries
The theory of special functions, such as Mittag-Leffler function, hypergeometric function,
Wright function, H-Fox function, and so on, encircles a significant segment of mathemat-
ics. In recent centuries, the necessity of solving problems taking place in various fields of
science motivated the advancement of the theory of special functions. These functions
have extensive applications in a variety of different fields, together with material science
and engineering science, biology, chemistry, mathematical physics, and both applied and
pure mathematics. The interested readers can review the literature [1–4].

In 1903, the Swedish mathematician Gosta Mittag-Leffler presented a generalization
of the exponential function and introduced some properties of this function. In 1905,
Wiman introduced its general form. Mittag-Leffler function naturally appears as the solu-
tion of fractional order integro-differential equations and particularly in the investigations
of electric networks, random walks, fluid flow, superdiffusive transport, the fractional gen-
eralization of the kinetic equation, diffusive transport akin to diffusion, and in the study
of complex systems. During the last 20 years, the interest in Mittag-Leffler function has
remarkably increased among scientists and engineers, owing to it wide potential in appli-
cations. We suggest the readers to consult the literature [5, 6].
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In 1961, Charles Fox presented a generalization of the Meijer G-function and the Fox–
Wright function. H-Fox function is defined by a Mellin–Barnes integral in the context of
symmetrical Fourier kernels. It has a number of great applications, most notably in frac-
tional calculus and statistics. Also, it plays a significant role in a wide range of response-
related topics, like reaction–diffusion, theoretical physics, and mathematical probability
theory. For more details, see [7, 8].

In [9], the authors introduced and applied the following additive (ρ1, ρ2)-functional in-
equalities in complex Banach spaces:

∥
∥f (x + y + z) – f (x) – f (y) – f (z)

∥
∥

≤ ∥
∥ρ1

[

f (x + z) – f (x) – f (z)
]∥
∥ +

∥
∥ρ2

[

f (y + z) – f (y) – f (z)
]∥
∥,

in which ρ1, ρ2 are fixed nonzero complex numbers with |ρ1| + |ρ2| < 2.
Here, we introduce a class of stochastic matrix control functions and apply them to ap-

proximate the following pseudostochastic additive (G1,G2)-random operator inequalities
in matrix Menger Banach algebras:

�
Q(j,S+R+A)–Q(j,S)–Q(j,R)–Q(j,A)
�

� �
G1[Q(j,S+A)–Q(j,S)–Q(j,A)]
� �M �

G2[Q(j,R+A)–Q(j,R)–Q(j,A)]
� , (1.1)

where 0 �= G1,G2 ∈C are fixed and max{|G1|, |G2|} < 2.
Now, let � = [0, 1] and

diag Nn(�) =

⎧

⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

M1
. . .

Mn

⎤

⎥
⎥
⎦

= diag[M1, . . . ,Mn],M1, . . . ,Mn ∈�

⎫

⎪⎪⎬

⎪⎪⎭

.

We denote M := diag[M1, . . . ,Mn] � N := diag[N1, . . . ,Nn] if Mi ≤ Ni for any 1 ≤ i ≤ n,

and note that 0 =

[ 0
. . .

0

]

and 1 =

[ 1
. . .

1

]

.

Next, we define a generalized t-norm on diag Nn(�).

Definition 1.1 ([10]) A generalized t-norm on diag Nn(�) is an operation � : diag Nn(�)×
diag Nn(�) → diag Nn(�) satisfying the following conditions:

(1) (∀M ∈ diag Nn(�))(M� 1) = M) (boundary condition);
(2) (∀(M,N) ∈ (diag Nn(�))2)(M�N = N�M) (commutativity);
(3) (∀(M,N,I) ∈ (diag Nn(�)3)(M� (N�I) = (M�N) �I) (associativity);
(4) (∀(M,M′,N,N′) ∈ (diag Nn(�4)(M� M

′ and N � N
′ �⇒ M�N � M

′ �N
′

(monotonicity).

For every M,N ∈ diag Nn(�) and all sequences {Mk} and {Nk} converging to M and
N, respectively, if we have

lim
k

(Mk �Nk) = M�N,

then � on diag Nn(�) is continuous, see [11, 12]. Consider the following examples of a
continuous generalized t-norm:
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(1) Let �P : diag Nn(�) × diag Nn(�) → diag Nn(�) such that

M�P N = diag[M1, . . . ,Mn] �P diag[N1, . . . ,Nn] = diag[M1.N1, . . . ,Mn.Nn].

Then �P is a continuous generalized t-norm.
(2) Let �M : diag Nn(�) × diag Nn(�) → diag Nn(�) such that

M�M N = diag[M1, . . . ,Mn] �M diag[N1, . . . ,Nn]

= diag
[

min{M1,N1}, . . . , min{Mn,Nn}
]

.

Then �M is a continuous generalized t-norm.
(3) Let �L : diag Nn(�) × diag Nn(�) → diag Nn(�) such that

M�L N = diag[M1, . . . ,Mn] �L diag[N1, . . . ,Nn]

= diag
[

max{M1 + N1 – 1, 0}, . . . , max{Mn + Nn – 1, 0}].

Then �L is a continuous generalized t-norm.
Furthermore, we present some numerical examples and compare the results:

diag[0.5, 0.2, 1] �M diag[0.3, 0.7, 0] =

⎡

⎢
⎣

0.5
0.2

1

⎤

⎥
⎦ �M

⎡

⎢
⎣

0.3
0.7

0

⎤

⎥
⎦ =

⎡

⎢
⎣

0.3
0.2

0

⎤

⎥
⎦ ,

diag[0.5, 0.2, 1] �P diag[0.3, 0.7, 0] =

⎡

⎢
⎣

0.5
0.2

1

⎤

⎥
⎦ �P

⎡

⎢
⎣

0.3
0.7

0

⎤

⎥
⎦ =

⎡

⎢
⎣

0.15
0.14

0

⎤

⎥
⎦ ,

diag[0.5, 0.2, 1] �L diag[0.3, 0.7, 0] =

⎡

⎢
⎣

0.5
0.2

1

⎤

⎥
⎦ �L

⎡

⎢
⎣

0.3
0.7

0

⎤

⎥
⎦ =

⎡

⎢
⎣

0
0

0

⎤

⎥
⎦ .

Also, since

diag[0.3, 0.2, 0] � diag[0.15, 0.14, 0] � diag[0, 0, 0],

we get

diag[0.5, 0.2, 1] �M diag[0.3, 0.7, 0]

� diag[0.5, 0.2, 1] �P diag[0.3, 0.7, 0]

� diag[0.5, 0.2, 1] �L diag[0.3, 0.7, 0].

Consider E+, the set of matrix distribution functions, including left continuous and in-
creasing maps � : R ∪ {–∞,∞} → diag Nn(�) such that �0 = 0 and �+∞ = 1. Now
�+ ⊆ E+ are all (proper) mappings � ∈ E+ for which �–�� = limσ→�– �σ = 1. Notice that
proper matrix distribution functions are the matrix distribution functions of real random
variables q such that P(|q| = ∞) = 0.
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On E+, we define “�” as follows:

� � � ⇐⇒ �� � ��, ∀� ∈R.

Also

∇s
r =

⎧

⎨

⎩

0, if r ≤ s,

1, if r > s

belongs to E+ and for any matrix distribution function �, � � ∇0 [11, 13–15]. For exam-
ple,

�� =

⎧

⎨

⎩

0, � ≤ 0,

diag[1 – 1
e� , 1

e
1
�

, 1
1
�

+1
], � > 0

is a matrix distribution function in diag M3(�). Notice that �� = diag[�1,�, . . . ,�n,�],
where �i,� are distribution functions, is a matrix distribution function.

Definition 1.2 Let S be a linear space, � be a continuous generalized t-norm, and � : S →
�+ be a matrix distribution function. The triple (S,�,�) is said to be a matrix Menger
normed space if we have

(D-1) �s
� = ∇0

� for any � > 0 if and only if s = 0;
(D-2) �

ρs
� = �s

�
|ρ|

for all s ∈ S and ρ ∈ C with ρ �= 0;

(D-3) �s+s′
�+	 � �s

� � �s′
	 for all s, s′ ∈ S and �,	 ≥ 0.

For example, the matrix distribution function � given by

�s
� =

⎧

⎨

⎩

0, if � ≤ 0,

diag[exp(– ‖s‖
�

), �
�+‖s‖ ], if � > 0,

is a matrix Menger norm and (S,�,�M) and (S,‖ · ‖) are a matrix Menger normed space
and a linear normed space, respectively.

Definition 1.3 Let (S,�,�) be a matrix Menger normed space and �, � be continuous
generalized t-norms. If

(D-4) �ss′
��′ � �s

� � �s′
�′ for any s, s′ ∈ S and any �′,� > 0,

then (S,�,�,�) is called a matrix Menger normed algebra.
If

∥
∥ss′∥∥ ≤ ‖s‖∥

∥s′∥∥ + �′∥∥s′∥∥ + �‖s‖ (

s, s′ ∈ (

S,‖ · ‖)

;�,�′ > 0
)

,

then with

�s
� =

⎧

⎨

⎩

0, � ≤ 0,

diag[ 1

e
‖s‖
�

, 1
1+ ‖s‖

�

], � > 0,
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(S,�,�M,�P) is a matrix Menger normed algebra, and vice versa. A complete matrix
Menger normed algebra is called a matrix Menger Banach algebra.

Consider matrix Menger Banach algebras 
1 and 
2. Let (J ,�,�) be a probability
measure space. Let (
1,B
1 ) and (
2,B
2 ) be Borel measurable spaces. Then a map
Q : J × 
1 → 
2 is a random operator if {j : Q(j, S) ∈ C} ∈ � for all S in 
1 and C ∈B
2 .
Also Q is linear if

Q(j, dS + bR) = dQ(j, S) + bQ(j, R), ∀S, R ∈ 
1, b, d ∈R,

and Q is bounded if there is a Q(j) > 0 such that

�
Q(j,S)–Q(j,R)
Q(j)� ≥ �S–R

� , ∀S, R ∈ 
1,� > 0.

Theorem 1.4 ([16]) Consider a complete generalized metric space (ξ , ζ ) and a strictly con-
tractive function L : ξ → ξ with Lipschitz constant P < 1. Then, for every given element
j ∈ ξ , either

ζ
(

L
ı j,Lı+1j

)

= ∞

for each ı ∈N or there is ı0 ∈N such that
(1) ζ (Lı j,Lı+1j) < ∞, ∀m ≥ m0;
(2) the limit point of the sequence {Lı j} is the fixed point Z∗ of L;
(3) Z∗ is the unique fixed point of L in the set D = {Z ∈ ξ | ζ (Lı0 j,Z) < ∞};
(4) (1 – P)ζ (Z,Z∗) ≤ ζ (Z,LZ) for every Z ∈ D.

2 Direct method approximation of inequality (1.1)
In this section, we improve and get a generalization of results in [9] yielding a better ap-
proximation (see also [17–28]).

Lemma 2.1 Suppose that Q : J × 
1 → 
2 is a random operator satisfying (1.1) for each
S, R, A ∈ 
1 and j ∈ J . Then Q : J × 
1 → 
2 is additive.

Proof Putting S = R = A = 0 in (1.1), we have

�
2Q(j,0)
� � �

G1Q(j,0)
� �M �

G2(Qj,0)
� ,

and so

�
Q(j,0)
�
2

� �
Q(j,0)

�
max{|G1|,|G2 |}

, (2.1)

since max{|G1|, |G2|} < 2, Q(j, 0) = 0 for each j ∈ J .
Now, putting R = 0 in (1.1), we have

�
Q(j,S+A)–Q(j,S)–Q(j,A)
� � �

G1[Q(j,S+A)–Q(j,S)–Q(j,A)]
� (2.2)
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and

Q(j, S + A) – Q(j, S) – Q(j, A) = 0,

or Q(j, S + A) = Q(j, S) + Q(j, A) for all S, A ∈ 
1, since |G1| < 2. So Q is additive. �

Theorem 2.2 Suppose the following assumptions hold:
• (
1,�,�M,�M) is a matrix Menger Banach algebra,
• φ : 
3

1 → �+ is a matrix distribution function,

• there exists a P < 1 such that φ
S
2 , R

2 , A
2

� � φ
S,R,A
2�
P

for all S, R, A ∈ 
1 and � > 0,

• for all S, R, A ∈ 
1 and � > 0,

lim
n→∞φ

S
2n , R

2n , A
2n

�
2n

= ∇0
�, (2.3)

• the random operator Q : J × 
1 → 
2 satisfies Q(j, 0) = 0 and

�
Q(j,S+R+A)–Q(j,S)–Q(j,R)–Q(j,A)
�

� �
G1[Q(j,S+A)–Q(j,S)–Q(j,A)]
� �M �

G2[Q(j,R+A)–Q(j,R)–Q(j,A)]
� �M φ

S,R,A
� , (2.4)

for all S, R, A ∈ 
1, j ∈ J , and � > 0.
Then we can find a unique additive random operator V : J × 
1 → 
2 such that

�
Q(j,S)–V(j,S)
� � φ

S,S,0
2(1–P)�

P

, (2.5)

for all S, R, A ∈ 
1, j ∈ J , and � > 0.

Proof Putting A = 0 and S = R in (2.4), we get

�
Q(j,2S)–2Q(j,S)
� � φ

S,S,0
� , (2.6)

for all S ∈ 
1, j ∈ J , and � > 0. Thus

�
Q(j,S)–2Q(j, S

2 )
� � φ

S
2 , S

2 ,0
� � φ

S,S,0
2�
P

, (2.7)

for all S ∈ 
1, j ∈ J , and � > 0. Replacing S by S
2n in (2.7), we get

�
2nQ(j, S

2n )–2n+1Q(j, S
2n+1 )

� � φ
S

2n , S
2n ,0

�

2n–1P

� φ
S

2n–1 , S
2n–1 ,0

2
P

( �

2n–1P
)

� · · ·
� φ

S,S,0
2

Pn+1 �
. (2.8)
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It follows from

2nQ
(

j,
S
2n

)

– Q(j, S) =
n

∑

k=1

(

2kQ
(

j,
S
2k

)

– 2k–1Q
(

j,
S

2k–1

))

,

and (2.8) that

�
2nQ(j, S

2n )–Q(j,S)
∑n

k=1
Pk

2 �
� φS,S,0

τ �M · · · �M φ
S,S,0
� = φ

S,S,0
� ,

for all S ∈ 
1, j ∈ J , � > 0. That is,

�
2nQ(j, S

2n )–Q(j,S)
� � φ

S,S,0
�

∑n
k=1

Pk
2

. (2.9)

Replacing S with S
2m in (2.9), we get

�
2n+mQ(j, S

2n+m )–2mQ(j, S
2m )

� � φ
S,S,0

�
∑n+m

k=m+1
Pk

2

. (2.10)

Since φ
S,S,0

�
∑n+m

k=m+1
Pk

2

tends to ∇0
� as n, m → ∞, we conclude that the sequence {2nQ(j, S

2n )}

is Cauchy for all S ∈ 
1, j ∈ J . Since 
2 is a matrix Menger Banach algebra, the sequence
{2nQ(j, S

2n )} is convergent. Consider the random operator V : J × 
1 → 
2 defined by

V(j, S) := lim
k→∞

2kQ
(

j,
S
2k

)

,

for all S ∈ 
1, j ∈ J . Putting m = 0 and letting n → ∞ in (2.10), we obtain

�
Q(j,S)–V(j,S)
� � φ

S,S,0
2(1–P)�

P

, (2.11)

for all S ∈ 
1, j ∈ J , and � > 0.
Now, (2.4) implies that

�
V(j,S+R+A)–V(j,S)–V(j,R)+V(j,A)
�

= lim
n→∞�

2n(Q(j, S+R+A
2n )–Q(j, S

2n )–Q(j, R
2n )–Q(j, A

2n ))
�

� lim
n→∞�

2nG1[Q(j, S+A
2n )–Q(j, S

2n )–Q(j, A
2n )]

�

�M �
2nG2[Q(j, R+A

2n )–Q(j, R
2n )–Q(j, A

2n )]
� �M lim

n→∞φ
S

2n , S
2n ,0

�
2n

� �
G1[V(j,S+A)–V(j,S)–V(j,A)]
� �M �

G2[V(j,R+A)–V(j,R)–V(j,A)]
� ,

for all S, R, A ∈ 
1, j ∈ J , � > 0, since φ
x

2n , S
2n ,0

�
2n

tends to ∇0
� as n → ∞. Thus

�
V(j,S+R+A)–V(j,S)–V(j,R)–V(j,A)
� � �

G1[V(j,S+A)–V(j,S)–V(j,A)]
� �M �

G2[V(j,R+A)–V(j,R)–V(j,A)]
� ,
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for all S, R, A ∈ 
1, j ∈ J , � > 0. Lemma 2.1 implies that the random operatorV : J ×
1 →

2 is stochastic additive.

Now, to prove the uniqueness of the random operator V , suppose that there exists a
stochastic additive random operator V ′ : J × 
1 → 
2 which satisfies (2.5). Then

�
V(j,S)–V ′(j,S)
� = lim

n→∞�
2nV(j, S

2n )–2nV ′(j, S
2n )

� ,

�
2nV(j, S

2n )–2nV ′(j, S
2n )

� � �
2nV(j, S

2n )–2nQ(j, S
2n )

�
2

�M �
2nV ′(j, S

2n )–2nQ(j, S
2n )

�
2

� φ
S

2n , S
2n ,0

2(1–P)�
2nP

� φ
S,S,0
2(1–P)�
Pn+1

.

Since limn→∞ 2(1–P)
Pn+1 = ∞, we get that φ

S,S,0
2(1–P)�
Pn+1

tends to ∇0
� as n → ∞.

Thus we conclude that �
2nV(j, S

2n )–2nV ′(j, S
2n )

� = 1 for all S ∈ 
1, j ∈ J , � > 0. So V(j, S) =
V ′(j, S) for all S ∈ 
1, and j ∈ J . �

Theorem 2.3 Suppose (
1,�,�M,�M) is a matrix Menger Banach algebra and φ : 
3
1 →

�+ is a matrix distribution function such that there exists a P < 1 with φ
S,R,0
� � φ

S
2 , R

2 ,0
�

2P
for all

S, R ∈ 
1, limn→∞ φ
2nS,2nR,0
2n� = ∇0

� for any S, R ∈ 
1, � > 0. Assume that a random operator
Q : J ×
1 → 
2 satisfies (2.4) and Q(j, S) = 0 for all S, R ∈ 
1 and j ∈ J . Then there exists
a unique additive random operator V : J × 
1 → 
2 such that

�
Q(j,S)–V(j,S)
� � φ

S,S,0
2(1–P)�, (2.12)

for all S ∈ 
1, j ∈ J , and � > 0.

Proof Putting A = 0 and S = R in (2.4), we have

�
1
2Q(j,2S)–Q(j,S)
� � φ

S,S,0
2� , (2.13)

for all S ∈ 
1, j ∈ J , and � > 0. Thus

�
1
2Q(j,S)–Q(j,2S)
� � φ

2t,2t,0
� � φ

S,S,0
�

2P
, (2.14)

for all S ∈ 
1, j ∈ J , and � > 0. Replacing S by 2nS in (2.14), we have

�
1

2n Q(j,2nS)– 1
2n+1 Q(j,2n+1S)

� � φ
2nS,2nS,0
2×2n� � φ

S,S,0
2×2n

(2P)n �
. (2.15)

From

1
2n Q

(

j, 2nS
)

– Q(j, S) =
n–1
∑

k=0

(
1

2k+1 Q
(

j, 2k+1S
)

–
1
2k Q

(

j, 2kS
)
)
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and (2.15), we get

�
1

2n Q(j,2nS)–Q(j,S)
∑n–1

k=0
(2P)k
2×2k �

� φ
S,S,0
� ,

for each S ∈ 
1, j ∈ J , and � > 0. That is,

�
1

2n Q(j,2nS)–Q(j,S)
� � φ

S,S,0
�

∑n–1
k=0

(2P)k
2×2k

. (2.16)

Replacing S by 2mS in (2.16), we get

�
1

2n+m Q(j,2n+mS)– 1
2m Q(j,2mS)

� � φ
S,S,0

�
∑n+m

k=m
(2P)k
2×2k

. (2.17)

As m, n → ∞, φS,S,0
�

∑n+m
k=m

(2P)k
2×2k

tends to ∇0
�. It implies that the sequence { 1

2n Q(j, 2nS)} is Cauchy

for any S ∈ 
1 and j ∈ J . Since 
2 is a matrix Menger Banach algebra, the sequence
{ 1

2n Q(j, 2nS)} converges.
Now, we determine the random operator V : J × 
1 → 
2 as follows:

V(j, S) := lim
k→∞

1
2k Q

(

j, 2kS
)

,

for each S ∈ 
1 and j ∈ J . Putting m = 0 and letting n → ∞ in (2.17), we get

�
Q(j,S)–V(j,S)
� � φ

S,S,0
2(1–P)�, (2.18)

for all S ∈ 
1, j ∈ J , and � > 0. Using Theorem 2.2 completes the proof. �

3 Fixed point method for approximating inequality (1.1)
We use the fixed point technique to get an approximation of the additive (G1,G2)-random
operator inequality (1.1) in matrix Menger Banach algebras.

Theorem 3.1 Suppose the following assumptions hold:
• (
1,�,�M,�M) is a matrix Menger Banach algebra,
• φ : 
3

1 → �+ is a matrix distribution function, satisfying (2.3) for all S, R, A ∈ 
1, and
� > 0,

• there exists a P < 1, such that φ
S
2 , R

2 , A
2

� � φ
S,R,A
2�
P

for all S, R, A ∈ 
1 and � > 0,

• the random operator Q : J × 
1 → 
2 satisfies Q(j, 0) = 0 and (2.4) for all
S, R, A ∈ 
1, j ∈ J , and � > 0,

Then we can find a unique additive random operator V : J × 
1 → 
2 satisfying (2.5)
for all S, R, A ∈ 
1, j ∈ J , and � > 0.

Proof Putting S = R and A = 0 in (2.4), we have

�
2Q(j, S

2 )–Q(j,S)
� ≥ φ

S
2 , S

2 ,0
� (3.1)

almost everywhere for each S ∈ 
1 and � > 0.
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Consider

ξ :=
{

Z : J × 
1 → 
2,Z(j, 0) = 0
}

and the generalized metric defined as follows:

ζ (P ,Z) = inf
{

� ∈R+ : �P(j,S)–Z(j,S)
�� ≥ φ

S,S,0
� ,∀S ∈ 
1,� > 0

}

.

In [29], Miheţ and Radu showed that (ξ , ζ ) is complete.
We define the linear function L : ξ → ξ as

LH(j, S) := 2H
(

j,
S
2

)

almost everywhere for each S ∈ 
1. Consider H,K ∈ ξ such that ζ (H,K) = ε. Then

�
H(j,S)–K(j,S)
ε� ≥ φ

S,S,0
�

almost everywhere for any S ∈ 
1 and � > 0, and also

�
LH(j,S)–LK(j,S)
Pε� = �

H(j, S
2 )–K(j, S

2 )
Pε�

2

≥ φ
S
2 , S

2 ,0
P�

2

≥ φ
S,S,0
�

almost everywhere for each S ∈ 
1 and � > 0. Thus, from ζ (H,K) = ε, we conclude that
ζ (LH,LK) ≤ Pε, and so

ζ (LH,LK) ≤ Pζ (H,K),

for each H,K ∈ ξ .
By (3.1), we have that

�
2Q(j, S

2 )–Q(j,S)
P�

2
≥ φ

S,S,0
�

almost everywhere for each S ∈ 
1 and � > 0, which implies that ζ (Q,LQ) ≤ P

2 .
Theorem 1.4 implies that there is a random operator V : J × 
1 → 
2 such that:
(1) A fixed point for the function L is V ,

V(j, x) = 2V
(

j,
x
2

)

(3.2)

almost everywhere for each x ∈ 
1, which is unique in the set

D =
{

H ∈ ξ : ζ (H,K) < ∞}

;
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(2) ζ (LpQ,V) → 0 as p → ∞, which implies that

lim
p→∞ 2pQ

(

j,
S
2p

)

= V(j, S) (3.3)

almost everywhere for each S ∈ 
1;
(3) ζ (Q,V) ≤ 1

1–Pζ (Q,LQ), which implies that

�
Q(j,S)–V(j,S)
� ≥ φ

S,S,0
2(1–P)

P
�

almost everywhere for each S ∈ 
1 and � > 0.
Using (2.4) and (3.3), we have

�
V(j,S+R+A)–V(j,S)–V(j,R)+V(j,A)
�

= lim
n→∞�

2n(Q(j, S+R+A
2n )–Q(j, S

2n )–Q(j, R
2n )–Q(j, A

2n ))
�

� lim
n→∞�

2nG1[Q(j, S+A
2n )–Q(j, S

2n )–Q(j, A
2n )]

�

�M �
2nG2[Q(j, R+A

2n )–Q(j, R
2n )–Q(j, A

2n )]
� �M lim

n→∞φ
S

2n , S
2n ,0

�
2n

� �
G1[V(j,S+A)–V(j,S)–V(j,A)]
� �M �

G2[V(j,R+A)–V(j,R)–V(j,A)]
�

almost everywhere for any S, R, A ∈ 
1 and � > 0. Thus

�
V(j,S+R+A)–V(j,S)–V(j,R)–V(j,A)
� � �

G1[V(j,S+A)–V(j,S)–V(j,A)]
� �M �

G2[V(j,R+A)–V(j,R)–V(j,A)]
�

almost everywhere for each S, R, A ∈ 
1 and � > 0. Now, Lemma 2.1 implies that the V is
an additive random operator. �

Theorem 3.2 Suppose (
1,�,�M,�M) is a matrix Menger Banach algebra and φ : 
3
1 →

�+ is a matrix distribution function such that there exists a P < 1 with φ
S,R,0
� � φ

S
2 , R

2 ,0
�

2P
for all

S, R ∈ 
1, limn→∞ φ
2nS,2nR,0
2n� = ∇0

� for any S, R ∈ 
1, � > 0. Assume that a random operator
Q : J ×
1 → 
2 satisfies (2.4) and Q(j, S) = 0 for all S, R ∈ 
1 and j ∈ J . Then there exists
a unique additive random operator V : J ×
1 → 
2 satisfying (2.12) for all S ∈ 
1, j ∈ J ,
and � > 0.

Proof Let (ξ , ζ ) be the same as in the proof of Theorem 2.2. We define the linear function
L : ξ → ξ as

LH(j, S) :=
1
2
H(j, 2S)

almost everywhere for each S ∈ 
1. Using (2.5), we obtain

�
Q(j,2S)

2 –Q(j,S)
� ≥ φ

S
2 , S

2 ,0
�
P

almost everywhere for each S ∈ 
1 and � > 0.
By a similar method as in the proof of Theorem 3.1, the proof will be completed. �
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4 Application with stochastic Mittag-Leffler and Fox’s H-control functions
In this section, we apply stochastic Mittag-Leffler control functions and stochastic Fox H-
control functions to get a better approximation in the random operator inequality (1.1).
Now, we introduce the concepts of the above stochastic control functions.

Suppose T is a vector space and �• > 0.
We will present an example of a stochastic normed space by means of Mittag-Leffler

function, but before that we introduce Mittag-Leffler function itself.
The special function

�σ (z) =
∞

∑

k=0

zk

�(1 + σk)
, σ ∈C,�(σ ) > 0, z ∈C (4.1)

is called Mittag-Leffler function [3], where C and � are respectively the set of complex
numbers and the gamma function.

Consider the one-parameter Mittag-Leffler function

�σ

(

–
‖T◦‖
�•

)

=
∞

∑

k=0

(– ‖T◦‖
�• )k

�(1 + σk)
, σ ∈ (0, 1], T◦ ∈ T,�• > 0,‖T◦‖ <

1
n

, n ∈N.

Now we want to show in the following four steps that (T,�σ (– ‖T◦‖
�• ), min) is a random

normed space.
(1) If σ ∈ (0, 1], then �σ (0) = 1 and limT◦→–∞ �σ (T◦) = 0. Hence we can conclude that

�σ is an increasing function for all σ ∈ (0, 1], and also we have �σ ∈ (0, 1].
(2) It is straightforward to show that �σ (– ‖T◦‖

�• ) = 1 for every �• > 0, if and only if T◦ = 0.
(3) For any T◦ ∈ T and �• > 0, we have

�σ

(

–
‖�T◦‖

�•

)

=
∞

∑

k=0

(– ‖�T◦‖
�• )k

�(1 + σk)

=
∞

∑

k=0

(– ‖T◦‖
�•|�|

)k

�(1 + σk)

= �σ

(

–
‖T◦‖

�•
|�|

)

.

(4) Let �σ (– ‖T◦‖
�• ) ≤ �σ (– ‖T′◦‖

�′• ). Then we have ‖T′◦‖
�′• ≤ ‖T◦‖

�• for all T◦, T′◦ ∈ T and �•,�′• >
0. Now, if T◦ = T′◦, then we have �• ≤ �′•. Otherwise, we have

‖T◦‖
�•

+
‖T◦‖
�•

≥ ‖T◦‖
�•

+
‖T′◦‖
�′•

≥ 2
‖T◦‖

�• + �′•
+ 2

‖T′◦‖
�• + �′•

≥ 2
‖T◦ + T′◦‖
�• + �′•

,
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and so ‖T◦‖
�• ≥ ‖T◦+T′◦‖

�•+�′• . But – ‖T◦‖
�• ≤ – ‖T◦+T′◦‖

�•+�′• and also

∞
∑

k=0

(– ‖T◦‖
�• )k

�(1 + σk)
≤

∞
∑

k=0

(– ‖T◦+T′◦‖
�•+�′• )k

�(1 + σk)
, (4.2)

which implies that

�σ

(

–
‖T◦‖
�•

)

≤ �σ

(

–
‖T◦ + T′◦‖
�• + �′•

)

.

Hence we have

�σ

(

–
‖T◦ + T′◦‖
�• + �′•

)

≥ min

{

�σ

(

–
‖T◦‖
�•

)

,�σ

(

–
‖T′◦‖
�′•

)}

,

for all T◦, T′◦ ∈ T and �•,�′• > 0. Therefore, �σ (– ‖T◦‖
�• ) is a stochastic Mittag-Leffler con-

trol function.
Now, we introduce the Fox H-function [30] as follows:

H
m,n
p,q

[

z|(aj ,Aj)1,p
(bj ,Bj)1,q

]

:=
1

2π i

∫

L

θ (ξ )zξ dξ ,

i2 = 1, z ∈C\{0}, zξ = exp
(

ξ
[

log |z| + i arg(z)
])

, (4.3)

in which log |z| denotes the natural logarithm of |z| and arg(z) is not necessarily the prin-
cipal value. For convenience, let

θ (ξ ) :=
∏m

j=1 �(bj – Bjξ )
∏n

j=1 �(1 – aj + Ajξ )
∏q

j=m+1 �(1 – bj + Bjξ )
∏p

j=n+1 �(aj – Ajξ )
,

with an empty product interpreted as 1, and the integers m, n, p, q satisfy the inequalities

0 ≤ n ≤ p and 1 ≤ m ≤ q,

where the coefficients

Aj > 0 (j = 1, . . . , p) and Bj > 0 (j = 1, . . . , q)

and the complex parameters

aj (j = 1, . . . , p) and bj (j = 1, . . . , q)

are so constrained that no poles of integrand in (4.3) coincide, andL is a suitable contour of
the Mellin–Barnes type (in the complex ξ -plane) which separates the poles of one product
from those of the other. In addition, if we let

� :=
n

∑

j=1

Aj –
p

∑

j=n+1

Aj +
m

∑

j=1

Bj –
q

∑

j=m+1

Bj > 0,
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then the integral in (4.3) converges absolutely and defines the H-function, analytic in the
sector

∣
∣arg(z)

∣
∣ <

1
2
�π ,

the point z = 0 being tacitly excluded. In fact, the H-function makes sense and defines an
analytic function of z also when either

ε :=
p

∑

j=1

Aj –
q

∑

j=1

Bj < 0 and 0 < |z| < ∞,

or

ε = 0 and 0 < |z| < R :=
p

∏

j=1

A–Aj
j

q
∏

j=1

BBj
j .

In a similar way, we can show that Hm,n
p,q [– ‖T◦‖

�• |(aj ,Aj)1,p
(bj ,Bj)1,q

] is a stochastic Fox H-control func-
tion, for all T◦ ∈ T and �• > 0, Aj, aj > 0 (j = 1, . . . , p), Bj, bj > 0 (j = 1, . . . , q) and p, q ∈N.

Corollary 4.1 Let (
1,�,�M,�M) be a matrix Menger Banach algebra. Suppose that
M > 1 and W is a nonnegative real number, and Q : J × 
1 → 
2 is a random opera-
tor satisfying Q(j, 0) = 0 and

�
Q(j,S+R+A)–Q(j,S)–Q(j,R)–Q(j,A)
�

� �
G1[Q(j,S+A)–Q(j,S)–Q(j,A)]
� �M �

G2[Q(j,R+A)–Q(j,R)–Q(j,A)]
�

�M diag

[

exp

(

–
W(‖S‖M + ‖R‖M + ‖A‖M)

�

)

,

�

� + W(‖S‖M + ‖R‖M + ‖A‖M)
�σ

(

–
W(‖S‖M + ‖R‖M + ‖A‖M)

�

)

,

H
m,n
p,q

[

–
W(‖S‖M + ‖R‖M + ‖A‖M)

�

∣
∣
∣
∣

(aj ,Aj)1,p

(bj ,Bj)1,q

]]

(4.4)

for all S, R, A ∈ 
1, j ∈ J , 0 < σ ≤ 1, � > 0, Aj, aj > 0 (j = 1, . . . , p), Bj, bj > 0 (j = 1, . . . , q), and
p, q ∈N. Then there exists a unique additive random operator V : J × 
1 → 
2 such that

�
Q(j,S)–V(j,S)
� � diag

[

exp

(

–
2M+2W‖S‖M

2(2M – 2)�

)

,

2(2M – 2)�
2(2M – 2)� + 2M+2W‖S‖M �σ

(

–
2M+2W‖S‖M

2(2M – 2)�

)

,

H
m,n
p,q

[

–
2M+2W‖S‖M

2(2M – 2)�

∣
∣
∣
∣

(aj ,Aj)1,p

(bj ,Bj)1,q

]]

, (4.5)

for all S ∈ 
1, j ∈ J , 0 < σ ≤ 1, � > 0, Aj, aj > 0 (j = 1, . . . , p), Bj, bj > 0 (j = 1, . . . , q), and
p, q ∈N.
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Proof It follows from Theorem 2.2 by putting

φ
S,R,A
� = diag

[

exp

(

–
W(‖S‖M + ‖R‖M + ‖A‖M)

�

)

,
�

� + W(‖S‖M + ‖R‖M + ‖A‖M)
,

�σ

(

–
W(‖S‖M + ‖R‖M + ‖A‖M)

�

)

,

H
m,n
p,q

[

–
W(‖S‖M + ‖R‖M + ‖A‖M)

�

∣
∣
∣
∣

(aj ,Aj)1,p

(bj ,Bj)1,q

]]

,

for all S, R, A ∈ 
1, j ∈ J , � > 0, 0 < σ ≤ 1, Aj, aj > 0 (j = 1, . . . , p), Bj, bj > 0 (j = 1, . . . , q),
p, q ∈N, and P = 21–M. �

Corollary 4.2 Assume (
1,�,�M,�M) is a matrix Menger Banach algebra. Suppose that
M < 1, W ≥ 0, andQ : J ×
1 → 
2 is a random operator satisfying (4.4) andQ(j, S) = 0 for
all S ∈ 
1 and j ∈ J . Then there exists a unique additive random operator V : J × 
1 →

2 such that

�
Q(j,S)–V(j,S)
� � diag

[

exp

(

–
2W‖S‖M

(2 – 2M)�

)

,
(2 – 2M)�

(2 – 2M)� + 2W‖S‖M ,

�σ

(

–
2W‖S‖M

(2 – 2M)�

)

,Hm,n
p,q

[

–
2M+2W‖S‖M

2(2M – 2)�

∣
∣
∣
∣

(aj ,Aj)1,p

(bj ,Bj)1,q

]]

, (4.6)

for all S ∈ 
1, j ∈ J , 0 < σ ≤ 1, � > 0, Aj, aj > 0 (j = 1, . . . , p), Bj, bj > 0 (j = 1, . . . , q), and
p, q ∈N.

Proof The claim follows from Theorem 2.3 by putting

φ
S,R,A
� = diag

[

exp

(

–
W(‖S‖M + ‖R‖M + ‖A‖M)

�

)

,
�

� + W(‖S‖M + ‖R‖M + ‖A‖M)
,

�σ

(

–
W(‖S‖M + ‖R‖M + ‖A‖M)

�

)

,

H
m,n
p,q

[

–
W(‖S‖M + ‖R‖M + ‖A‖M)

�

∣
∣
∣
∣

(aj ,Aj)1,p

(bj ,Bj)1,q

]]

,

for all S ∈ 
1, j ∈ J , � > 0, 0 < σ ≤ 1, Aj, aj > 0 (j = 1, . . . , p), Bj, bj > 0 (j = 1, . . . , q), p, q ∈N,
and P = 2M–1. �

5 Conclusions
By means of both direct and fixed point methods, we investigated an approximation for ad-
ditive (G1,G2)-random operator inequality using a class of stochastic matrix control func-
tions in matrix Menger normed algebras. As an application, we applied stochastic Mittag-
Leffler control functions and the H-fox control function to get a better approximation in
the random operator inequality.

As can be seen in the previous section, using a new method (an alternative fixed point
method), we get a new stability approximation result that, compared to the direct method,
yields a better approximation.
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As for the future research directions, we can replace the above control functions with
hypergeometric function, Wright function, Fox–Wright function, and so on. Also, we can
use matrix-valued fuzzy control functions instead of a class of stochastic matrix control
functions.
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