
applied
sciences

Article

Real Driving Cycle-Based State of Charge Prediction for EV
Batteries Using Deep Learning Methods

Seokjoon Hong , Hoyeon Hwang , Daniel Kim , Shengmin Cui and Inwhee Joe *

����������
�������

Citation: Hong, S.; Hwang, H.;

Kim, D.; Cui, S.; Joe, I. Real Driving

Cycle-Based State of Charge

Prediction for EV Batteries Using

Deep Learning Methods. Appl. Sci.

2021, 11, 11285. https://doi.org/

10.3390/app112311285

Academic Editors: João M. F.

Rodrigues, Pedro J. S. Cardoso and

Marta Chinnici

Received: 23 October 2021

Accepted: 22 November 2021

Published: 29 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Hanyang University, Seoul 04763, Korea; daniel379@hanyang.ac.kr (S.H.);
kd3122@hanyang.ac.kr (H.H.); danielkim96@hanyang.ac.kr (D.K.); shengmincui@hanyang.ac.kr (S.C.)
* Correspondence: iwjoe@hanyang.ac.kr; Tel.: +82-02-2220-1088

Abstract: An accurate prediction of the State of Charge (SOC) of an Electric Vehicle (EV) battery is
important when determining the driving range of an EV. However, the majority of the studies in
this field have either been focused on the standard driving cycle (SDC) or the internal parameters
of the battery itself to predict the SOC results. Due to the significant difference between the real
driving cycle (RDC) and SDC, a proper method of predicting the SOC results with RDCs is required.
In this paper, RDCs and deep learning methods are used to accurately estimate the SOC of an EV
battery. RDC data for an actual driving route have been directly collected by an On-Board Diagnostics
(OBD)-II dongle connected to the author’s vehicle. The Global Positioning System (GPS) data of the
traffic lights en route are used to segment each instance of the driving cycles where the Dynamic Time
Warping (DTW) algorithm is adopted, to obtain the most similar patterns among the driving cycles.
Finally, the acceleration values are predicted from deep learning models, and the SOC trajectory
for the next trip will be obtained by a Functional Mock-Up Interface (FMI)-based EV simulation
environment where the predicted accelerations are fed into the simulation model by each time step.
As a result of the experiments, it was confirmed that the Temporal Attention Long–Short-Term
Memory (TA-LSTM) model predicts the SOC more accurately than others.

Keywords: electric vehicle; real driving cycle; recurrent neural network; simulation; state of charge;
temporal attention

1. Introduction

Since Electric Vehicles (EVs) do not emit CO2, they have a great potential to prevent air
pollution [1]. In addition, it is attractive for drivers to use EVs, because the cost of charging
the battery of an electric vehicle is much cheaper than the cost of refueling [2]. In recent
years, the performance of electric vehicle batteries has greatly improved and, consequently,
there are EVs capable of driving more than 500 km when fully charged. However, there are
few battery-charging stations compared to conventional gas stations, and batteries take a
long time to charge [3]. Therefore, when driving an electric vehicle, it is very important to
predict the driving distance through the state-of-charge (SOC) of the battery.

Accurate battery SOC measurement is an important feature in the BMS of electric
vehicles, which can be implemented with microcontrollers (MCUs). Recently, as pre-trained
neural network models have been installed and used in automotive MCUs, it has become
possible to apply AI to the Battery Management System (BMS) [4]. In addition, among
recent studies, a method to more accurately measure SOC using a cloud data center that
provides high-capacity and high-performance calculations for big-data-based, data-driven
Deep Learning (DL), and interworking with the vehicle’s BMS, was also proposed [5].

Future applications for fully Connected and Autonomous Vehicles (CAVs) include an
AR-based navigation system, a video-conferencing application, real-time image-processing
and inferencing solutions implemented by a neural network model equipped on board [6,7].
Since these applications require a high level of computation power and low power con-
sumption, various hardware implementations such as a Graphics Processing Unit (GPU),

Appl. Sci. 2021, 11, 11285. https://doi.org/10.3390/app112311285 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1428-3171
https://orcid.org/0000-0001-8597-0441
https://orcid.org/0000-0001-9627-7108
https://orcid.org/0000-0001-8979-828X
https://orcid.org/0000-0002-8435-0395
https://doi.org/10.3390/app112311285
https://doi.org/10.3390/app112311285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112311285
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112311285?type=check_update&version=1

Appl. Sci. 2021, 11, 11285 2 of 20

field-programmable gate array (FPGA), and Application-Specific Integrated Circuits (ASIC)
are employed. Specifically, a Tesla Full Self-Driving (FSD) computer, built on ASIC, meets
50 Tera floating point operations per second (TFLOPS) of the Neural Network model, and
uses 100 W or less power consumption during computation [8]. To benefit from these
state-of-the-art embedded systems adapted to the full CAVs, it is important to both estimate
the current SOC and predict the future SOC to aid the drivers in decision-making.

It is important to accurately measure the current SOC, but it is also necessary to
predict the future SOC based on the current driving data. An accurate prediction of the
SOC can help determine the possible driving distance and charging time. There are two
main methods to predict the SOC of an EV battery. The first one is predicting the SOC
through simulation based on the vehicle dynamics. This approach was implemented
by [9], which used standard driving cycles (SDC) as input of the simulation model. The
second method consists of predicting the SOC through Machine Learning (ML) techniques
using the battery data collected while driving the electric vehicle [10]; for example, using
information from the battery itself (voltage, current, temperature) and ML algorithms to
predict the future SOC.

Recently, there have been studies to predict SOC through complex mathematical
formulas, considering the actual driving cycle of electric vehicles, but ML was not used.

In this paper, we propose an algorithm that accurately predicts the SOC of an EV
battery by acquiring actual driving information through OBD-II, dividing and preprocess-
ing this driving information by section based on GPS information and DTW, training a
neural network with the dataset and running simulations using Functional Mock-Up Units
(FMU).

2. Related Work

This section classifies the related studies into two major categories: modeling and
simulation, and SOC estimation and prediction in the EV domain. Since there have been
significant research efforts in these fields, we are focused on work that has been conducted
rather recently, and discuss the limitations of these works.

First of all, in the field of modeling and simulation, extensive research has been carried
out to improve the accuracy of EV energy consumption estimation with high-fidelity
simulation models [11–17]. By using simulation environments such as MATLAB/Simulink
and DACCOSIM, each physical component of an EV is mathematically modeled to form a
subsystem block, which is composed of primitive blocks. The simulation is performed by
the subsystem blocks mapping the input signals to the output values, which are passed to
the subsequent blocks over time during the simulation. Recently, distributed co-simulation
based on Functional Mock-up Interface (FMI), which provides a standardized interface
to ease the sharing of different models [18], has been widely used. Techniques to reduce
the simulation time while maintaining the simulation accuracy have also been developed.
S. Hong proposed a redundancy reduction algorithm (RRA) to increase the simulation
speed by adaptively adjusting the simulation step size, increasing it when a specific
pattern of the cycle is detected as repeated, and decreasing it when a zero-crossing point is
detected [19]. However, this is mainly applicable to the SDCs, especially the New European
Driving Cycle (NEDC), where many repetitive parts are known ahead of the simulation.

These studies heavily rely on the SDCs to validate the methods. However, as men-
tioned above, SDCs have inherent limitations, as they are not real driving cycles (RDCs).
Even though a variety of SDCs have been developed to emulate urban, rural, and high-
way environments, they do not reflect personalized factors, i.e., individual drivers’ habits,
which are highly complicated as they dynamically change over time [20,21]. Moreover,
they can hardly incorporate factors such as traffic conditions, traffic signals, and time of
driving, which are unique to each driving instance [22]. Therefore, in order to provide more
personalized simulation results, both the mathematically defined models and data-driven
methods that learn the drivers’ patterns from the previous RDCs are required.

Appl. Sci. 2021, 11, 11285 3 of 20

Next, there have been a myriad of studies in the area of SOC estimation and prediction.
In the application of the pure EV, accurate prediction of the battery SOC consumption
is highly important, since this would directly lead to an accurate prediction of the EV
range [23]. According to the literature [24–26], methodological approaches to the SOC esti-
mation can be divided into two: ML-based and non-ML-based methods. In brief, Coulomb
counting and open-circuit voltage (OCV) methods have been used as conventional meth-
ods, while, recently, ML models consisting of deep neural networks (DNNs) have been
intensely applied [24–26]. In the ML-based data-driven approach, the SOC values are pre-
dicted by automatically adjusting parameters to minimize the resultant error by learning
from the pattern of the input features such as current, voltage, and temperature [27–29]. In
this way, the models are fitted to the specific real-world measurement data, which enables
predictions with enhanced accuracy under similar conditions.

However, few studies have been conducted on the prediction of future SOC trends
through simulation. Most of the research has been focused on the internal parameters of the
battery management system (BMS) [30] to estimate the SOC value. That is, research on the
relationship between the EV subsystems in an integrated view to improve the performance
of the simulation, as well as reducing the overhead of the tedious model-based simulation,
has been insufficient. If an individual driver’s OBD data can be repeatedly collected on
the road, one can simulate the SOC patterns for the next cycle for the same segment of
the route with the velocity and acceleration data as inputs to an EV model. In this way,
an approximate trajectory of the SOC consumption can be obtained, which can, in turn,
help the driver be aware of the possible range and adjust her driving behavior from the
perspective of an SOC.

3. Overall Procedure for Real Driving Cycle-Based SOC Estimation

This paper proposes a method to predict SOC using a real-world driving cycle. The
proposed SOC prediction method using real-world driving cycle is as shown in the Figure 1.

Figure 1. Procedure of Real Driving cycle based SOC estimation.

The tested driving routes run from a fixed site to the other, i.e., from the homeplace of
one of the authors to a parking lot in the Hanyang University campus. The route consists
of several intersections between the start point and the destination point. The driving
data were collected onboard while the author was driving, using an application named
Torque Pro running on an Android device connected to a Bluetooth dongle, which supports
the OBD-II specifications. The OBD data were comprised of various second-by-second
temporal data, such as GPS latitude, longitude, velocities, etc., and were saved in a Comma-
Separated-Value (CSV) format. The route is highlighted, as shown in Figure 2. The route
was extracted and drawn on the map using the Google API with the GPS latitude and
longitude information from the OBD data.

Appl. Sci. 2021, 11, 11285 4 of 20

Figure 2. Real Driving Cycle with Google MAP.

Since the overall driving cycles are highly dependent on the operations of en-route
traffic lights, to enhance the accuracy of the predicted driving cycles, we first divided each
of the end-to-end routes into sub-routes by the traffic lights (as can be seen from Figure 2
as circular markers). The segments obtained from different instances of the route were then
compared to one another. To find the most similar intervals across all of the instances of
the route, a Dynamic Time Warping (DTW) algorithm was employed. After grouping the
segments of the route by their similarity, different Machine Learning (ML) algorithms were
used to learn from them and predict future driving cycles.

To validate the performance of the prediction of the SoC consumption, we generated
the eventual SoC values by an Electric Vehicle (EV) simulation model, implemented based
on Functional Mock-up Units (FMU). The FMU-based EV simulation model reads as inputs
the velocities, calculates the electric current from power consumption and regeneration by
acceleration and deceleration, respectively, and writes as outputs the resultant SoC values
to a file at each second. As expected, the test results showed that the SoC values could be
predicted with high accuracy, as long as the driving cycle was predicted with high accuracy.

The paper is structured as follows: first, we proposed the preprocessing method using
the DTW algorithm to group the driving intervals by similarity. Secondly, we proposed
a deep learning algorithm that accurately predicts the speed after learning from similar
driving cycles. The speed was also predicted using the existing Seasonal Autoregressive
Integrated Moving Average (SARIMA) model. Finally, to evaluate the models, the predicted
speeds by both algoritms were used as input to a simulation model, which computes the
SOC of the driving cycle.

4. Methodology
4.1. Dynamic Time Warping (DTW) for Similarity of Real Driving Cycles

First proposed by [31] in the speech recognition field, the DTW is an algorithm that
measures similarity between time series, which may vary in length. The technique performs
non-linear warpings so that the time series are stretched or shrinked in order to find the
optimal alignment between them. It has a wide range of applications, such as data mining,
gesture recognition, robotics, speech-processing, manufacturing and medicine [32].

We propose a method to find similar driving routes based on the DTW algorithm,
using the acceleration of the vehicle as input. The reason why acceleration is used is that
the SOC is closely related to power consumption, which, in turn, is closely related to the
acceleration of the vehicle. There were more than 30 driving-cycle-related data collected

Appl. Sci. 2021, 11, 11285 5 of 20

and, due to the large noise and uncertainty existent in the dataset, only similar segments
were used for the prediction. Therefore, the goal of the algorithm is to find the most similar
acceleration time series segments to use them as input to the ML models.

The algorithm that was used can be described in the following manner:

• First of all, the base time series which we want to use to find other similar time series
must be defined. For this present work, we defined the route shown in the map of the
Figure 2, represented by the time series in the Figure 3, as the base route to which the
remaining 30 time series will be compared.

• Secondly, the base time series may further be split into an arbitrarily number of base
segments. Considering the Figures 2 and 3, the markers from A to F and the dotted
black vertical lines represent situations in which the velocity of the car reached zero
or, in other words, the start and the end points of each of the four segments (A to
C, C to D, D to E, E to F). Note that the point B was not taken into account, because
we regarded it as noise due to its proximity to point A, and that the each of the base
segments are shown in greater detail in the subfigures of Figure 4.

• Thirdly, for each of the four base segments, we set the lower bound and the upper
bound times for the similar patter- finder algorithm by subtracting and adding an ε
arbitrary small amount of time. For example, the second base segment was extracted
from second 69 to 135 of the base time series. If ε = 50, then the lower-bound and
upper-bound times for a similar pattern-finder algorithm will be, respectively, 19 s
and 185 s, as shown in Table 1.

• With the lower and upper bounds of the algorithm defined, we split the period
between the lower and upper bounds into smaller search periods, spaced by an
arbitrary time interval. Intuitively, the lower the interval is, the higher the accuracy of
the algorithm. These smaller search periods are shown in Table 1 for an interval of
five seconds between each period.

• Next, we looped through the search periods.
• Inside the search-periods-loop, we loop through the remaining 30 time series, which

will be compared to the base time series.
• Next, we extract the corresponding search period of the time series to be used in the

comparison.
• Next, we obtain the distance between the extracted time series and the base segment

by DTW.
• Finally, after the two loops are finished, we rank the all the extracted time series

according to their cost, computed by DTW, and obtain the 10 periods that have the
lowest cost, which will form the training and test datasets for the machine learning
models.

(a) (b)

Figure 3. Speed and acceleration over time of the base time series. (a) Speed × time of the base time
series. (b) Acceleration × time of the base time series.

Appl. Sci. 2021, 11, 11285 6 of 20

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Speed and acceleration over time of the four base segments. (a) Speed × Time (A to
C segment); (b) Acceleration × Time (A to C segment); (c) Speed × Time (C to D segment); (d)
Acceleration × Time (C to D segment); (e) Speed × Time (D to E segment); (f) Acceleration × Time
(D to E segment); (g) Speed × Time (E to F segment); (h) Acceleration × Time (E to F segment).

Appl. Sci. 2021, 11, 11285 7 of 20

Table 1. Table showing the start and end time of the segments and the search periods.

First Base
Segment

Second Base
Segment

Third Base
Segment

Fourth Base
Segment

Start Point (s) 0 69 135 224
End Point (s) 69 135 224 404
Search Start

Point (s)
0 19 85 174

Search End
Point (s)

119 185 274 454

examles of
Search periods

for interval = 5 s
(start, end)

(0, 69),
(5, 74),

...
(45, 114),
(50, 119)

(19, 85),
(24, 90),

...
(114, 180),
(119, 185)

(85, 174),
(90, 179),

...
(180, 269),
(185, 274)

(174, 354),
(179, 359),

...
(269, 449),
(274, 454)

A summary of the algorithm is shown in Algorithm 1.

Algorithm 1 Similar time series finding algorithm

1: Set base_time_series
2: Split base_time_series into base_segments
3: for bs in base_segments do
4: Set lower_bound and upper_bounds
5: Set interval
6: Compute search_periods
7: Initialize empty list costs
8: for period in search_periods do
9: for ts in time_series_list do

10: Extract period from ts
11: cost← DTW(extracted_ts_period, bs)
12: Append cost to costs
13: end for
14: end for
15: get_n_series_least_cost(costs, num_series)
16: end for

4.2. Deep Learning-Based SOC Prediction

In this section, our intention is to predict the future speed from the past speed of the
EV; hence, we consider this task as a univariate time series prediction task. Given the
observed time series data x = [x1, x2, . . . , xT] ∈ RT , the task is to predict the future value
xT+1 ∈ R. Formally, we intend to predict x̂T+1 ∈ R through a function f , as follows:

x̂T+1 = f (x1, x2, . . . , xT), (1)

where f (·) is a linear or nonlinear function that needs to be learned.
Our main contribution is presenting a model for predicting speed, which is based on

an LSTM with a temporal attention mechanism. The architecture of the prediction model is
shown in Figure 5. First, we use an LSTM layer to encode the information from the input
sequence into a feature representation. The final prediction is then made by utilizing the
temporal attention mechanism over the output features of the LSTM layer.

Appl. Sci. 2021, 11, 11285 8 of 20

Figure 5. Architecture of TA-LSTM.

Recurrent Neural Network (RNN) is one of the family of neural networks specialized
in processing sequential data. If a general feed-forward neural network approach is used
to process fixed-length data, the network has separate parameters for each input feature,
so it needs to learn them separately at each time position. In contrast, an RNN shares
weights across multiple time steps. This sharing of weights is important, as it allows for the
generalization of unseen sequences and the sharing of statistical strength across time steps.
Long short-term memory (LSTM) and gated recurrent unit (GRU), which are variants of
RNN, are commonly used for handling sequential data such as language modeling [33,34]
and time series prediction [35,36]. LSTM outperforms RNN and GRU for many sequence
prediction tasks because of its gating systems, so we chose LSTM for this task. The forward
process of an RNN cell is defined as:

ft = σ(W f [xt, ht−1] + b f) (2)

it = σ(Wi[xt, ht−1] + bi) (3)

c̃t = tanh(Wc[xt, ht−1] + bc) (4)

ct = ft · ct−1 + it · c̃t (5)

ot = σ(Wo[xt, ht−1] + bo) (6)

ht = ot · tanh(ct) (7)

where W f , Wi, Wc, Wo ∈ Rm×(m+1) are weight matrices, and b f , bi, bc, bo ∈ Rm are bias
to be learned. ft is the forget gate, which determines how much previous information is
forgotten, it is the input gate, which determines how much new information is added, and
ot is the output gate, which, along with the current cell state ct, determines the output of
this cell.

Recently, researchers have proposed multiple attention mechanisms for time series
tasks and achieved better results than LSTM and GRU [37–39]. Inspired by the dynamic
spatial–temporal attention mechanism [39], we employ the temporal attention mechanism
to predict the acceleration of EVs in this work, since our task is univariate time series
forecasting, which does not require consideration of spatial attention. Therefore, the
temporal attention mechanism assigns a weight to each hidden state by correlating the
output at each time step with the output at the last time step. Intuitively, for the prediction
of the next time step, the current state is very important, but we cannot ignore the state of
previous time steps. A general RNN-based prediction model either uses a fully connected
layer to connect the hidden states of all time steps, giving a relatively accurate view of the
hidden states of all time steps, or uses the last hidden state for prediction. However, we
believe that temporal attention chooses the balanced option of adaptively attributing all
time steps an attention score according to the relevance of different time steps to the state
of the last time step, and finally connecting the fused context vector with the last hidden

Appl. Sci. 2021, 11, 11285 9 of 20

state for prediction, which, in turn, enhances the contribution of the current state to the
prediction of the next time step.

First, the attention score is computed based on the relevance between the current state
and the last state.

Attention Score(ht, hT) = hT
t WshT , 1 ≤ t ≤ T (8)

where Ws ∈ Rm×m is learnable weights, which can be trained jointly with the LSTM layer
to adaptively learn the correlation of hidden state of each time step with the last time step.

Then, for each time step, the attention score is converted into probabilistic form using
the Softmax function, and the attention weight for this timepoint is obtained by

βt =
exp(Attention Score(ht, hT))

∑T
j=1 exp(Attention Score(hj, hT))

(9)

where the attention weight βt ∈ R demonstrates the importance of hidden state ht for
prediction and the Softmax function is applied to ensure all β sum to 1.

Next, the context vector is obtained by aggregating the hidden states of the RNN
layer:

c =
T

∑
t=1

βtht (10)

where c is a weighted sum of all hidden states and can be considered as an adaptive
selection of relevant hidden states among all time steps.

Finally, the prediction x̂T+1 can be obtained through the linear combination of context
vector and the last hidden state:

x̂T+1 = WT
l [c, hT] + bo (11)

where Wl ∈ R2m and bo ∈ R are learnable parameters.
The proposed model is differentiable, so the learnable parameters can be updated by

back propagation. The mean squared error (MSE) is applied as loss function:

Loss(xT+1, x̂T+1) =
1
N

N

∑
i=1

(xi
T+1 − x̂i

T+1)
2 (12)

where N is the number of samples.

5. Experimental Results

Before applying the proposed method to the RDCs, we checked the prediction results
of an SDC using Seasonal Auto Regressive Integrated Moving Average (SARIMA), a
conventional time-series forecasting model. This model is an extended version of ARIMA,
supporting the modeling of the seasonal components of the time-series data. We used
NEDC as the SDC and predicted the velocity after training the model. The mean absolute
percentage error (MAPE) is used as criteria for evaluating the performance.

MAPE =
1
N

N

∑
t=1

∣∣∣∣ xt − x̂t

xt

∣∣∣∣ (13)

where xt and x̂t are ground truth and predicted value, respectively.
As can be seen from Table 2, the SDC can be predicted accurately enough without

using the DL model. However, the accuracy for the RDC is much lower than the SDC.
Therefore, we will use the proposed DL method to improve the predictions for the RDC.

Appl. Sci. 2021, 11, 11285 10 of 20

Table 2. MAPE velocity results of SARIMA for the SDC (NEDC) and RDC.

Model SDC (NEDC)
RDC (Four Road Segments)

AtoC CtoD DtoE EtoF

SARIMA 0.014 0.06 0.06 0.12 0.35

To validate our proposed model using RDC, we collected real EV driving data through
OBD II. Our dataset of EV speed was obtained from actual driving and divided into four
road segments: location A to location C, location C to location D, location D to location E,
and location E to location F. Each route has 11 driving cycles, and we took the seen driving
cycles of each route as the training set and the rest as the test set. We first verified the
performance of our speed predictions. by analyzing the performance of our model using the
grid search method with different combinations of hyperparameters. The purpose was to
find the best combination of hyperparameters and then verify the effect of each component
on the results. Once we obtained the best model, we predicted the speed/acceleration
along with the SOC values and compared them with some commonly used methods.

5.1. Speed/Acceleration Prediction
5.1.1. Performance with Different Hyperparameters

First, we integrated all the training sets in the dataset and adopted a five-fold cross
validation (CV) method to find the best combination of hyperparameters. We implemented
our model using the pytorch library and trained and tested it on an Nvidia GTX 1080 Ti
GPU. Adam optimizer was used to train the models. The hyperparameters we need to
consider here are the time step length T and the hidden state size m of the LSTM layer.
For the proposed model, we set T as varying among [5, 10, 15] and m as varying among
[16, 32, 64, 128]. The average RMSE results for the 5-fold CV are tabulated in Table 3. First,
we describe the effect of the time step length T. It is obvious from Table 3 that the average
RMSE results for T = 10 and T = 15 are notably larger than for the case of T = 5. Therefore,
for speed prediction, the best choice of time step length is 5. Then, for the case T = 5,
the average RMSE value is the smallest when the hidden state size m equals to 32. In
deep learning, too few parameters can lead to underfitting problems while too many
parameters can lead to overfitting problems. Therefore, we believe that m = 16 belongs to
underfitting, m = 64 and m = 128 belong to overfitting. Thus, the optimal combination of
hyperparameters for our model for this dataset is {T = 5, m = 32}.

Table 3. RMSE results of 5-fold CV.

Hyperparameters
Average RMSE

T m

5 16 0.4908
32 0.4880
64 0.4926

128 0.4926

10 16 0.4988
32 0.4998
64 0.5013

128 0.4982

15 16 0.5007
32 0.5055
64 0.5025

128 0.5059

Appl. Sci. 2021, 11, 11285 11 of 20

5.1.2. Performance with Different Models

First, to verify that the LSTM in TA-LSTM is the preferred encoding layer, we com-
pared LSTM and other RNN variants on four road segments of the dataset. RNN and GRU
are commonly used for time series forecasting, and all three models follow the five-fold
CV approach introduced in the previous section to identify the best combination of hyper-
parameters. All three models obtained the minimum average RMSE at {T = 5, m = 32}.
The first seven driving cycles of each road segment were used as the training set and
the remaining four driving cycles were used as the test set, and each road segment was
trained and tested separately. In addition, 20% of the data in the training set were randomly
selected as the validation set during the training process, and the best-performing model in
the validation set was saved for testing. The best test results for each model after training
multiple times are shown in Table 4, as can be seen in Table 4, LSTM performs the best in
all four road sections. Therefore, we choose LSTM as the coding layer in this task.

Table 4. RMSE results of different models.

Models AtoC CtoD DtoE EtoF

RNN 0.4485 0.3702 0.4549 0.4924
GRU 0.4369 0.3689 0.4572 0.4873

LSTM 0.4240 0.3556 0.4524 0.4864

Then, to verify the effectiveness of temporal attention, we compared the LSTM with
TA-LSTM. The training process and the allocation of training and test sets are the same as
in the previous experiment. The results of the comparison are depicted in Figure 6. The
comparison shows that the addition of temporal attention yields better results.

Figure 6. The effect of temporal attention on RMSE results.

Since temporal attention can be combined with various variants of RNN, we compared
the performance of different encoding layers combined with temporal attention. From
Tables 4 and 5, it can be seen that adding temporal attention to all three different encoding
layers can improve the prediction accuracy. TA-LSTM has the best performance. Therefore,
we chose TA-LSTM for the task of predicting speed. The comparison between the predicted
and true values of each driving cycle for each road section is shown in Figures 7–10. As
can be observed from these figures, our model can fit the real data very well in most cases.

Appl. Sci. 2021, 11, 11285 12 of 20

(a) (b) (c) (d)
Figure 7. Speed prediction of route A to C: (a) cycle 8; (b) cycle 9; (c) cycle 10; (d) cycle 11.

(a) (b) (c) (d)
Figure 8. Speed prediction of route C to D: (a) cycle 8; (b) cycle 9; (c) cycle 10; (d) cycle 11.

(a) (b) (c) (d)
Figure 9. Speed prediction of route D to E: (a) cycle 8; (b) cycle 9; (c) cycle 10; (d) cycle 11.

(a) (b) (c) (d)
Figure 10. Speed prediction of route E to F: (a) cycle 8; (b) cycle 9; (c) cycle 10; (d) cycle 11.

Table 5. RMSE results of temporal attention with different models.

Models AtoC CtoD DtoE EtoF

TA-RNN 0.4412 0.3614 0.4515 0.4870
TA-GRU 0.4295 0.3586 0.4527 0.4832

TA-LSTM 0.4171 0.3456 0.4461 0.4821

5.2. SOC Prediction Using FMI-Based EV Simulation

After predicting the speed of the EV, we subsequently utilized the predicted results
and our simulator to predict the SOC.

Appl. Sci. 2021, 11, 11285 13 of 20

We used FMI-based EV simulation with the previously predicted velocity and acceler-
ation as inputs to predict the EV’s SOC. Our EV Simulation model is shown in Figure 11.
As can be seen in the figure, given the inputs, the FMU2 to FMU6 are responsible for
computing the SOC using the Formulas (14)–(38), whose variables are detailed in Table 6.
Additionally, the lookup2d function in Formulas (29)–(31) performs the same operation as
lookup2d in MATLAB/Simulink. The necessary efficiency values of the electric machine
were obtained through the efficiency curves given in [9].

Figure 11. FMI-based model for EV power consumption.

Table 6. Parameters for FMU-based EV simulation (Default setting).

Parameters Description Values
m Mass of the vehicle (kg) 1000
rw Wheel radius (m) 0.2736
g Gravity acceleration (m/s2) 9.81
ρ Air density 1.2
A Front area of vehicle (m2) 2.36
α Angle of driving surface (rad) 0

µrr Rolling resistance coefficient 0.015
Cd Aerodynamic drag coefficient 0.3
ηg Gearbox efficiency 0.98
G Gearbox ratio 8.59
C0 Initial capacity (C) 720,000
Rbi Internal resistance (Ω) 0.008
Eb0 Open-circuit voltage (V) 53.6

Kct
Linear t dependency of the

capacity C 6.084436× 10−10

tbu battery usage time (s) 0
Tre f Reference temperature (◦C) 20 ◦C
Tcurr Ambient temperature (◦C) 20 ◦C

alphaC Linear temperature coefficient
of capacity (K−1) 0

Ft = Frr + Fad + Fhc + Fla + Fwa (14)

Frr = µrrmg (15)

Fad =
1
2

ρACdv2 (16)

Appl. Sci. 2021, 11, 11285 14 of 20

Fhc = mg sin(α) (17)

Fla = ma (18)

Fwa = 0.05× Fla (19)

Tt = Ft × rw (20)

Pt = Ft × v (21)

ωw =
v

rw
(22)

Sw =
30
π
×ωw (23)

Ts =
Tt

ηg × G
(Pt > 0) (24)

Tsr = −ηg ×
Tt

G
(Pt < 0) (25)

Ss = Ssr = G× Sw (26)

Ps = Ts × Ss ×
π

30
(27)

Psr = Tsr × Ss ×
π

30
(28)

Efficiency(η) = lookup2d(Torque(Nm), Speed(rpm)) (29)

ηm = lookup2d(Ts, Ss) (30)

ηr = lookup2d(Tsr, Ssr) (31)

Pbm =
Ps

ηm
(32)

Pbr = ηr × Psr (33)

Pbc(t) =
{

Pbm(t) + Paux, Ft(t) > 0
Pbr(t) + Paux, Ft(t) < 0

(34)

IB(t) =
EB0

2× RBi
−

√(
EB0

2× RBi

)2
− Pbc

RBi
(35)

Q(t) =
∫ t

0
IBdt (36)

C = C0 ∗ (1− KCt ∗ tbu) ∗
(

1 + alphaC ∗
(

Tcurr − Tre f

))
(37)

Appl. Sci. 2021, 11, 11285 15 of 20

SOC(t) =
C−Q(t)

C
(38)

To verify the effectiveness of our speed prediction model for the final SOC prediction,
we compared the proposed model results with the speed and SOC prediction obtained
with the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. The final
SOC prediction results are shown in Table 7. As can be seen from the table, the RMSE of
TA-LSTM drops 56.69%, 84.97%, 82.34%, and 91.62% compared to SARIMA in the AtoC,
CtoD, DtoE, and EtoF sections, respectively.

Table 7. RMSE (×10−2) results of SOC prediction.

Models AtoC CtoD DtoE EtoF

SARIMA 0.0820 0.0998 0.1512 0.3938
TA-LSTM 0.0356 0.0150 0.0267 0.0330

The predicted SOC results made by TA-LSTM and SARIMA for the driving cycle
of each road section are shown in Table 8 and Figures 12–15. From Table 8, we can see
that TA-LSTM performed better than SARIMA in every driving cycle. In addition, the
RMSE results of TA-LSTM for all driving cycles in the CtoD and DtoE sections are less
than 0.0004. Although the RMSE for the AtoC and EtoF section is slightly worse than the
first three sections, the RMSE results are less than 0.0006. The comparison between the
real SOC and the predicted values shows that the predicted results of our model are very
close to the real values. This indicates that our proposed method is able to perform SOC
prediction properly.

Table 8. RMSE (×10−2) results of SOC prediction of each driving cycle.

Cycle
AtoC CtoD DtoE EtoF

SARIMA TA-LSTM SARIMA TA-LSTM SARIMA TA-LSTM SARIMA TA-LSTM

8 0.0892 0.0161 0.1288 0.0170 0.1236 0.0195 0.2505 0.0176
9 0.0792 0.0499 0.0411 0.0139 0.1179 0.0237 0.5170 0.0252
10 0.0604 0.0368 0.1429 0.0163 0.1408 0.0381 0.2615 0.0288
11 0.0950 0.0310 0.0339 0.0122 0.2060 0.0214 0.4711 0.0509

(a) (b) (c) (d)
Figure 12. SOC prediction of route A to C: (a) cycle 8; (b) cycle 9; (c) cycle 10; (d) cycle 11.

(a) (b) (c) (d)
Figure 13. SOC prediction of route C to D: (a) cycle 8; (b) cycle 9; (c) cycle 10; (d) cycle 11.

Appl. Sci. 2021, 11, 11285 16 of 20

(a) (b) (c) (d)
Figure 14. SOC prediction of route D to E: (a) cycle 8; (b) cycle 9; (c) cycle 10; (d) cycle 11.

(a) (b) (c) (d)
Figure 15. SOC prediction of route E to F: (a) cycle 8; (b) cycle 9; (c) cycle 10; (d) cycle 11.

In addition, in order to simulate the battery model by reflecting more realistic situ-
ations, we checked the change in SOC by varying the ambient temperature and battery
usage time. The real driving cycle, the parameters of the battery model, and the ambient
temperature and battery operating time values for the simulation are shown in Table 9.

Table 9. Parameters for the battery model simulation.

Parameters Description Values
Driving cycle Real driving cycle Cycle 8

Kct Linear t dependency of the capacity C 6.084436× 10−10

tbu battery usage time (s) 0, 157,698,305 s (5 years),
315,396,610 s (10 years)

Tre f Reference temperature (◦C) 20 ◦C
Tcurr Ambient temperature (◦C) 0, 20, 30 ◦C

alphaC Linear temperature coefficient of capacity
(K−1) 0.03 (0)

From the results in Figure 16, it can be confirmed that the battery SOC decreased faster
because the battery capacity decreases as the temperature decreases.

From the results of Figure 17, it can be confirmed that the battery SOC decreased more
quickly because the battery capacity decreases as the battery usage time increases.

Appl. Sci. 2021, 11, 11285 17 of 20

Figure 16. Temperature effect on the battery SOC.

Figure 17. Battery aging effect on the battery SOC.

6. Conclusions

In our paper, we proposed a method for predicting the real driving-cycle-based SOC
for EV batteries using deep-learning-based algorithms. For the RDC data, the authors used
the data collected through the OBD II standard while driving from home to university in
an actual vehicle. The proposed method first classifies detailed routes based on the section
with traffic lights using GPS information, and finds the most similar patterns through DTW
among the driving cycles of each section. Next, we predicted these sections by learning
speed using TA-LSTM based on temporal attention, and predicted SOC based on this
predicted speed. From the experimental results, it was confirmed that the case of using
TA-LSTM could most accurately predict the speed, and that this could be very close to the
actual values when used as a basis to predict the SOC. Therefore, if the proposed method
is applied to the Real Driving Cycle, in which the same section is repeatedly driven, an
accurate SOC prediction can be expected.

All the algorithms we propose can be implemented as an in-vehicle embedded system.
It has been confirmed that DL models can be pre-trained and executed in an MCU. FMU
simulation for the battery SOC can also be executed in an embedded system, such as an
MCU or a sensor node [4,40]. If a high-capacity memory is required due to an increase
in the demands of storing a massive amount of data or improving the calculation speed,
a prediction can be performed in conjunction with a cloud data center or an edge server
through the vehicular network, such as the Vehicle to Infrastructure (V2I) network.

The idea of the paper is to propose an algorithm that accurately predicts the SOC
value of the next time step. However, predicting the SOC after multiple time steps may
also be useful to the driver. Therefore, in a future work, the algorithm could be adapted so
that it may predict, for example, the SOC after the completion of the entire driving cycle.

Author Contributions: Methodology, S.H., H.H. and D.K.; Project administration, S.H.; Software,
S.H., H.H., D.K. and S.C.; Supervision, I.J.; Writing–original draft, S.H. and H.H. All authors have
read and agreed to the published version of the manuscript.

Appl. Sci. 2021, 11, 11285 18 of 20

Funding: This work was supported partly by the Institute for Information & Communications
Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. 2020-0-00107,
Development of the technology to automate the recommendations for big data analytic models that
define data characteristics and problems), and partly by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2019R1I1A1A01058964).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ASIC Application Specific Integrated Circuits
BMS Battery Management System
CAVs Connected and Autonomous Vehicles
CSV Comma Separated Value
CV Cross Validation
DL Deep Learning
DNNs Deep Neural Networks
DTW Dynamic Time Warping
EV Electric Vehicle
FGPA Field-programmable gate array
FMI Functional Mock-up Interface
FMU Functional Mock-up Units
FSD Full Self-Driving
GPS Global Positioning System
GPU Graphics Processing Unit
GRU Gated recurrent unit
MAPE Mean Absolute Percentage Error
MCU Microcontroller
ML Machine Learning
MSE Mean Squared Error
NEDC New European Driving Cycle
OBD On Board Diagnostics
OCV Open circuit voltage
RDC Real Driving Cycle
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RRA Redundancy reduction algorithm
SARIMA Seasonal Autoregressive Integrated Moving Average
SDC Standard Driving Cycle
SOC State of Charge
TA-LSTM Temporal Attention Long Short-Term Memory
TFLOPS Tera floating point operations per second
V2I Vehicle to Infrastructure
Variables
α Angle of the driving surface, rad
ηg Gearbox efficiency
ηm Efficiency of power consumed (motoring mode)
ηr Efficiency of power generated (regenerative braking mode, W
αc Linear temperature coefficient of the capacity C, K−1

µrr Coefficient of rolling resistance
ρ Density of the air
A Frontal area of the vehicle, m2

a Aceleration of the vehicle, m/s2

C Battery capacity, Ah
Cd Aerodynamic drag coefficient
Eb0 Open-circuit voltage of the battery, V
Ft Traction force of the vehicle, N
Fad Aerodynamic drag, N

Appl. Sci. 2021, 11, 11285 19 of 20

Fhc Hill climbing force, N
Fla Force required to give linear acceleration, N
Frr Rolling resistance force of the wheels, N
Fwa Force required to give angular acceleration to the rotating motor, N
G Gear ratio of differential
g Gravity acceleration, m/s2

IB Battery current
m Vehicle mass, kg
Ps Shaft power of electric machine (motoring mode), W
Pt Traction power, W
Paux Power consumed by auxiliary loads, W
Pbc Total power consumed in the EV, W
Pbm Power consumed by electric machine (motoring mode), W
Pbr Power consumed by electric machine (regenerative braking mode), W
Psr Shaft power of electric machine (regenerative braking mode), W
Q Total charge of the battery
rw Wheel radius, m
RBi Internal resistance of the battery, Ω
Ss Shaft angular velocity of electric machine (motoring mode), rpm
SW Angular velocity of the wheels, rpm
Ssr Shaft angular velocity of electric machine (regenerative braking mode), rpm
Ts Shaft torque of electric machine (motoring mode), Nm
Tt Traction torque, Nm
Tre f Reference temperature, K
Tsr Shaft torque of electric machine (regenerative braking mode, Nm)
v Velocity of the vehicle, m/s
wW Angular velocity of the wheels, rad/s

References
1. Cao, J.; Emadi, A. A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric

Vehicles. IEEE Trans. Power Electron. 2012, 27, 122–132. [CrossRef]
2. Sivak, M.; Schoettle, B. Relative Costs of Driving Electric and Gasoline Vehicles in the Individual US States, University of Michigan.

Report No. SWT-2018-1. 2018. Available online: http://websites.umich.edu/~umtriswt/PDF/SWT-2018-1.pdf (accessed on
19 November 2021).

3. Moghaddam, Z.; Ahmad, I.; Habibi, D.; Phung, Q.V. Smart Charging Strategy for Electric Vehicle Charging Stations. IEEE Trans.
Transp. Electrif. 2018, 4, 76–88. [CrossRef]

4. STMicroelectronics. Artificial Intelligence (AI) Plugin for Automotive SPC5 MCUs. Available online: https://www.st.com/en/
development-tools/spc5-studio-AI.html (accessed on 19 November 2021).

5. Li, S.; He, H.; Li, J.; Wang, H. Big data driven Deep Learning algorithm based Lithium-ion battery SoC estimation method:
A hybrid mode of C-BMS and V-BMS. In Proceedings of the Applied Energy Symposium: MIT A+B, Boston, MA, USA,
22–24 December 2019.

6. Lu, S.; Shi, W. The Emergence of Vehicle Computing. IEEE Internet Comput. 2021, 25, 18–22. [CrossRef]
7. Liu, L.; Lu, S.; Zhong, R.; Wu, B.; Yao, Y.; Zhang, Q.; Shi, W. Computing Systems for Autonomous Driving: State of the Art and

Challenges. IEEE Internet Things J. 2021, 8, 6469–6486. [CrossRef]
8. Findelair, A. Tomorrow’s Car Silicon Brain, How Is It Made? Towards Data Science. Available online: https://towardsdatascience.

com/tomorrows-car-silicon-brain-how-is-it-made-9090e1f06c9d (accessed on 23 March 2021).
9. Bhatt, A. Planning and application of Electric Vehicle with MATLAB®/Simulink®. In Proceedings of the 2016 IEEE International

Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6.
10. Wei, M.; Ye, M.; Li, J.B.; Wang, Q.; Xu, X. State of Charge Estimation of Lithium-Ion Batteries Using LSTM and NARX Neural

Networks. IEEE Access 2020, 8, 189236–189245. [CrossRef]
11. Amrhein, M.; Krein, P.T. Dynamic simulation for analysis of hybrid electric vehicle system and subsystem interactions, including

power electronics. IEEE Trans. Veh. Technol. 2005, 54, 825–836. [CrossRef]
12. Lv, C.; Zhang, J.; Li, Y.; Yuan, Y. Mechanism analysis and evaluation methodology of regenerative braking contribution to energy

efficiency improvement of electrified vehicles. Energy Convers. Manag. 2015, 92, 469–482. [CrossRef]
13. Fiori, C.; Ahn, K.; Rakha, H.A. Power-based electric vehicle energy consumption model: Model development and validation.

Appl. Energy 2016, 168, 257–268. [CrossRef]
14. Genikomsakis, K.N.; Mitrentsis, G. A computationally efficient simulation model for estimating energy consumption of electric

vehicles in the context of route planning applications. Transp. Res. Part D Transp. Environ. 2017, 50, 98–118. [CrossRef]

http://doi.org/10.1109/TPEL.2011.2151206
 http://websites.umich.edu/~umtriswt/PDF/SWT-2018-1.pdf
http://dx.doi.org/10.1109/TTE.2017.2753403
https://www.st.com/en/development-tools/spc5-studio-AI.html
https://www.st.com/en/development-tools/spc5-studio-AI.html
http://dx.doi.org/10.1109/MIC.2021.3066076
http://dx.doi.org/10.1109/JIOT.2020.3043716
https://towardsdatascience.com/tomorrows-car-silicon-brain-how-is-it-made-9090e1f06c9d
https://towardsdatascience.com/tomorrows-car-silicon-brain-how-is-it-made-9090e1f06c9d
http://dx.doi.org/10.1109/ACCESS.2020.3031340
http://dx.doi.org/10.1109/TVT.2005.847231
http://dx.doi.org/10.1016/j.enconman.2014.12.092
http://dx.doi.org/10.1016/j.apenergy.2016.01.097
http://dx.doi.org/10.1016/j.trd.2016.10.014

Appl. Sci. 2021, 11, 11285 20 of 20

15. Liu, K.; Wang, J.; Yamamoto, T.; Morikawa, T. Exploring the interactive effects of ambient temperature and vehicle auxiliary loads
on electric vehicle energy consumption. Appl. Energy 2018, 227, 324–331. [CrossRef]

16. Iora, P.; Tribioli, L. Effect of Ambient Temperature on Electric Vehicles’ Energy Consumption and Range: Model Definition and
Sensitivity Analysis Based on Nissan Leaf Data. World Electr. Veh. J. 2019, 10, 2. [CrossRef]

17. Luin, B.; Petelin, S.; Al-Mansour, F. Microsimulation of electric vehicle energy consumption. Energy 2019, 174, 24–32. [CrossRef]
18. Blochwitz, T.; Otter, M.; Akesson, J.; Arnold, M.; Clauß, C.; Elmqvist, H.; Friedrich, M.; Junghanns, A.; Mauß, J.; Neumerkel, D.;

et al. Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models. In Proceedings of the
9th International MODELICA Conference, Munich, Germany, 3–5 September 2012; pp. 173–184.

19. Hong, S.; Lim, D.; Joe, I.; Kim, W. F-DCS: FMI-Based Distributed CPS Simulation Framework with a Redundancy Reduction
Algorithm. Sensors 2020, 20, 252. [CrossRef] [PubMed]

20. Bär, T.; Nienhüser, D.; Kohlhaas R.; Zöllner, J.M. Probabilistic driving style determination by means of a situation based analysis
of the vehicle data. In Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC),
Washington, DC, USA, 5–7 October 2011; pp. 1698–1703. [CrossRef]

21. Ellison, A.B.; Greaves, S.P.; Bliemer, M.C.J. Driver behaviour profiles for road safety analysis. Accid. Anal. Prev. 2015, 76, 118–132.
[CrossRef]

22. Wu, X.; He, X.; Yu, G.; Harmandayan, A.; Wang, Y. Energy-Optimal Speed Control for Electric Vehicles on Signalized Arterials.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 2786–2796. [CrossRef]

23. Varga, B.O.; Sagoian, A.; Mariasiu, F. Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and
Challenges. Energies 2019, 12, 946. [CrossRef]

24. How, D.N.T.; Hannan, M.A.; Hossain Lipu, M.S.; Ker, P.J. State of Charge Estimation for Lithium-Ion Batteries Using Model-Based
and Data-Driven Methods: A Review. IEEE Access 2019, 7, 136116–136136. [CrossRef]

25. Xiong, R.; Cao, J.; Yu, Q.; He, H.; Sun, F. Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles.
IEEE Access 2018, 6, 1832–1843. [CrossRef]

26. Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the Art of Lithium-Ion Battery SOC Estimation
for Electrical Vehicles. Energies 2018, 11, 1820. [CrossRef]

27. Yang, F.; Song, X.; Xu, F.; Tsui, K. State-of-Charge Estimation of Lithium-Ion Batteries via Long Short-Term Memory Network.
IEEE Access 2019, 7, 53792–53799. [CrossRef]

28. Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Emadi, A. State-of-charge estimation of Li-ion batteries using deep neural networks: A
machine learning approach. J. Power Sources 2018, 400, 242–255. [CrossRef]

29. Babaeiyazdi, I.; Rezaei-Zare, A.; Shokrzadeh, S. State of charge prediction of EV Li-ion batteries using EIS: A machine learning
approach. Energy 2021, 223, 120116. [CrossRef]

30. Xing, Y.; Ma, E.W.M.; Tsui, K.L.; Pecht, M. Battery Management Systems in Electric and Hybrid Vehicles. Energies 2011, 4,
1840–1857. [CrossRef]

31. Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech
Signal Process. 1978, 26, 43–49. [CrossRef]

32. Keogh, E.J.; Pazzani, M.J. Derivative Dynamic Time Warping. In Proceedings of the 2001 SIAM International Conference on Data
Mining, Chicago, IL, USA, 5–7 April 2001.

33. Sundermeyer, M.; Schluter, R.; Ney, H. LSTM Neural Networks for Language Modeling. In Proceedings of the Thirteenth Annual
Conference of the International Speech COMMUNICATION association, Portland, OR, USA, 9–13 September 2012.

34. Sutskever, I.; Martens, J.; Hinton, G. Generating Text with Recurrent Neural Networks. In Proceedings of the 28th International
Conference on Machine Learning, Bellevue, WA, USA, 28 June–2 July 2011.

35. Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 31st
Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11 November 2016.

36. Cui, S.; Joe, I. Collision prediction for a low power wide area network using deep learning methods. J. Commun. Netw. 2020, 22,
205–214. [CrossRef]

37. Qin, Y.; Song, D.; Cheng, H.; Cheng, W.; Jiang, G.; Cottrell, G.W. A dual-stage attention-based recurrent neural network for
time series prediction. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne,
Australia, 19–25 August 2017.

38. Fan, C.; Zhang, Y.; Pan, Y.; Li, X.; Zhang, C.; Yuan, R.; Wu, D.; Wang, W.; Pei, J.; Huang, H. Multi-horizon time series forecasting
with temporal attention learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, New York, NY, USA, 25 July 2019.

39. Cui, S.; Joe, I. A Dynamic Spatial-Temporal Attention-Based GRU Model With Healthy Features for State-of-Health Estimation of
Lithium-Ion Batteries. IEEE Access 2021, 9, 27374–27388. [CrossRef]

40. Bertsch, C.; Neudorfer, J.; Ahle, E.; Armugham, S.; Ramachandran, K.; Thuy, A. FMI for Physical Models on Automotive
Embedded Targets. In Proceedings of the 11th International Modelica Conference, Versailles, France, 21–23 September 2015.
[CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2017.08.074
http://dx.doi.org/10.3390/wevj10010002
http://dx.doi.org/10.1016/j.energy.2019.02.034
http://dx.doi.org/10.3390/s20010252
http://www.ncbi.nlm.nih.gov/pubmed/31906287
http://dx.doi.org/10.1109/ITSC.2011.6082924
http://dx.doi.org/10.1016/j.aap.2015.01.009
http://dx.doi.org/10.1109/TITS.2015.2422778
http://dx.doi.org/10.3390/en12050946
http://dx.doi.org/10.1109/ACCESS.2019.2942213
http://dx.doi.org/10.1109/ACCESS.2017.2780258
http://dx.doi.org/10.3390/en11071820
http://dx.doi.org/10.1109/ACCESS.2019.2912803
http://dx.doi.org/10.1016/j.jpowsour.2018.06.104
http://dx.doi.org/10.1016/j.energy.2021.120116
http://dx.doi.org/10.3390/en4111840
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.1109/JCN.2020.000017
http://dx.doi.org/10.1109/ACCESS.2021.3058018
http://dx.doi.org/10.3384/ecp1511843

	Introduction
	Related Work
	Overall Procedure for Real Driving Cycle-Based SOC Estimation
	Methodology
	Dynamic Time Warping (DTW) for Similarity of Real Driving Cycles
	Deep Learning-Based SOC Prediction

	Experimental Results
	Speed/Acceleration Prediction
	Performance with Different Hyperparameters
	Performance with Different Models

	SOC Prediction Using FMI-Based EV Simulation

	Conclusions
	References

