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Abstract: This study proposes a grid-connected inverter for photovoltaic (PV)-powered electric
vehicle (EV) charging stations. The significant function of the proposed inverter is to enhance
the stability of a microgrid. The proposed inverter can stabilize its grid voltage and frequency by
supplying or absorbing active or reactive power to or from a microgrid using EVs and PV generation.
Moreover, the proposed inverter can automatically detect an abnormal condition of the grid, such
as a blackout, and operate in the islanding mode, which can provide continuous power to local
loads using EV vehicle-to-grid service and PV generation. These inverter functions can satisfy the
requirements of the grid codes, such as IEEE Standard 1547–2018 and UL 1741 SA. In addition, the
proposed inverter can not only enhance the microgrid stability but also charge EVs in an appropriate
mode according to the condition of the PV array and EVs. The proposed inverter was verified through
experimental results with four scenarios in a lab-scale testbed. These four scenarios include grid
normal conditions, grid voltage fluctuations, grid frequency fluctuations, and a power blackout. The
experimental results demonstrated that the proposed inverter could enhance the microgrid stability
against grid abnormal conditions, fluctuations of grid frequency and voltage, and charge EVs in an
appropriate mode.

Keywords: electric vehicle charging station; inverter; microgrid; photovoltaics; renewable energy
source; vehicle-to-grid

1. Introduction

Recently, renewable energy sources (RES), such as photovoltaic (PV) and wind turbine
generation (WTG), have been increasing in the grid to replace conventional synchronous
generators [1]. These RESs are connected to the grid through power converters such
as grid-connected inverters, which can weaken the microgrid by reducing the inertia of
the grid [2]. Because the weak grid has low inertia, it is difficult to cope with the grid
voltage and frequency fluctuations, leading to a deterioration of grid stability and power
quality [3–6]. Various grid codes, such as IEEE Standard 1547–2018 and UL 1741 SA,
were established to solve these problems [7,8]. These grid codes are guidelines for grid-
connected inverters to maintain grid stability. According to the IEEE Standard 1547–2018
requirements, grid-connected inverters should be able to maintain grid stability and power
quality by regulating the grid voltage and frequency through absorbing and supplying
active or reactive power to the grid. Moreover, the grid-connected inverter should be able
to detect abnormal conditions, such as a grid blackout, and operate in the islanding mode.

In addition to the increase in RESs, the penetration rate of electric vehicles (EVs) has
increased to replace conventional fossil fuel vehicles. Therefore, the EV charging stations
within the microgrid have also been increasing, as shown in Figure 1 [9–11]. Depending
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on the applications, each source and load can be connected to the microgrid through
single or multi-stage power converters [12–14]. If many EVs are charged simultaneously
from the microgrid, a power imbalance in the supply and demand may occur in the
microgrid [15–18]. This makes the microgrid weak, decreasing its stability [19]. Unstable
voltage and frequency in the microgrid can affect the power quality for charging EVs
and may reduce the lifetime of an EV battery. To enhance the stability of the microgrid
connected with an EV charging station, many studies [20–24] integrating PV generation
and a charging station to the microgrid have been conducted. In [20–22], the optimized
operation of grid-connected PV-based EV charging stations was studied. However, these
studies mainly analyzed the economic improvement of the operation of PV-powered EV
charging stations. In [23], it was proved that the grid stability could be improved through
the total harmonic distortion (THD) of voltages using PV-powered EV charging stations.
Moreover, researchers [24] studied that grid stabilization, including power gap balancing,
peak shaving, valley filling of generated power, and voltage sag compensation, can be
enhanced by utilizing PV-connected EV charging stations.
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Figure 1. Configuration of a microgrid.

Researchers [25,26] have also studied improving the microgrid stability in an EV
charging station by using a vehicle-to-grid service (V2G). A V2G is defined as providing
power and other necessary support from an EV to the grid [27–30]. Other researchers [25]
proved that EV charging stations could be used to compensate for instantaneous grid
voltage fluctuations and improve the power quality. In [26], a new control method was
proposed to compensate for the grid frequency by utilizing the EV charging station. These
studies proved that the deterioration of the grid stability could be mitigated using a V2G.
Nevertheless, these studies have not considered the compensation of voltage and frequency
fluctuations simultaneously. These studies are not enough to satisfy the requirements of
the grid codes, such as IEEE Standard 15247–2018 and UL 1741 SA. These studies have also
not considered an islanding mode for abnormal conditions of the grid, such as a blackout.

This study proposes a grid-connected inverter for PV-powered EV charging stations,
enhancing microgrid stability using a V2G and PV generation. When the microgrid voltage
and frequency fluctuate, the proposed inverter can stabilize the microgrid voltage and
frequency by supplying active or reactive power to the microgrid or absorbing it from the
microgrid. Moreover, the proposed inverter can automatically detect abnormal conditions
of the microgrid, such as a blackout, and operate in the islanding mode.

When the proposed inverter operates in the islanding mode, it is also possible to
continuously supply power to local loads. In addition, the proposed inverter can not
only enhance the stability of the microgrid but also charge EVs in the appropriate mode
according to the conditions of EVs and PV generation. The superiority of the proposed
inverter was verified and analyzed through experiments in a lab-scale testbed to mimic the
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operation of a PV-powered EV charging station in a microgrid. The main contributions of
this study can be summarized as follows:

(1) The proposed inverter can stabilize the microgrid voltage and frequency by supplying
active or reactive power to the microgrid or absorbing it from the microgrid by
using V2G and PV generation. These proposed inverter functions can satisfy the
requirements of the grid codes, such as IEEE Standard 1547–2018 and UL 1741 SA.

(2) The proposed inverter can automatically detect abnormal conditions of the microgrid,
such as a blackout, and operate in the islanding mode. At this time, it can provide
continuous power to local loads by using V2G and PV generation.

This paper is organized into the following five sections: Section 2 describes the
configuration of the PV-powered EV charging station. Section 3 introduces the control
method for the proposed inverter to improve microgrid stability. Section 4 presents the
experimental setup and results for validating the proposed inverter control method. Finally,
the conclusions are summarized in Section 5.

2. PV-Powered EV Charging Station Description

A PV-powered EV charging station charges EVs using PV generation as another
available power source, which can reduce carbon emissions from fossil-fueled power
plants. In other words, EVs can be charged using PV generation when the grid cannot
supply power. It can also reduce the peak load or improve the microgrid stability by using
PV generation and V2G [31]. However, EVs differ from an energy storage system because
of their mobility characteristics. For example, a V2G may not be performed if there are not
enough available EVs in the charging station, although a V2G is required to reduce the
peak power demand or improve the stability of the microgrid. Therefore, it is crucial to
consider these characteristics of a PV-powered EV charging station to use it as a stability
enhancement method for the microgrid.

Figure 2 shows the configuration of the PV-powered EV charging station [32]. The PV-
powered EV charging station consists of PV arrays, DC/DC converters, EVs, bidirectional
EV chargers, and bidirectional inverters. The charging station is connected to the microgrid
through the bidirectional inverter. The bidirectional inverter controls power flow between
the charging station and the grid. The local load is connected in parallel between the
bidirectional inverter and the microgrid. The PV array generates power for charging EVs or
supplying the grid and local loads. A DC/DC converter is used to harvest maximum power
from a PV array by performing maximum power point tracking (MPPT). The bidirectional
EV charger is used to control the charge and discharge of EVs. The bidirectional inverter
and the bidirectional EV charger enable a V2G between EVs and the microgrid.

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 16 
 

 
Figure 2. Structure of the investigated PV-powered EV charging station. 

3. The Proposed Grid-Connected Inverter 
Figure 3 shows the operational strategy flowchart of the proposed grid-connected 

inverter. The significant function of the proposed inverter is to enhance the microgrid sta-
bility. In this study, the microgrid stability is defined as the grid voltage stability, the grid 
frequency stability, and the grid stability from grid abnormal conditions. In addition, the 
microgrid in this study is considered a weak grid, because it is usually connected with 
various renewable energy sources (RES) and loads. In a weak grid, the grid voltage can 
be regulated by active power, and the grid frequency can be controlled by reactive power. 
Therefore, when the microgrid voltage fluctuations occur, the proposed inverter can sta-
bilize the microgrid voltage by supplying or absorbing active power to the microgrid by 
using V2G and PV generation. In addition, when the microgrid frequency varies, the pro-
posed inverter can also stabilize the microgrid frequency by supplying or absorbing reac-
tive power to the microgrid. 

The grid abnormal conditions considered in this study are grid blackout events, 
which can be judged through an islanding detection condition. The islanding detection 
condition occurs when power in the microgrid is totally cut off from the utility grid. There-
fore, when power is absolutely cut off from the utility grid, the proposed inverter can 
stabilize the microgrid by operating in the islanding mode and continuously providing 
power to the local loads using V2G and PV generation. The islanding detection condition 
in the microgrid is distinguished from other events such as temporary faults because it 
occurs only when power is completely cut off from the utility grid. The islanding detection 
condition can be varied by the grid codes such as IEEE Standard 1547–2018 and UL 1741 
SA. 

According to the proposed operational strategy, the proposed inverter determines 
the appropriate mode for charging EVs according to EVs and PV generation conditions. 
The operation modes according to the operational strategy are shown in Figure 4. In Fig-
ure 4, red arrows represent the direction of power flow among the PV array, EVs, and the 
grid. For example, the bidirectional inverter in Figure 4b can achieve bidirectional power 
flow, which is caused by the voltage and frequency compensation modes. First, the pro-
posed inverter begins receiving data from the grid, EVs, and the PV array. Then, the in-
verter detects whether EVs are available in the EV charging station to enhance microgrid 
stability. If EVs are not available, the inverter operates in mode one. In mode one, the 
inverter supplies the power generated from the PV array to the grid and the local load, as 
shown in Figure 4c. If EVs are available, the inverter judges whether the islanding detec-

Figure 2. Structure of the investigated PV-powered EV charging station.



Sustainability 2021, 13, 14022 4 of 16

3. The Proposed Grid-Connected Inverter

Figure 3 shows the operational strategy flowchart of the proposed grid-connected
inverter. The significant function of the proposed inverter is to enhance the microgrid
stability. In this study, the microgrid stability is defined as the grid voltage stability, the
grid frequency stability, and the grid stability from grid abnormal conditions. In addition,
the microgrid in this study is considered a weak grid, because it is usually connected
with various renewable energy sources (RES) and loads. In a weak grid, the grid voltage
can be regulated by active power, and the grid frequency can be controlled by reactive
power. Therefore, when the microgrid voltage fluctuations occur, the proposed inverter can
stabilize the microgrid voltage by supplying or absorbing active power to the microgrid
by using V2G and PV generation. In addition, when the microgrid frequency varies, the
proposed inverter can also stabilize the microgrid frequency by supplying or absorbing
reactive power to the microgrid.
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The grid abnormal conditions considered in this study are grid blackout events, which
can be judged through an islanding detection condition. The islanding detection condition
occurs when power in the microgrid is totally cut off from the utility grid. Therefore,
when power is absolutely cut off from the utility grid, the proposed inverter can stabilize
the microgrid by operating in the islanding mode and continuously providing power to
the local loads using V2G and PV generation. The islanding detection condition in the
microgrid is distinguished from other events such as temporary faults because it occurs only
when power is completely cut off from the utility grid. The islanding detection condition
can be varied by the grid codes such as IEEE Standard 1547–2018 and UL 1741 SA.

According to the proposed operational strategy, the proposed inverter determines the
appropriate mode for charging EVs according to EVs and PV generation conditions. The
operation modes according to the operational strategy are shown in Figure 4. In Figure 4,
red arrows represent the direction of power flow among the PV array, EVs, and the grid.
For example, the bidirectional inverter in Figure 4b can achieve bidirectional power flow,
which is caused by the voltage and frequency compensation modes. First, the proposed
inverter begins receiving data from the grid, EVs, and the PV array. Then, the inverter
detects whether EVs are available in the EV charging station to enhance microgrid stability.
If EVs are not available, the inverter operates in mode one. In mode one, the inverter
supplies the power generated from the PV array to the grid and the local load, as shown
in Figure 4c. If EVs are available, the inverter judges whether the islanding detection
condition occurs in the microgrid. If the islanding detection condition exists, the inverter is
disconnected from the grid and operates in the islanding mode, as shown in Figure 4a. At
this time, the inverter can provide continuous power to local loads using EVs and the PV
array in the islanding mode.
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If the islanding detection condition is not occurring in the microgrid, the proposed
inverter is connected to the grid and operates in the grid-connected mode. In the grid-
connected mode, the inverter detects the voltage and frequency of the microgrid. At this
time, if the grid voltage or frequency fluctuation exists, the inverter operates in the voltage
compensation mode or the frequency compensation mode, as shown in Figure 4b. In these
modes, the inverter stabilizes the microgrid voltage and frequency using a V2G and PV
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generation. If the grid voltage fluctuation exists, the proposed inverter operates in the
voltage compensation mode for reducing the grid voltage fluctuation. On the other hand, if
the grid voltage fluctuation does not exist, the proposed inverter detects the grid frequency
condition. If the grid frequency fluctuation exists, the proposed inverter operates in the
frequency compensation mode for reducing the grid frequency fluctuation. If the grid
voltage or frequency fluctuation does not exist in the grid-connected mode, the proposed
inverter monitors the condition of EVs and the PV array for charging EVs in the appropriate
mode. The proposed inverter detects whether EVs need charging and whether a PV array
generates power. If EVs need charging and a PV array does not generate power, the
proposed inverter operates in mode two, as shown in Figure 4d. In mode two, EVs are
charged only from the grid. If EVs need charging and a PV array generates power, the
proposed inverter detects whether the energy of the PV array (EPV) is greater than the
energy required for charging EVs (EEV). If EPV is greater than EEV, the inverter operates
in mode three, as shown in Figure 4e. In mode three, EVs are charged only from the PV
array, and the proposed inverter supplies the surplus EPV to the grid. If EPV is less than
EEV, the proposed inverter operates in mode four, as shown in Figure 4f. In mode four, EVs
are charged from the PV array and the grid. If EVs do not need charging, the proposed
inverter operates in mode one.

3.1. Grid-Connected Mode

The proposed inverter generally operates in the grid-connected mode because the
islanding detection condition does not often occur. Thus, to realize the operating strategy
of the proposed inverter in the grid-connected mode, the following three control schemes
are introduced: main control scheme, voltage compensation control scheme, and frequency
compensation control scheme.

3.1.1. Main Control Scheme

Figures 5 and 6a show the circuit and main control scheme of the proposed inverter.
As shown in Figure 5, the proposed inverter includes four metal-oxide-semiconductor
field-effect transistors (i.e., MOSFETs) with body diodes (i.e., Q1, Q2, Q3, and Q4), two
inductors (i.e., L1 and L2), and a capacitor (i.e., C1) and zg (i.e., the line impedance of the
grid). Q1, Q2, Q3, and Q4 are controlled by the gate control signals (i.e., g1, g2, g3, and
g4). L1, L2, and C1 consist of an LCL filter for suppressing the harmonic of the proposed
inverter output. The synchronous reference frame phase-locked loop (SRF-PLL) is used to
synchronize the proposed inverter with the grid to achieve grid synchronization. Based
on the SRF-PLL, the grid information, such as amplitude, frequency, and phase, can be
determined. The closed-loop transfer function of the SRF-PLL is obtained as follows [33]:

G(s) =
kp · s + ki

s2 + kp · s + ki
, (1)

kp= 2 · ζ · ωn, (2)

kp = ωn
2 (3)

where ζ donates the damping factor, and ωn donates the natural frequency.
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Then, the output of the SRF-PLL (ωgrid and θgrid) is used for the second-order gen-
eralized integrator phase-locked loop (SOGI-PLL) [34]. The SOGI-PLL is used to create
two-phase orthogonal components in the α–β stationary reference frame for power calcula-
tions.

The grid voltage (vgrid), inverter output voltage (vinv), and current (iinv) are selected as
the α-axis components of the fictitious two-phase system in α–β stationary reference frame
as follows:

vα = vgrid, vβ = vgrid < 90◦

iα = igrid, iβ = igrid < 90◦
, (4)
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where vα and iα are the α-axis voltage and current, respectively, and vβ and iβ are the β-axis
voltage and current, respectively.

The closed-loop transfer functions (Hd(s) and Hq(s)) of the SOGI-PLL are determined
as follows [35]:

Hd(s) = kωs
s2+kωs+ω2

Hq(s) = kω2

s2+kωs+ω2
, (5)

where k affects the bandwidth of the closed-loop system, and ω donates the grid frequency.
The inverter currents (iinv_d and iinv_q) are transformed by the Park transformation to

synchronize the proposed inverter with the grid, as follows:[
iinv_d
iinv_q

]
=

[
cos θgrid sin θgrid
−sin θgrid cos θgrid

][
iinv_α

iinv_β

]
, (6)

where θgrid is the grid phase, and iinv_d and iinv_q are compared with the inverter reference
current values (iref_d and iref_q). The errors are used to calculate the reference voltage (vref_d
and vref_q) by the proportional–integral (PI) controller. The duty cycle of the proposed
inverter can be determined by vref_d and vref_q using the inverse Park transformation as
follows: [

vα

vβ

]
=

[
cos θgrid −sin θgrid
sin θgrid cos θgrid

][
vre f _d
vre f _q

]
. (7)

3.1.2. Voltage Compensation Control Scheme

The voltage compensation control scheme is used in the proposed inverter to reduce
the voltage fluctuation, as shown in Figure 6b. The output voltage of the proposed in-
verter (vinv) is controlled by comparing the inverter reference voltage (vinv_ref). iref_q can be
determined by a PI controller. After calculating iref_q, the voltage compensation scheme
uses the same control scheme as the proposed grid-connected inverter control scheme for
controlling the proposed inverter. Therefore, the inverter can reduce the fluctuation of the
grid voltage.

3.1.3. Frequency Compensation Control Scheme

The frequency compensation control scheme is used in the proposed inverter to
reduce frequency fluctuation, as shown in Figure 6c. The output frequency of the proposed
inverter (finv) is controlled by comparing the inverter reference frequency (finv_ref). iref_d
can be determined by a PI controller. After calculating iref_d, the frequency compensation
scheme uses the same control scheme as the proposed grid-connected inverter control
scheme for controlling the proposed inverter. Therefore, the proposed inverter can reduce
the fluctuation of the grid frequency.

3.2. Islanding Mode

When an islanding detection condition occurs in the microgrid, the proposed inverter
can automatically detect the condition and operate in the islanding mode. The proposed
inverter can provide continuous power to local loads under the same frequency and voltage
level in the islanding mode. Figure 6d shows the islanding mode control scheme.

Due to islanding from the grid, the grid information, such as phase, frequency, and
amplitude, cannot be detected. Thus, ωgrid and θgrid are equal to zero, which means the
SRF-PLL can be removed. Otherwise, the SOGI-PLL, α–β to d–q transformation, and
d–q to α–β transformation use the inverter frequency and phase (ωinv and θinv = 0). The
operation of the islanding mode control scheme is the same as the grid-connected mode.
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4. Experimental Setup and Results
4.1. Setup

The lab-scale testbed for a PV-powered EV charging station was fabricated to verify the
superiority and feasibility of the proposed inverter, as shown in Figure 7. Figure 2 shows
the connection of all microgrid components. The circuit diagram of the proposed inverter
circuit is depicted in Figure 5. The parameters and components of the proposed grid-
connected inverter and equipment in the experiments are listed in Table 1. The proposed
grid-connected inverter, which determines the appropriate operation mode based on the
designed operating strategy, is located between the lab-scale testbed and the grid simulator.
A PV simulator (i.e., TerraSAS ETS80) imitates the actual PV array characteristics. A PV
array consists of two series-connected PV modules (i.e., NE180TU-21PS6). The output
of the PV simulator is connected to a DC/DC converter, which performs MPPT using
perturbation and an observation algorithm [36]. The PV simulator can supply power to a
battery or the grid simulator through the DC/DC converter. The battery is used to imitate
an EV battery, and the bidirectional charger is used to mimic an EV charger. The battery
can be charged and discharged through the bidirectional charger. The grid simulator (i.e.,
CHROMA 61830) is used to imitate the grid, and the AC load (i.e., CHROMA 63803) is used
to imitate a local load. The voltage and frequency of the grid simulator can be changed,
and the connection can also be disconnected.
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Table 1. Parameters and components of the proposed grid-connected inverter and equipment in the
experiments.

Parameters, Components, and Equipment Value Unit

Nominal input voltage Vin 380 V
Nominal output voltage vinv 220 Vrms

Nominal output frequency finv 60 Hz
Nominal output active power Pinv 600 W

Switching frequency fs 20 kHz
Filter inductance L1, L2 625 µH

Filter capacitance C1 10 µF
MOSFET Q1, Q2, Q3, Q4 IPW60R037P7

Microcontroller unit TMS320F28335
PV simulator TerraSAS ETS80

Grid simulator CHROMA 61830
AC load CHROMA 63803

Oscilloscope Wavesurfer 3024
Power analyzer WT1806E
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4.2. Results

The operation modes according to the operating strategy of the proposed inverter
were verified based on four scenarios: grid normal conditions, grid voltage fluctuations,
grid frequency fluctuations, and a blackout. Scenario 1 was used to analyze the operations
mode one, mode two, mode three, and mode four under grid normal conditions. Scenarios
2 and 3 were used to analyze the voltage compensation and frequency compensation
modes under grid voltage and frequency fluctuations. Scenario 4 was used to analyze the
islanding mode under a blackout.

4.2.1. Scenario 1: Grid Normal Conditions

Figure 8 shows the waveforms of the PV array output current (IPV), the battery output
current (Ibat), vinv, and iinv in mode one, mode two, mode three, and mode four. In mode
one, the inverter supplies power generated from the PV array to the grid and the local load.
As shown in Figure 8a, IPV is positive, Ibat is zero, and vinv and iinv are in phase, which
means that the PV array supplies power to the grid. In mode two, EVs are charged only
from the grid. As shown in Figure 8b, IPV is zero, Ibat is negative, and vinv and iinv are out
of phase, which means that the grid supplies power to the EVs. In mode three, EVs are
charged only from the PV array, and the inverter supplies the surplus EPV to the grid. As
shown in Figure 8c, IPV is positive, Ibat is negative, and vinv and iinv are in phase, which
means the PV array supplies power to the EVs and the grid. In mode four, EVs are charged
from the PV array and the grid. As shown in Figure 8d, IPV is positive, Ibat is negative, and
vinv and iinv are out of phase, which means that the PV array and the grid supply power to
the EVs. These results prove that the proposed inverter operates in an appropriate mode
according to the condition of the EVs and the PV array under grid normal conditions.

4.2.2. Scenario 2: Grid Voltage Fluctuations

Figures 9 and 10 show the waveform of vinv and the relationship between the grid
fluctuation voltage and the inverter output active power (Pinv) in the voltage compensation
mode. The power analyzer measured all the waveforms and data (i.e., WT1806E). As shown
in Figure 9a, when the grid voltage increases to 223 V, the proposed inverter operates in
the voltage compensation mode and regulates the grid voltage to 220 V in 1.72 s. As shown
in Figure 9b, when the grid voltage decreases to 217 V, the proposed inverter also operates
in the voltage compensation mode and regulates the grid voltage to 220 V in 2.16 s. These
results prove that the proposed inverter can stabilize the grid voltage by reducing the
voltage fluctuation using the voltage compensation mode. In addition, Figure 10 shows
that the proposed inverter regulates the grid voltage by supplying or absorbing active
power to the microgrid by using V2G and PV generation in a weak grid. This means that
the proposed inverter can satisfy the requirements of the grid codes, such as IEEE standard
1547–2018, for the stability of the grid.

4.2.3. Scenario 3: Grid Frequency Fluctuations

Figures 11 and 12 show the waveform of finv and the relationship between the grid
fluctuation frequency and the inverter output reactive power in the frequency compensa-
tion mode. All the waveforms and data are measured from the power analyzer. As shown
in Figure 11a, when the grid frequency increases to 62 Hz, the proposed inverter operates
in the frequency compensation mode and regulates the grid frequency to 60 Hz in 3.49 s.
As shown in Figure 11b, when the grid frequency decreases to 58 Hz, the proposed inverter
also operates in the frequency compensation mode and regulates the grid frequency to
60 Hz in 3.69 s. These results prove that the proposed inverter stabilizes the grid frequency
by reducing the frequency fluctuation using the frequency compensation mode. In addition,
Figure 12 shows that the proposed inverter regulates the grid frequency by supplying or
absorbing reactive power to the microgrid by using a V2G and PV generation in a weak
grid. This means that the proposed inverter can satisfy the requirements of the grid codes,
such as IEEE standard 1547–2018, according to the grid stability.
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4.2.4. Scenario 4: Blackout

Figure 13 shows the waveforms of Vinv, Iinv, and Pinv in the islanding mode. The
proposed inverter automatically detects a grid blackout event and operates in the islanding
mode when a grid blackout occurs. Moreover, the inverter can provide continuous power
to local loads using the PV array and the EV battery. It takes 1.86 s for the inverter to
re-energize the local load after the blackout, as shown in Figure 13. This result proves that
the proposed inverter can stabilize the microgrid by detecting the grid blackout event and
supplying power to the local load using the islanding mode. In addition, this result means
that the proposed inverter can satisfy the requirements of the grid codes, such as IEEE
standard 1547–2018, about the abnormal conditions of the grid.
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4.3. Comparative Study

The functions for enhancing the grid stability of the proposed inverter and a relevant
study in [25] are compared in Table 2. The authors in [25] only considered the grid voltage
stabilization. They did not consider the stabilization of the grid frequency, detection for the
grid abnormal conditions, and operation in an islanding mode. However, the proposed
inverter in this study can improve the microgrid stability of the grid voltage and frequency.
Moreover, it can detect the grid abnormal conditions and operate in the islanding mode.
These functions of the proposed inverter in this study comply with the grid codes, such as
IEEE standard 1547–2018.

Table 2. Comparative study.

Function Proposed Inverter Ref. [25]

Grid voltage stabilization Yes Yes
Grid frequency stabilization Yes No

Grid abnormal conditions detection and
islanding mode operation Yes No

IEEE standard 1547–2018 compliance Yes No

5. Conclusions

This paper proposed a grid-connected inverter for PV-powered EV charging stations
to enhance microgrid stability. The proposed inverter can operate in the voltage com-
pensation mode and the frequency compensation mode to enhance microgrid stability. If
the microgrid voltage and frequency fluctuate, these operation modes can stabilize the
microgrid voltage and frequency by supplying or absorbing active or reactive power to
or from a microgrid using EVs and PV generation. Moreover, the proposed inverter can
automatically detect the abnormal conditions of the microgrid, such as a blackout, and
operate in the islanding mode. It is also possible to continuously supply power to local
loads using a V2G and PV generation in the islanding mode. In addition, the proposed
inverter can not only enhance the stability of the microgrid but also charge EVs in the
appropriate mode according to the conditions of the EVs and PV generation.

The lab-scale testbed of the PV-powered EV charging station was built to verify the
superiority and feasibility of the proposed inverter. The proposed inverter was verified in
the lab-scale testbed with four scenarios, including grid normal conditions, grid voltage
fluctuations, grid frequency fluctuations, and a blackout. The experiment results demon-
strated that the proposed inverter satisfies the requirements of the grid codes, such as IEEE
standard 1547–2018. In addition, it was proved that the proposed inverter can operate in
an appropriate mode for charging EVs according to the conditions of the PV array and EVs.
Therefore, by applying the proposed inverter to an EV charging station, it will be possible
to charge EVs using PV generation and improve the microgrid stability.
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