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Abstract: The prediction of settlement during tunneling presents multiple challenges, as such
settlement is governed by not only the local geology but also construction methods and practices,
such as tunnel boring machine (TBM). To avoid undesirable settlement, engineers must predict the
settlement under given conditions. The widely used methods are analytical solutions, empirical
solutions, and numerical solutions. Analytical or empirical solutions, however, have limitations,
which cannot incorporate the major causes of subsidence, such as unexpected geological conditions
and TBM operational issues, among which cutterhead pressure and thrust force-related factors are
the most influential. In settlement prediction, to utilize the machine data of TBM, two phases of long
short-term memory (LSTM) models are devised. The first LSTM model is designed to capture the
features affecting surface settlement. The second model is for the prediction of subsidence against
the extracted features. One thing to note is that predicted subsidence is the evolution of settlement
along TBM drive rather than its maximum value. The proposed deep-learning models are capable of
predicting the subsidence of training and test sets with excellent accuracy, anticipating that it could
be an effective tool for real-world tunneling and other underground construction projects.

Keywords: tunnel boring machine (TBM) operation; TBM induced ground settlement; deep learning;
long short-term memory (LSTM); machine data

1. Introduction

Underground construction using Tunnel Boring Machines (TBMs) is rapidly increasing
to meet demands for new roads, railways, and electrical and telecommunication infras-
tructure associated with rapid urbanization. The TBM method offers several advantages,
such as closed-mode operations, over other traditional approaches in terms of the safety
measures involved in applying face-support pressures and the instant support provided by
concrete linings, which mitigate the risks posed by the high groundwater pressure under
water table.

Mixed-face ground conditions during TBM driving pose the most challenging risks.
The soft soil at the top of the face and the hard rock at the bottom makes it difficult
to maintain a proper face-support pressure and face stability, and increases the risk of
excessive cutter wear, face collapse, sinkholes, or damage to surrounding structures [1]. To
avoid undesirable settlement and provide appropriate safety measures, engineers must
reliably predict the amount of settlement under given ground conditions. The most widely
accepted analytic solution, proposed by Peck [2], is based on measurements from various
projects and has been modified to apply to TBM excavations in geologically mixed-face
conditions for metropolitan projects in the congested urban area [3].

However, an analytic solution has its own limitations, as it may not be able to incor-
porate the important causes of subsidence, such as unexpected geological conditions and
subsequent ground deformation, over-excavation, untreated tail voids, curvature with
a short radius, and TBM operational issues, including chamber pressure, penetration or
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advance rate, muck volume, torque, and thrust force. Cutterhead face pressure and thrust
force related factors are most influential among these issues [4].

The project, in this study, involves a mixed-face condition of alluvial and weathered
soil, weathered rock, and soft rock from the top to the bottom of the tunnel face throughout
the length of a tunnel. A previous study found that machine learning with geological
information without TBM data generated poor settlement estimates [5]. We hypothesized
that the correlation of key parameters, such as thrust force and advance rate, with respect
to the amount of settlement would lead to an improved theoretical framework, as we
analyzed more TBM data.

In this paper, a series of LSTM models are adopted, where the first LSTM model
extracted hidden features that could affect ground movement/subsidence, and the second
LSTM model was trained for the prediction of the subsidence against the hidden features
obtained from the earlier model. 10,660,000 TBM measurements and settlement data from
48 settlement markers were collected and fed into a long short-term memory (LSTM) model.
After several weeks of training and testing, the LSTM models demonstrated excellent
performance of subsidence prediction for both the training and test cases, indicating
significant advances in the reliable prediction of subsidence against pure machine data.

2. Literature Review

Analytical, empirical, and numerical methods have been widely used to estimate the
amount of settlement caused by tunnel excavations. Peck [2] proposed a very well-known
empirical solution using an inverted Gaussian distribution curve, as shown in Figure 1.
Several variations of the empirical solution have been applied [6,7]. Although empirical
solutions are easy to apply, they can only accommodate a handful of factors out of the
various factors shown in Figure 2, and often exclude various temporally and spatially
relevant factors, such as localized geological structures and an advance rate [8,9].
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Analytical solutions based on soil and rock mechanics, which are also easy to apply
and enjoy a comparable academic foundation, also suffer from similar limitations. Nu-
merical methods offer advantages over other empirical or analytical methods to build
models that accommodate the constitutive equations, geological layers, localized geolog-
ical structures, and construction sequences. However, they require the elaboration of
time-consuming models in addition to the uncertainty of geotechnical properties [10]. To
tackle these issues and to resolve the non-linear relationship between ground reactions
and subsidence, the various AI models and machine-learning (ML) approaches have been
applied using data from the sensors of a TBM [5,11–13] as summarized in Table 1.
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Table 1. AI models for predicting surface settlement induced by tunneling.

AI Model Researcher Theme Year

PCA/ANFIS Bouayad, D; Emeriault, F. [12]
Ground surface

settlements induced
by shield tunneling

2017

Evolutionary Hybrid
Neural Network

Zhang, K.; Lyu, H. M.; Shen, S. L.;
Zhou, A.; Yin, Z. Y. [5]

Predicting shield
tunneling induced
ground settlement

2020

Machine Learning Chen, R.; Zhang, P.; Wu, H.; Wang,
Z.; Zang, Z. [13]

Predicting shield
tunneling induced
ground settlement

2019

ANN (Artificial
Neural Network)

Kim, C.; Bae, G.; Hong, C.; Park, S.;
Shin, H. [14]

Prediction of ground
surface settlement
due to tunneling

2001

Suwansawat, S.;Einstein, H. [15]
Prediction the max.
surface settlement

caused by EPB Shield
2006

PSO-ANN
Hasanipanah, M.; Nooria-Bidgoli,

M.; Jahed Armaghani, D.;
Khamesi, H. [16]

Predicting surface
settlement caused by

tunneling
2016

SVM (Support Vector
Machine) Samui, P. Sitharam, T. [17]

Settlement of shallow
foundation on

cohesionless soil
2008

Machine-learning algorithms have become increasingly popular with the advent of
deep-learning (DL) algorithms. Many attempts to apply ML to geotechnical problems
were made even before the advent of DL. Examples include artificial neural networks
(ANNs) [14,15,18], adaptive neuro fuzzy-based inference (ANFIS) [12], decision trees
(DT) [19], back-propagation neural networks (BPNNs) [15,20,21], support vector minimiza-
tion (SVM) [17], and gated recurrent units (GRU) [22].

To estimate subsidence, Samui and Sitharam adopted a hybrid approach using an
ANN model reinforced by a differential evolutionary algorithm [17]. Similarly, Kim and Lee
adopted ANN for the assessment of risks of abandoned mine subsidence [23]. Chen et al.
and Zhang et al. applied various ML and DL algorithms, including a BPNN, wavelet neural
network (WNN), logistic regression, extreme learning machine (ELM), SVM, and random
forests (RF) to estimate the maximum subsidence due to tunnel excavation, however,
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the estimation of maximum settlement with AI is hardly more valuable than analytical,
empirical or numerical methods [13].

Some of the common problems of small datasets are over-fitting and the poor perfor-
mance of models when it comes to applying them to real world problems, as the model is
trained on a subset of real-world conditions. The simple comparison of various methods
does not always provide much value, as each method requires extensive effort, skill, and
expertise for the best performance.

One of the advantages of using the DL, such as LSTM, is self-feature analysis; provided
the volume of the data is sufficiently large and the model is deep enough, then denoise
steps can be omitted without affecting the model’s performance. On the other hand, if the
data is pre-processed too small, because of difficulty of handling a large dataset, and its
features were selected by the engineer, then the chances of overfitting and degradation of
model performance increase.

3. Description of Project and EPB (Earth Pressure Balance) TBM Driving
3.1. TBM Driving

The EPB- (Earth Pressure Balance) type TBM data were obtained from a metropolitan
project in downtown Seoul. The tunnel is 1600 m long and consisted of two stations and
seven ventilation shafts. The lengths of alignment for the lot were 370 m and 373 m for
the northern and southern tunnels, respectively, and a total of 498 segment rings were
installed. One EPB TBM was used for both single-track twin tunnels, for a total excavation
length of 743 m. The tunnel was relatively shallow, at approximately 12 to 15 m, and the
ground at the departure zone was composed of a mix of weathered rock and soft rock,
while the ground at the arrival zone consisted of alluvial soil. The groundwater level
was approximately 7 to 8 m below the surface and 3 to 4 m above the tunnel crown. To
monitor the amount of settlement during EPB TBM excavation, 48 settlement markers were
installed along the alignment. Table 2 provides the dimensions and specifications of the
EPB TBM used in the project.

Table 2. EPB TBM details.

Item Description

Type Earth pressure balance
Supplier Herrenknecht (Germany)
OD/ID 7.71 m/7.69 m

Thrust force 1154 kN/m2/53,878 kN
Cutter head Dome type, 17-inch cutter, scraper

Torque 10,364–6500 kN-m (α = 22~25)
RPM 3.4 RPM, electric motor type

Segment RC-segment, L1, 500 mm + t300 mm, 7 pieces
Muck handling Muck car + vertical conveyor belt, belt scale

Grouting Upper Section 4 EA, probe drilling (22 holes)

3.2. Geological Site Conditions

Table 3 summarizes the typical geological condition along the alignment of the tunnel.
Figure 3 depicts the geological layout of the alignment. At tunnel depth, the construction
site’s geology is a mixed face condition, consisting of alluvial gravel at the crown, weathered
rock at the middle, and soft to hard rock at the bottom of the tunnel face. This mixed-face
condition is unfavorable in terms of face stability, and the risk of settlement was high due
to the potential for over-excavation at the crown, whereas the bottom section retarded the
advance of the TBM.
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Table 3. Geological site conditions.

Item Characteristics of Rock Type

Residual soil Sandy gravel, N: 3~50, max size: ϕ500 mm
Weathered rock Silty core, Cohesion: 31 kPa, ϕ = 32◦

Soft rock Gneiss, RMR: 30~50
Water Level Approx. GL-7 m
Unit weight 20–21 kN/m2

UCS 20–110 MPa
Permeability 2.5 × 10−3~2.5 × 10−5 cm/s
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3.3. Occurrence of Subsidence

Figure 4 provides the layout of the 48 settlement markers along the alignment. As
the tunnel was a single-track twin tunnel, the TBM departed from the launching shaft and
reached the arrival shaft along the southern tunnel and then returned to the launching
shaft along the northern tunnel. As the TBM head approached, some markers within
the influence zone began to record the initiation of movement, as shown in Figure 2.
As the TBM head passed through, the settlement rate peaked and then converged onto
long-term settlement.
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Figure 5 depicts the monitored settlements from the markers installed along the
southern tunnel. Marker #2 recorded the earliest occurrence of settlement. The usual trend
of settlement consists of an initial heaving followed by a maximum settlement rate within
a short time and then gradual convergence on a final value, as shown in markers #2, #7,
and #19.
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Figure 6 depicts the monitored settlements from the markers installed along the
northern tunnel. Markers #1 and #5 recorded the earliest occurrences of settlement. Unlike
the trends associated with the markers along the southern tunnel, the northern tunnel
showed a long lead between the initial movement and the highest rate of settlement,
because the settlements monitored along the southern tunnel were influenced by the
tunnel driving along the southern tunnel excavation, with the TBM head returning to the
launching shaft after a round trip from the launching shaft.
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4. LSTM Networks

The LSTM network, which was proposed by Hochreiter and Schmidhuber (1997), is a
special variant of a recurrent neural network (RNN), in which the connections between
nodes from a directed graph are depicted along a temporal sequence. Any RNN and its
variants have a trained form consisting of repetitive units, as shown in Figure 7. In tradi-
tional RNNs, the repetitive unit alone has a simple structure, such as a tanh layer. When
dealing with long-term dependency problems, a traditional RNN involves multiple matrix
multiplications, which can lead to exploding and/or vanishing gradient problems. To solve
such problems, many RNN variants have been developed, such as the echo state network,
the gated recurrent unit, and LSTM. Among these variants, LSTM is the most popular as it
has the proven capability of solving exploding and vanishing gradient problems.
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As an RNN variant, LSTM is connected by repetitive units. However, unlike a tradi-
tional RNN, the repetitive units of LSTM are composed of a cell state, an input gate, an
output gate, and a forget gate (Figure 8). The cell remembers values over arbitrary time
intervals, while the three gates regulate the flow of information into and out of the cell.
In the typical LSTM unit depicted in Figure 8, the blue circle represents the network’s
input, the yellow boxes represent the learned neural network layers, and the orange shapes
represent element-wise operations, such as addition.
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The key to LSTM is the cell state (Ct); when it runs straight down the entire chain,
only minor interactions occur. Information can easily and simply flow along the chain
unaffected and maintain its integrity. The merging arrows represent vector concatenation,
while the forking arrows represent vector duplication. The gates in LSTM models are
designed to remove or add information to the cell state. They are composed of a sigmoid
layer and multiplication operations. The sigmoid layer output is a value between zero and
one, which indicates the weight of information flow. An LSTM model achieves control
and protection of the cell state through these three gates. The forget gate decides what
information will be disposed of from the cell state. This transfer can be defined as:

ft = σ (Wf · [ht−1, xt] + bf) (1)

where σ is the sigmoid activation function, Wf is the weight of the connections between
neurons, ht−1 is the output of the last neuron, xt is the input of the current neuron, and bf
is the bias of the neuron. The forget gate determines the effect of the input on the current
cell state, as well as the preservation and discarding of the previous cell state. The input
gate determines how much new information will be stored in the current cell state. This
transfer can be defined as:

it = σ(Wi · [ht−1, xt] + bi) (2)

C~
t = tanh(WC · [ht−1, xC] + bC) (3)

where tanh is the activation function, and bi and bC are the biases of the neural network.
The sigmoid layer decides which value will be updated, while the tanh layer creates a
new vector C~, which can be added to the cell state. After completing the above steps, the
updated cell state can be defined as:

Ct = ft ∗ Ct−1 + it ∗ C~
t (4)

where ∗ is an element-wise production operation. In the updating procedure of the cell’s
state, the old cell state Ct−1 is multiplied by ft to forget some information, and the new
candidate value it ∗ Ct from the input gate is then added. After the cell state has been
updated, the output gate will output the current cell state. This transfer can be defined as:

ot = σ (Wo · [ht−1, xt] + bo) (5)

ht = Ot ∗ tanh(Ct) (6)

In summary, the above three gates are composed of sigmoid and tanh neural network
layers, which help in selecting effective information.
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5. Training Model and Prediction for Subsidence
5.1. Challenges

The training of machine data and subsidence measurements are carried out in two
phases. The first phase trains the machine data and generates input for the second phase.
The subsequent phase trains the input from Phase One, which is the weight of the hidden
layer of Phase One neural network model, and eventually predicts subsidence.

The machine data from various TBM sensors consisted of more than 700 items. The
followings were chosen to serve as the input for Phase One training. Penetration is a
key parameter for training as the sequence is organized in such a way that the rest of the
parameters support the penetration prediction. The input sequence was a series of chosen
records: penetration, chainage, thrust cylinder, torque of cutting wheel, current pressure of
real lance one, pressure of excavation chamber one, rotation speed of screw conveyor drive,
calculated excavated material depending on advance one, the actual quantity of excavated
material belt scale one, and stroke-thrust cylinder.

Machine data were recorded every 10 s over a span of several years while TBM was
driving. The amount of machine data from a TBM can be overwhelming, as a human
cannot review and interpret it all to derive tangible outcomes, such as the potential risk of
subsidence around a job site.

The diversity of methods of operating the machine and the resulting range in con-
struction quality make the problem more complicated. For example, it is relatively easy to
infer that subsidence will be correlated with the number of rings installed. However, it is
difficult to estimate how closely subsidence will correlate with the skill and experience of a
TBM operator. While face pressure should be well managed and controlled, because the
balance of the volume of excavation and spoil must be cross-checked repeatedly, it is not so
easy in practice to simultaneously supervise all critical elements.

Machine learning in Phase One is an attempt by artificial intelligence to overlook the
TBM’s entire advance, and capture the features that may be related to adversarial events.
Penetration, revolutions per minute, and chainage may indicate the location and speed of
the excavation, chamber pressure, and thrust force may indicate the earth pressure balance,
and the actual and calculated excavation volume may indicate the material balance. If
the face pressure is well controlled, then subsidence will be minor, and vice versa. We
anticipated the output of Phase One would capture the relevant features in this regard.

Machine data were produced at 10 s intervals while subsidence was measured at
intervals of every few days to weeks, according to the distance from the excavation face to
the settlement marker. For outputs of a single settlement recording, the maximum amount
of machine data as input was 95,040 fields, even if only 11 of 700 fields were recorded. To
train the machine data and subsidence in a single phase would have required a period of
trial-and-error training to produce a useful LSTM model, which is impractical in terms of
both training time and computing cost. We split the process into two phases, for training
the machine data and identifying critical features associated with subsidence. By training
for subsidence with features identified in the previous phase, LSTM models for phases can
be obtained successfully with fewer resources.

Ten records of machine data with the above 11 fields were flattened into a column and
then fed into the LSTM model, which generated one output prediction, which was then
used as the input for the next forward propagation. The loss, which is the mean square
root of the difference between the ground-truth penetration and the predicted penetration,
was defined, and an Adam optimizer with a learning rate of 0.001 steps was used to
minimize errors. We assumed that the machine data encapsulated the overall performance
of the TBM and construction quality so that it had a substantial impact on the occurrence
of subsidence.

5.2. Training Phase One: Feature Extraction from Machine Data

As discussed in the previous section, we used engineering judgment to select some of
the items. Sensitivity analyses of the other items are incomplete and could be served as a
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subject for future research. Eleven items were chosen in the training phase: penetration,
chainage, thrust cylinder (Gr. A), torque cutting wheel, current pressure real lance one,
pressure excavation chamber one, rotation speed one screw conveyor drive, calculated
excavated material depending on advance one, the actual quantity of excavated material
belt scale one, and stroke thrust cylinder.

Data were recorded while the TBM was in operation on each of the approximately
160 working days over the course of a year. Machine data recorded when the TBM was
idling were excluded. Because the machine data were recorded about every 10 s, there was
a maximum of 8460 records in a day, but the actual number of daily records was fewer due
to ring building, cutter-head intervention, equipment breakdown, or maintenance.

The machine data were turned into a sequencing batch comprising 1000 records taken
every 10 s, producing a sequence 2.8 h long. A maximum of 500 iterations of training was
carried out for each batch. The window size for training a batch was 10, the input size of
the model was 1100, which was 11 by 10 flattened, and the output size was one, which
represented penetration.

Figure 9 depicts the complicated dynamics taken from the various TBM sensors in
response to the driving of the machine. We expected that the machine data from training
could be organized into meaningful features, such as the amount of excavation work
completed, control of chamber pressure, maintenance of muck balance, and speed of the
TBM drive.
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In order to analyze the sensitivity of chosen parameters with respect to penetration,
the Pearson correlation coefficient (PCC) was used as shown in the Equation (7),

rx,y(xi) =
n ∑n

i=1 xiyi − ∑n
i=1 xi ∑n
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√
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i=1 yi)

2
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where rx,y(xi) is the PCC of the effect of i-th influential factor on penetration (yi), xi is the
value of influential factors, and n is the total number of samples.

Figure 10 shows the time series excavation records in the first box and thr PCCs of the
chosen parameters against the penetration of TBM driving in the following boxes on days 1,
178 and 358, which were the first, midst, and last stages of the TBM excavation, respectively.
From a few cases of PCC analyses, chainage show low Pearson correlation, which are
rather dependent than the influential parameters on penetration. Torque, thrust, pressure A
(current pressure at real lance one) and screw RPM show mild positive correlation, whereas
pressure B (excavation chamber one pressure), the calculated and actual muck volume, and
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thrust cylinder stroke show a negative correlation. This is in line with the common intuition
that driving parameters, such as thrust and torque, are positively influential to penetration,
and that ahigh chamber pressure for the support of excavation face is negatively influential,
i.e., it maintains a low penetration.
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Figure 10. Pearson correlation coefficients of parameters with respect to penetration at the first, midst, and last stages of
TBM drive.

Evolution of the Pearson correlation coefficients with respect to penetration for the
entire duration of TBM excavation are shown in Figure 11. Figure 11a–d show negative,
neutral, and positive correlation parameters and the combination of all, respectively. Unlike
Figure 10, the parameter of negative PCC is the actual quantity of excavated material, which
is against the common intuition that a high penetration accompanies the high quantity of
excavated muck. However, it is consistent with the common intuition that the parameters
of positive PCC are torque, pressure A, and screw RPM, as shown commonly in the
Figures 10 and 11. One thing to note is the Pearson coefficients highly fluctuate, such that
oversimplification of the machine data, such as average thrust or torque of ring data, may
eliminate the critical features related to the characteristics of the machine drive.

Figure 12 shows the graphical representation of hidden features, which are the floating-
point numbers, and are turned into grey scale according to their value from zero to one, for
black to white, respectively. We reiterate that hidden features are part of the model, which
is trained for the prediction of next penetration based on the previous machine parameters,
such as thrust, torque, and chamber pressure. Once the model becomes good at predicting
the penetration, then one of the hidden layers is exported to represent the way the machine
drove for about 2 h.

The Phase One model has three LSTM layers, as well as four layers of fully connected
layers. The third and fourth fully connected layers were devoted to extracting and saving
the weight of the hidden layers, which had 20 and 10 items, respectively. A dropout rate of
0.001 was used for regularization. During Training Phase One for all records, the weights
of the third and fourth hidden layers were saved. Approximately 915,000 machine data
fields were condensed into 915 sequences of hidden features.
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5.3. Results of Phase 1 Training

Figure 13 shows the evolution of the loss, which represents the progress of the machine
data learning. The loss at step zero was small because the training process had begun
using the pre-trained model file by accident, after multiple attempts to initiate training.
However, the performance of the Phase One model was suitable for the generation of an
input sequence for Phase One training model.
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Figure 14a–c shows the evolution of the prediction versus the ground truth of the
machine data for the 500 training iterations. At first there was no capability of prediction,
as the initial weights were random. However, after ten iterations, the model began to
capture the penetration pattern, and after 100 iterations, the trained prediction sequence
closely matched the ground-truth sequence.

Figure 15 shows the evolution of the loss of training for the first batch of the second-
day machine data, which represents the progress of the machine data learning process.
Similar to Figure 13, the loss at the initial step was even smaller, because the training had
just begun using the pre-trained model file from previous learning steps. Periodic jumps of
the loss might be due to the dropout layers for the regularization and avoiding overfitting.

Because the purpose of Phase One training was to extract sequences of excavation
features to provide input for subsequent Phase Two training, the entire data set was used
for training, but not for the evaluation. However, the effectiveness of the evaluation was
demonstrated by the fact that the loss on the second-day excavation sequence at the zeroth
iteration was already low and the prediction well matched with the actual data from the
beginning of training steps, as shown in Figure 16.

Figure 17 shows the prediction performance of the Phase One training model at (a)
the first, (b) midst and (c) last day of excavation. It shows a great performance, as the
coefficients of determinant (R2) are 0.99, 0.993 and 1.0, respectively, for the first, midst, and
last day, which supplemented the good performance shown in the Figures 14 and 16.
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5.4. Training Phase Two: Subsidence Estimation of Features from Machine Data

The purpose of Training Phase Two was to train the weights of the hidden layers and
to predict subsidence. Subsidence is governed by how the TBM drives, how well the face
pressure is controlled to avoid or minimize ground movement, and the distance of the
excavation work. Subsidence will be relatively high if the settlement marker is near the
excavation face and the quality of the excavation is poor. However, subsidence will be low
if either the excavation quality is high, or if the settlement marker is far from the excavation
face. The output from Training Phase One (subsidence monitoring) and the distance of the
settlement markers from the excavation face constituted the input for Phase Two model.

The structure of the Phase Two model was essentially identical to that of the Phase
One model. If penetration was the key item for training in Phase One, then subsidence was
the key item for training in Phase One. In the Phase One model, ten other fields, including
chamber pressure, torque, thrust, and muck-out volume, were chosen as supplementary
items for training. In the Phase Two model, four other fields, including chainage of exca-
vation face, chainage and offset of settlement markers, and date, were the supplementary
items for training. Settlement measurements were made at 48 settlement markers. Mea-
surement data were assigned to the training and test sets, which received data from 44 and
4 markers, respectively. To be successful, the Phase Two model should perform well for the
test set.

The Phase Two model has three LSTM layers, as well as three layers of fully con-
nected layers. Similar to the model for Phase One, a dropout rate of 0.001 was used for
regularization. As a summary, Figure 18 displays the flow of Phase One and Phase Two
NN models.
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5.5. Results of Phase Two Training

As shown in Figure 19, the loss of the test and training sets rapidly decreased to a
negligible level. At the beginning of Phase Two training, the loss of the test set was lower
than that of the training set, but the loss in the test sets became stagnant, while that of
the training set steadily decreased. In the end, the losses in both the training and test sets
converged to negligible levels.
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Figure 19. Evolution of loss in the training and test sets.

Figure 20 shows the prediction performance of the Phase Two model. It shows a great
performance, whose coefficient of determinant (R2) is 1.0. As the actual settlements are
measured with the precision of millimeters, points of actual and predicted settlements in
truth-prediction plot are discrete in mm-wise integer numbers.
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Figure 20. Performance of settlement prediction.

Figure 21 illustrates the evolution of predictions for the ground truth for one of the
training sets. At the first epoch of training, the prediction of the training set roughly
followed a timing of the occurrence of subsidence. At the thirteenth epoch, the prediction
was relatively consistent in terms of the timing and maximum value of the settlement. At
the final (49th) epoch, the prediction and ground truth were closely matched, with only
subtle fluctuations in settlement within a brief period. While this may have been a result
of overfitting, Figures 22 and 23 show the satisfactory performance of the LSTM model in
Phase Two: the evolution of the prediction of the test sets, which were not made for training,
were similar or even superior to, those of the training set with respect to ground truth.
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The superior performance of the Phase Two model for the test sets demonstrated
that the weights of the hidden layer of the Phase One model were appropriate features
for the training of settlement monitoring records, suggesting that this approach could be
successfully applied to current construction projects.

5.6. Discussion

The input sequence for Phase 1 training was a series of chosen TBM data: penetration,
chainage, thrust cylinder, torque of cutting wheel, current pressure of real lance, pressure of
excavation chamber, rotation speed of screw conveyor drive, calculated excavated material
depending on advance, the actual quantity of excavated material belt scale and stroke-
thrust cylinder. Among parameters, penetration is a key parameter for training in such a
way that the rest of the parameters are supporting the penetration prediction. The output
from Training Phase one, subsidence monitoring and the distance of the settlement markers
from the excavation face constitute the input for Phase two model.

The choice of the machine data as an input for training is not by sensitivity analysis
but by engineering judgement of authors. It was by far more successful than initially
anticipated as shown in Figures 19 and 20, in which LSTM approach can be effectively
applied to predict the ground surface settlement. However, a very long computation time
was required for LSTM model training of phase 1 due to the large amount of the input data.

Therefore, next step would be performing the sensitivity analysis to optimize the
number of parameters for phase one and applying various AI models to predict the risks of
excessive subsidence or sinkhole induced by TBM excavation in mixed ground condition.
It would be a meaningful to investigate the performance of the AI models for the prediction
of ground subsidence as well as the machine parameters of the TBM.

6. Conclusions

Due to the high demand for new transportation infrastructure, large numbers of
tunnels and underground spaces are being constructed for urban roads, railways, and elec-
trical and telecommunication infrastructures, which are associated with rapid urbanization.
Among the risks posed by tunnel construction in a congested urban area are the risks of
subsidence or the creation of a sinkhole. The resulting costs to society from such incidents
can be significant. Tunneling using a TBM, which can apply face pressure to stabilize the
ground, is widely used to address the threat of subsidence. However, to effectively prevent
such incidents, it is crucial to be able to predict where they might happen, so that it enables
the engineer to plan beforehand.

It is well recognized that subsidence during tunnel construction is closely correlated
with the driving characteristics of the TBM. However, so far, the use of complete sequences
of machine data is unprecedented for capturing the features that correlates the way that
TBM drives with resulting settlement. A TBM generates data from various machine sensors,
including thrust, torque, chamber pressure, and muck discharge volume, which would
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contain the TBM driving characteristics including the response of ground against the thrust
force of the boring machine.

Throughout this study, it was shown that machine data could encapsulate the features
related to settlement occurrence patterns. The cause and consequence, i.e., TBM driving
and settlement, can be modeled with an LSTM and fully connected layers separately. Data
can be obtained from the TBM every 10 s, whereas settlement is recorded daily or weekly,
according to the distance of the excavation face. The Phase One model for TBM driving,
which is the cause of settlement, can train the TBM data and extract features related to the
consequences. The output of Phase One model is the weights of the hidden layers, which
are extracted features from machine data, and which formed the input for the Phase Two
model, together with additional information, such as the location of the settlement markers,
and tunnel face and settlement records.

The performance of the models for the test sets demonstrates that the weights of the
hidden layer of Phase One model are appropriate for the training of settlement-monitoring
records and, suggests that this two-phase LSTM approach can be effectively applied to
TBM excavation projects.
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