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ABSTRACT We propose a novel technique (TOUR) to improve both bug detection ability and verification
speed of ARMC by detecting a target path quickly. The key idea of TOUR is an error location directed
search that utilizes the distance to an error location and function call context at runtime. TOUR applies four
different distance metrics and a distance metric selection heuristic using static features of a target program.
We have extensively evaluated TOUR on 3,042 real-world C programs in a software verification competition
benchmark. The experiment results show that TOUR, due to its error location directed search, finds bugs
in 20% more programs in 11% less model checking time than the state-of-the-art ARMC technique (i.e.,
block-abstraction memoization) for 354 buggy programs. Also, TOUR verifies 15% more programs within
15% less model checking time than the block-abstraction memoization for 652 complex clean programs.

INDEX TERMS Software verification, software testing, symbolic model checking, abstract reachability,

interprocedural analysis, directed search.

I. INTRODUCTION

Abstract Reachability-based Model Checking (ARMC) tech-
niques verify whether a program can reach an error location
(i.e., reachability) in an abstraction of the program to mitigate
the state-explosion problem [1]-[3]. Although many studies
reduce the ARMC model checking time [2]—[5], time-outs are
the reason for 75% (772 out of 1,031) of cases where the state-
of-the-art ARMC technique [6], combining their benefits,
fails to verify in our preliminary experiment on real-world
C programs.

Existing ARMC techniques are slow to detect a path reach-
ing an error location (i.e., a target path) due to an inefficient
search method. A target path is either an actual bug path
(i.e., a counterexample of the reachability property) or a
false alarm triggering the refinement of the abstraction [7].
However, existing ARMC techniques explore an abstract
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state space with an inefficient search method, e.g., depth-first
search, for detecting a target path.

In this paper, we propose a novel ARMC technique
TOUR (effecTive error 10cation directed search via an
interprocedUral Runtime distance calculation), which is the
first approach to apply a directed search for fast target path
detection in ARMC for interprocedural programs. TOUR
explores an abstract search space by first selecting a state with
the shortest distance to an error location. Note that TOUR cal-
culates the distance by considering the function call context
at runtime because a function in an interprocedural program
has various function call contexts. TOUR calculates distances
of two different types — one is dependent on the function
call context (rel-dist) and the other is independent from the
context (abs-dist): (D rel-dist is the sum of the distance from
the function call abstract state to the error location and the
distance from the abstract state to the function exit location;
and Q) abs-dist is the distance from the abstract state to the
error location without considering the function call context.
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TOUR labels each program location with abs-dist and exit-
dist where exit-dist is the distance from a location to the
function exit location.

To further improve the direct search strategy of TOUR,
we propose and compare the four distance metrics. Then,
we developed a program-specific distance metric selection
method by learning from historical results of TOUR using
distance metrics.

The contributions of this paper are as follows:

1) TOUR is the first error location directed search that
speed up ARMC: TOUR is the first approach that
applies an error location directed search to ARMC
for fast target path exploration on an interprocedural
program, which improves bug detection ability and
verification speed. We successfully apply TOUR to two
existing ARMC techniques Block-Abstraction Memo-
ization for interprocedural program analysis (BAM) [6]
and Lazy Abstraction (LA) [8].

2) TOUR improves ARMC’s bug detection ability: BAM
using TOUR finds bugs in 20% more programs within
11% less total CPU-time for 354 real-world buggy C
programs.

3) TOUR improves ARMC'’s verification speed: For 652
complex real-world clean C programs classified by the
Cyclomatic Complexity, BAM using TOUR verifies
15% more programs within 15% less total CPU-time.

4) An effective distance metric selection method for target
programs: BAM using TOUR with the distance metric
selection solves 10% more programs within 22% less
total CPU-time for 3,042 real-world C programs com-
pared to the case using the worst single metric.

The rest of the paper is organized as follows. Section III
introduces background knowledge for understanding TOUR.
Section IV describes TOUR by dividing it into two main
parts. Section V describes the experimental setting including
research questions. Section VI demonstrates the experimental
results for the research questions. Section II presents related
work and Section VII concludes the paper with future work.

Il. RELATED WORK

A. DIRECTED SEARCH

Although several program analysis techniques (e.g., model
checking with distance-preserving abstractions or symbolic
executions) utilize directed search strategies, TOUR is the
first ARMC technique that applies directed search for fast
target path detection on interprocedural programs.

Directed model checking with distance-preserving abstrac-
tions utilizes directed search, but it targets a state transition
system, not a high-level C program [9]. It abstracts a state
transition system by grouping states with the same distance to
an error state to mitigate the state-explosion problem. TOUR
is naturally distance-preserving because TOUR does not
abstract the program counter variable of a target C program
(i.e., the program location) for which TOUR defines the
distance. The distance-preserving abstraction technique uses
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only a single distance metric, while TOUR uses and compares
four different distance metrics.

Shortest-Distance Symbolic Execution (SDSE) applies
directed search to symbolic execution, while TOUR applies a
directed search to ARMC [10]. SDSE computes the distance
to an error location in an interprocedural C program and
conducts the shortest error distance first search. SDSE applies
a directed search for fast bug path detection, but TOUR
improves both bug detection ability and verification speed
for ARMC. SDSE also uses a single distance metric (i.e., the
number of edges), while TOUR uses four distance metrics.

B. SPEED UP ARMC

Although there are several techniques to speed up ARMC
(e.g., lazy abstraction, block-encoding, and block-abstraction
memoization), TOUR improves the ARMC'’s speed further as
a complementary technique.

TOUR improves the speed of Block-Abstraction Memo-
ization for interprocedural program analysis (BAM), even
though BAM is the state-of-the-art ARMC technique combin-
ing the benefits of existing optimization techniques [6]. BAM
combines three existing speed-up techniques for ARMC,
i.e., Lazy Abstraction (LA), Block-Encoding (BE), and
block-abstraction memoization. LA reuses the abstract states
that are not relevant to a false alarm after removing the false
alarm to save time for state exploration [8], [11]. BE takes
advantage of the efficiency of constraint solving techniques:
it is more efficient to compute an abstract state for a large
block of multiple statements at once than to compute abstract
states of the multiple statements separately with multiple
computations [2], [3]. Block-abstraction memoization stores
constructed substate graphs to a cache and reuses them later to
save state exploration time [5]. TOUR complements the three
speed-up techniques because it tries to search as few states as
possible instead of reusing or efficiently constructing them.

C. ABSTRACT DOMAIN
TOUR is independent of abstract domains and thus can be
applied to ARMC techniques with various abstract domains.
We successfully apply TOUR to BAM, which uses
two different abstract domains (i.e., predicate domain and
explicit-value domain) [6] because TOUR is independent of
abstract domains. The predicate domain is a widely used
abstract domain for ARMC of C programs [3], [11]-[17]. The
predicate domain presents an abstract data state formula as a
set of predicates over program variables. It is also effective for
unbounded loop analysis because it easily checks whether a
loop fixpoint is reached [13], [18]. The explicit-value domain
uses an explicit-value assignment of some program variables
(not all the program variables) as an abstract data state for-
mula [19]-[21]. It is effective to verify a program in which the
reachability of the program is primarily related to some spe-
cific variables. TOUR is independent of the domains because
the domains affect only the abstract data state formula and
maintain program locations as nonabstracted. We also apply
TOUR to LA which uses the predicate abstract domain [8].
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Although TOUR can be applied to LAI, it may not be
effective to apply TOUR to Lazy Abstraction with Inter-
polants (LAI). LAI is an ARMC technique that uses the
empty abstract domain for the entire model checking proce-
dure [22]-[24]. LAI cannot compute abstract data states dur-
ing state exploration because of the empty abstract domain.
It computes abstract data states during the removal of false
alarms. TOUR saves time during state exploration, which is
not effective for LAI because LAI does not have much time
for exploration due to the empty abstract domain.

Applying TOUR to a combination-based model check-
ing technique (e.g., CPA-seq and PeSCo) is not effective
because the technique may assign a short time to an ARMC
component constituting the technique. Combination-based
techniques assume that a suitable abstract domain for model
checking of a program may differ program by program.
CPA-seq sequentially invokes model checking techniques,
including ARMC components and other model checking
techniques, to improve the chance of solving a program [25],
[26]. PeSCo [27], [28] extends CPA-seq by dynamically
changing the order of constituting techniques by predicting
the probability of solving. Both CPA-seq and PeSCo assign
a short time limit (only 11% (=100s/900s) of the total time
limit) to an ARMC component because they think that a
technique is not suitable for a program if it cannot solve
the program quickly. However, TOUR helps ARMC solve a
complex program with reasonable time, while ARMC fails to
verify the program due to time-out.

Ill. BACKGROUND

This section explains background knowledge for understand-
ing TOUR, including programs, abstract states, and function
call context.

A. PROGRAMS

A program consists of locations that model program counter
variables and operations executed when a control moves from
a location to another location. Figure 1 shows an example C
program consisting of main and f, which is labeled with pro-
gram location numbers. We assume simple interprocedural
C programs with limited operations: assignment operations
(e.g., L5 — L7), branch condition operations (e.g.,L2 — L3,
L2 — L8), function call operations (e.g., L3 — L21),
function return operations (e.g., L22 — L4), and dummy
operations (e.g., L7 — L10) that move program counters
without changing program states. A function has one function
entry location (e.g., L1, L21) and one function exit location
(e.g., L12,22). The location L11 is the error location which
unwillingly terminates the program by invoking the abort
function.

B. ABSTRACT STATES

An abstract state consists of a corresponding location and an
abstract data state describing reachable program states under
an abstraction [3]. Figure 2 shows an example abstract state
graph for the program in Figure 1, abstracting all operations
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void main(int #x,int k){
Ll1: int i;
L2: if(x[1]>x[2]){
L3: f(x[1]);
L4: if (k==0){
L5: x[2]=x[1];
}else{
L6: x[1]=x[2];
L7: }
}else{
L8: f(x[2]);
L9: }
L10: if(x[1]>x[2]){
L11: abort () ;
L12:}
void f(int i){
L21: int a=i;
L22:}

FIGURE 1. An example C program.

s1:{L1, True) 2 \

|

s2: (L2, True) 2

A

s3: (L3, True) 2 $11: (L8, True) 1

________________
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________ [ L]
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l Distance to
v S10:(L11,True) 0 the error location

FIGURE 2. An example abstract state graph for the example program
in Figure 1.

as nondeterministic (i.e., any program state is reachable after
executing an operation, represented as the formula True).
A graph node denotes an abstract state with the corresponding
location (left) and the abstract data state formula (right).
A graph edge denotes a successor/predecessor relationship
between two abstract states. It also represents the operation
between the location of the successor abstract state and that
of the predecessor abstract state. The initial abstract state s
corresponds to the function entry location of the main func-
tion (i.e., L1) and always has True as the abstract data state
formula. A rarget path is the sequence of abstract states from
the initial abstract state to an abstract state corresponding to
an error location with a nonFalse abstract data state formula
(e.g,s1 = s = §3 —> 54 —> §5 — §6 —> 57 —> 5§ —>
59 — $10)-
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C. FUNCTION CALL CONTEXT

A function call context of an abstract state s is the function
call abstract state of s denoted as call(s). For example in
Figure 2, the function call context of s4 and s5 is s3 because
they correspond to the function f invoked at s3.

Abstract states corresponding to the same location can
have different distance values on different function call con-
texts [10]. For example in Figure 2, we annotate the distance
from each abstract state to the error location in terms of the
number of basic blocks (i.e., the number of branch condition
operations). The abstract states s4 and sj» have different
distance values due to the different function call contexts,
although they correspond to the same location L21.

An error location-directed search considering the function
call context can find a target path faster than other search
methods. For example, in Figure 2, the shortest distance
first directed search finds the target path from s; to si¢ by
calculating the distance on function call contexts. It is shorter
than the target path from s to s1¢ detected by the depth-first
search with a true branch first manner.

IV. EFFECTIVE ERROR LOCATION DIRECTED SEARCH

VIA AN INTERPROCEDURAL RUNTIME

DISTANCE CALCULATION

Figure 3 shows the graphical overview of TOUR. TOUR con-
sists of two main parts: (1) interprocedural runtime distance
calculation (Section IV-A) and (2) distance metric selection
using a model for program-specific selection (Section IV-B).

e (1) TOUR calculates the two types of distance values,
i.e., rel-dist and abs-dist, at runtime. TOUR annotates
information necessary for the calculation to a target
program before runtime. The annotated information is
the abs-dist of a program location to an error location
and the distance from a location to the function exit
location (exit-dist). TOUR annotates the information
according to the selected distance metric. TOUR tracks
the function call context, i.e., which abstract state is
a function call abstract state of which abstract states,
during the run-time for the rel-dist calculation.

¢ (2) TOUR selects a distance metric among four distance
metrics using a model for program-specific distance
metric selection. We propose four distance metrics
for TOUR regarding the characteristics of existing
ARMC techniques. TOUR generates a model for the
program-specific distance metric selection by learning
from historical results with static program features.
TOUR can select the best distance metric among the four
distance metrics for an ARMC technique and a given
target program.

A. INTERPROCEDURAL RUNTIME

DISTANCE CALCULATION

TOUR calculates the two distance values (rel-dist and abs-
dist) that complement each other. An abstract state has no
abs-dist if its distance is only valid under a function call
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context. The rel-dist value of an abstract state is not the
shortest distance if the abstract state has a valid abs-dist
value smaller than the rel-dist value. TOUR selects the
smaller distance of rel-dist and abs-dist as the abstract state
distance.

The abs-dist value of an abstract state is the abs-dist
value of the corresponding program location. The rel-dist
value of an abstract state is the sum of the exit-dist and the
distance of the corresponding function call of the abstract
state. Each abstract state tracks its corresponding function
call to the abstract state at runtime for rel-dist calculation.
TOUR annotates the information (i.e., exit-dist and abs-dist)
necessary for calculating the distance to a target program for
runtime calculation efficiency.

In the remainder of this section, we assume the number of
basic blocks (i.e., the number of branch edges) is the selected
distance metric for TOUR.

1) THE exit-dist AND abs-dist ANNOTATION

The exit-dist value of a program location is the shortest
distance from the location to the function exit location accord-
ing to the selected distance metric. TOUR calculates and
annotates exit-dist for each function of a target program by
using a single-source shortest distance calculation algorithm
in the backward direction. The function exit location is the
single source of the algorithm.

Figure 4 shows an example exit-dist annotation for the
example program in Figure 1. It describes the control-flow
graph of the example program labeled with exit-dist, where
a node represents a program location. TOUR applies the
exit-dist annotation algorithm for each function f and main
in order because f has no callee function and is the callee
function of main. Since we use the number of branch edges
as the distance metric, the distance weight of an edge is one
for the edges, L2 — L3,L2 — L8,L4 — L5,L4 — L6,
L10 — L11, and L10 — L12, and zero for the other
edges. TOUR initializes the exit-dist value of the function
exit location as zero and that of other locations as co. The
single source of the algorithm for the function f is L22 and
that for the function main is L12. The exit-dist value of a
location [ is the sum of the exit-dist of /’s successor location
and the edge weight between them. The algorithm ignores
function return edges (e.g., L22 — L4 and L22 — L9).
TOUR calculates the exit-dist value of a function call loca-
tion (e.g., L3 and L8) as the sum of the exit-dist value of
the corresponding function return location (e.g., L4 and L9
respectively) and the function’s shortest distance (e.g., the
function f). A function’s shortest distance means the shortest
distance from the function entry to the function exit location
(i.e., the exit-dist of the function entry location, e.g., L21).
Thus, TOUR calculates the exit-dist for a callee function
first.

The abs-dist value of a program location is the shortest
distance from the location to an error location according to
the selected distance metric. TOUR calculates and annotates
abs-dist to a target program using a single source shortest
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Function Call Context Tracking

Shortest-Distance First
Directed Model Checking
with the Distance Calculation
(rel-dist and abs-dist) using

Reachability
Result

)
Labelled
Target | The exit-dist and |Program
Program 1 | abs-dist Annotation
:\\ Selected
""""""" Distance =777

Selection
Model

Distance Metric
Selection

Metric  ____________ DA

Historical
Results

Generating a Model for
Program-specific
Distance Metric Selection

FIGURE 3. Overview of model checking using TOUR (effectTive error I0cation directed search via an interprocedUral

Runtime distance calculation).

distance algorithm in the backward direction. An error loca-
tion is the single source of the algorithm.

Figure 4 shows an example abs-dist annotation for the
example program in Figure 1. It describes the control-flow
graph of the example program labeled with abs-dist. TOUR
initializes the abs-dist value of the error location (L11) as
zero (because it is the single source of the algorithm) and that
of other locations as co. The edge weights are the same as
the exit-dist annotation algorithm uses. The abs-dist value
of a location [ is the sum of the abs-dist of I’s successor
location and the edge weight between them. The algorithm
ignores the function return edges, L22 — L4 and L22 —
L9. TOUR calculates the abs-dist value of a function call
location (e.g., L3 and L8) as the sum of the abs-dist value
of the corresponding function return location (e.g., L4 and
L9, respectively) and the function’s shortest distance (e.g., the
function f). Since the abs-dist calculation algorithm uses the
exit-dist values (as the function’s shortest distance), TOUR
calculates exit-dist for all functions first and then calculates
abs-dist.

2) DISTANCE CALCULATION USING FUNCTION CALL
CONTEXT TRACKING

TOUR calculates abs-dist and rel-dist of an abstract state
using the annotated information (i.e., abs-dist and exit-
dist) of the program locations and a function call context
at runtime. The abs-dist of an abstract state is the same
as the abs-dist of the corresponding program location.
The rel-dist value of an abstract state is the sum of the
exit-dist of the corresponding location and the distance
of the function call of the abstract state. The distance of
an abstract state is the smaller distance of abs-dist and
rel-dist.

TOUR tracks the function call context (i.e., the correspond-
ing function call abstract state) in each abstract state. TOUR
assigns the function call abstract state of an abstract state s’
(call(s)) as follows using the predecessor abstract state s
and the program operation op between s and s’
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FIGURE 4. The control-flow graph of the example program in Figure 1
labeled with exit-dist and abs-dist.

o If " is the initial abstract state (no successor abstract
state s and no op)

call(s") = nil
« If op is a function call operation
call(s)=s
« If op is a function return operation
call(s) = call(call(s))
o Otherwise
call(s) = call(s)

Finally, the distance of an abstract state s (i.e., dist(s))
is calculated as follows if s # nil using 1oc, the mapping
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function from an abstract state to the corresponding program
location:

dist(s) = min(loc(s).exit-dist + dist(call(s)),
loc(s).abs-dist), (1)

If s == nil:
dist(s) = o0 2)

B. DISTANCE METRICS AND PROGRAM-SPECIFIC
DISTANCE METRIC SELECTION

We propose four different distance metrics for TOUR because
the best distance metric is probably different for each ARMC
technique. We propose the distance metrics considering
which program statements mainly affect the performance of
each ARMC technique.

We also think that the best distance metric is different for
each program, even if a distance metric is generally good for
an ARMC technique. Thus, we propose a method to gener-
ate a model for program-specific distance metric selection
to select the best distance metric among the four distance
metrics for a target program. TOUR generates such a model
by learning from historical directed ARMC results with static
program features.

1) DISTANCE METRICS

The four distance metrics proposed for TOUR are a number
of statements (st), a number of basic blocks (bb), a number
of loop heads (lh), and a number of loop heads and function
entry/exit points (If).

o The st metric considers each statement equally
and is widely used in model checking or symbolic
execution [9], [10], [29].

o The bb metric weighs branch condition statements to
focus on the number of basic blocks instead of the
number of statements. It is effective for programs includ-
ing many statements that hardly affect ARMC tech-
nique performance, e.g., an assignment statement with
no operation.

« The lh metric weighs loop branch condition statements.
It is effective for ARMC techniques that compute an
abstract state for a large number of acyclic statements
at once, e.g., block encoding [2], [3].

o The If metric weighs loop branch condition state-
ments and the function call and return statements. It is
effective for ARMC techniques that explore each func-
tion’s search space separately, e.g., block-abstraction
memoization [5], [6].

We define each metric as a control-flow edge (i.e., state-
ment) weight according to their operation. The edge weight
function W of an edge e for each metric is defined as follows:

o For a number of statements (st)
W(e) =1 (3)
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« For a number of basic blocks (bb)

1, if e is a condition operation

W@== @)

0, otherwise
« For a number of loop heads (lh)

W(e)
1, if eis a condition operation corresponding
= to a loop condition

0, otherwise

&)

o For a number of loop heads and function entry/exit
points (If)

W(e)

1, if eis a condition operation corresponding
to a loop condition

1, if the predecessor of e is a function entry
location

1, if e is a function return operation

0, otherwise

(6)

2) GENERATING A MODEL FOR PROGRAM-SPECIFIC
DISTANCE METRIC SELECTION

TOUR generates a model for program-specific distance met-
ric selection by learning from historical results consisting of
determining the best distance metric and static feature value
of each program. A generated model selects the best distance
metric among the four distance metrics by regarding the static
program feature values.

Figure 5 shows the procedure for generating a program-
specific distance metric selection model from historical
results. The historical directed model checking results are
composed of 25 static feature values and the best dis-
tance metric of each program. The 25 features represent
size (Locations and Edges categories), modularity (Loops
and Functions categories), data flow (Variables category),
and complexity (Cyclomatic Complexity [30] category),
as shown in Table 1. For features defined for a single function,
TOUR uses the maximum, average, and standard deviation
values of functions in a program as the representative values.
We label each program in the historical results with its best
distance metric in terms of the CPU time ! among the four
classes, st, bb, Ih, and If.

TOUR generates a decision tree as a selection model by
learning from the historical results. Figure 6 shows an exam-
ple decision tree to select a distance metric. Each internal
node represents a static feature name and the decision con-
dition for the feature to select a child node (i.e., select the left

IThe metric with the shortest CPU time among the metrics that success
the model checking without exceeding resource limits.
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25 Independent Variables Response
(25 Static Program Features) Variable

J I

LOCS | EDGES | VARS SDEGFN | BEST
302425 | 593863 | 24535 122.4255 If
3535 3453 342 12.345 st
25455 | 34252 | 3535 23.535| bb
Historical results
|
rpart

(The decision tree library in
statistical computing tool R)

A decision tree as
a distance metric selection model

FIGURE 5. The procedure for generating a model for program-specific
distance metric selection from historical results.

FUNCS

|' <847 "|

VARSINC If
=115

AVLOFN AVLOFN
|' >19.60978 '| |_ >39.05386 —|
AVEGFN If st MXCC

|' <33.16462 "| >39 _|

st Ih MXLOFN MXCC
|_ <12495 —| |_ <265 —|
bb VARSLOOP _ bb If
<20.5
bb Ih

FIGURE 6. An example distance metric selection model represented as a
decision tree.

child node if the decision condition is satisfied). Each termi-
nal node represents the selected distance metric. For example,
according to the decision tree in Figure 6, if a program has
static feature values as FUNCS = 840, VARSINC = 11,
AVLOFN = 40, and MXCC = 30, TOUR selects bb as the
distance metric for the program.

TOUR uses the recursive partitioning algorithm (the rpart
library in open source statistical computing tool R [32]) to
build a decision tree. We use the recursive partitioning algo-
rithm because it is widely used for multiclass classification
over the past three decades and is known as accurate. As
a result of optimization, we filter out historical results of
less than 40 seconds of CPU time difference caused by the
distance metric change.

V. EXPERIMENTAL SETUP
We designed the following four research questions to evalu-
ate TOUR.

A. RESEARCH QUESTIONS
« RQL1. Effectiveness of TOUR on bug detection abil-
ity: Does TOUR improve the bug detection ability of
ARMC?
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TABLE 1. Category and description of the 25 program features used for
distance metric selection rule generation; Cyclomatic Complexity: the
well-known McCabe's cyclomatic complexity [31].

Category | Feature name | Description

LOCS Number of program locations
MXLOFN Maximum number of locations per
function
Locations AVLOFN Average number of locations per func-
tion
SDLOFN Standard deviation of the number of
locations per function
EDGES Number of control-flow edges
MXEGFN Maximum number of control-flow
edges per function
Edges AVEGFN Average number of control-flow edges
per function
SDEGFN Standard deviation of the number of
control-flow edges per function
LOOPS Number of loops in a program
MXLPFN Maximum number of loops per func-
tion
Loops AVLPFN Average number of loops per function
SDLPFN Standard deviation of the number of
loops per function
FUNCS Number of functions in a program
MXCALLS Maximum number of function calls per
function
Functions AVCALLS Average number of function calls per
function
SDCALLS Standard deviation of the number of
function calls per function
VARS Number of relevant variables (used in
conditions and their dependent vari-
ables)
VARSASM Number of variables used in conditions
Vari VARSLOOP | Number of variables used in loop exit
ariables ..
conditions
VARSINC Number of variables used as increas-
ing/decreasing count variables for for
statements
FIELDS Number of relevant bit-field variables
MXCC Maximum cyclomatic complexity per
function
SMCC Sum of cyclomatic complexity per
Cyclomatic function
Complexity AVCC Average cyclomatic complexity per
function
SDCC Standard deviation of cyclomatic com-
plexity per function

We investigate whether TOUR finds bugs in more
real-world buggy C programs than existing ARMC
techniques.

« RQ2. Effectiveness of TOUR on verification speed:
Does TOUR save the verification time of ARMC?

We investigate whether TOUR saves CPU time with two
different existing ARMC techniques for real-world clean
C programs.

« RQ3. Effectiveness of the proposed distance metrics:
Which metric among the four distance metrics is the best
distance metric for each ARMC technique?

We investigate which distance metric is the best in terms
of the number of solved programs and CPU time among
the four distance metrics for each ARMC technique.

« RQA4. Effectiveness of the distance metric selection:
Does TOUR select the best distance metric for each
target program?
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We investigate whether TOUR using the program-
specific metric selection model takes less CPU time than
TOUR using a single metric for target programs.

B. TECHNIQUES TO COMPARE

We implemented TOUR in a form integrated into two
state-of-the-art ARMC techniques, i.e., lazy abstraction
and block-abstraction memoization. By applying TOUR
on the most widely used optimization method, i.e., lazy
abstraction [3], [6], [17], [19]-[22], [29], we investigate
whether TOUR is generally effective in speeding up ARMC.
We also investigate whether TOUR improves the practical
performance of ARMC for practitioners. Thus, we investigate
how much TOUR improves the bug detection ability and
saves the model checking time of a current state-of-the-art
ARMC technique, i.e., block-abstraction memoization [6].

o LA: Lazy Abstraction (LA) is an ARMC technique
that applies different abstractions for different sub-
state graphs [8]. Thus, LA can eliminate a false alarm
by refining only the substate graph relevant to the
false alarm. LA uses the depth-first search. We use
LA implemented in the open-source model check-
ing tool CPAchecker [33] (CPAchecker 2.0.1-svn).
LA uses MathSATS5 [34] (MathSAT5 version 5.6.5
(63ef7602814c¢)) as the SMT-solver for constraint solv-
ing. We used LA for RQ1 and RQ2 as a baseline ARMC
technique.

o LA.T: LA.T is the technique that applies TOUR to
LA. LAT uses the default parameter values of the
rpart library except two parameters maxcompete =
0 and maxsurrogate = 0 to generate a selection
model [32]. LA.T generates a distance metric selection
model by excluding the target program from the histor-
ical result to avoid over-fitting. We used LA.T for RQI,
RQ2, and RQ4.

« BAM: Block-Abstraction Memoization for inter-
procedural program analysis (BAM) is a current
state-of-the-art ARMC technique [6]. It extends
block-abstraction memoization [5] to handle recursive
programs. It combines lazy abstraction [8], predicate
abstraction, explicit-value abstraction [19], large-block
encoding [3], and block-abstraction memoization.
We use BAM implemented in the open-source model
checking tool CPAchecker [33] (CPAchecker 2.0.1-svn).
While adopting the depth-first search, BAM uses
SMTInterpol [35] (SMTInterpol 2.5-732-gd208e931) as
the SMT solver for constraint solving. We used BAM for
RQI1 and RQ2 as a baseline ARMC technique.

« BAM.T: BAM.T is the technique that applies TOUR to
BAM. BAM.T uses the same parameter setting of LA.T
for rpart to generate a selection model. BAM.T gener-
ates a distance metric selection heuristic by excluding
the target program from the historical result to avoid
overfitting. We used BAM.T for RQ1, RQ2, and RQ4.

o LA.T.{st,bb,Ih,If}: LA.T.{st,bb,lh,If} are the techniques
that apply TOUR using a single distance metric to
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LA without distance metric selection. We compare
LA.T.{st,bb,Ih,If} in RQ3 and RQ4.

o BAML.T.{st,bb,lhIf}: BAM.T.{st,bb,lh,If} are the tech-
niques that apply TOUR using a single distance metric
to BAM without distance metric selection. We compare
BAM.T.{st,bb,lh,If} in RQ3 and RQ4.

C. TARGET PROGRAMS

« RealWorld: RealWorld is the set of C programs
obtained from the SoftwareSystems category of
SV-COMP °21 [36]. The category contains 3,184
programs from real-world sources, and we exclude
programs with no predefined error location [37]. As a
result, RealWorld includes 3,042 programs consisting of
2,688 clean programs and 354 buggy programs. We used
RealWorld for all experiments. Additionally, we divided
RealWorld into four subsets according to the complexity
of programs.

« RealWorld.{1,2,3,4}: RealWorld.{1,2,3,4} are the sub-
sets of RealWorld divided by the program complexity.
We use the SuM of the Cyclomatic Complexity per func-
tion (SMCC) of a program to represent the complexity
of the program. Cyclomatic complexity is a well-known
complexity metric for programs written in an imperative
programming language such as C [31]. We divided Real-
World into four subsets considering quantiles. Table 2
presents the boundary values and the number of pro-
grams in each subset. We used RealWorld.{1,2,3,4} in
the experiment for RQ2 to show the increasing effective-
ness of TOUR on verification speed as the complexity of
programs increases.

These RealWorld programs are used for experiments
because many recent model checking studies use them
as verification targets [20], [26], [38]-[40]. In particular,
BAM participated in SV-COMP 21’ and showed the best
verification performance (i.e., solving the largest number
of verification tasks) among other participating techniques
for the SoftwareSystems category. Note that the limitation
of using target programs with predefined error locations is
acceptable because various studies in the verification and
testing fields evaluate their technique on programs with
assertion statements, which are a type of predefined error
location [18], [41]-[44].

D. MEASUREMENT

We measure CPU time and the number of solved programs
for each technique to compare. Since we limit the model
checking time for each target program, not only the CPU

TABLE 2. The statistics of RealWorld.{1,2,3,4}; SMCC: the sum of
Cyclomatic Complexity per function.

Index | SMCC | Number of Programs
T [24,87) 748
2 [87,448.5) 773
3 [448.5, 1412.5) 760
4 [1412.5,132302] 761

158745



IEEE Access

N. Lee et al.: Directed Model Checking for Fast Abstract Reachability Analysis

time but also the number of solved programs shows the time
efficiency of a technique.

o CPU time: We measure the CPU time of a model check-
ing run, which includes the CPU time of all subpro-
cesses that the main process invokes. The CPU time of
TOUR includes the time for extracting program features.
We exclude the time for generating a distance metric
selection heuristic from the CPU time because a gener-
ated heuristic is used for multiple target programs. The
CPU time is measured by the benchmark execution tool
BENCHEXEC (see Section V-E).

o The number of solved programs We count the number
of correctly solved programs of a technique. A technique
correctly solves a buggy program if it finds a bug for the
program within a resource limit. A technique correctly
solves a clean program if it finishes model checking
without a bug or a false alarm within a resource limit.
A technique fails to solve a target program if it incor-
rectly solves or fails to finish due to the time-out,
memory-out, or internal error of the technique.

E. MODEL CHECKING ENVIRONMENTAL SETUP

We conducted all the model checking runs by using
BENCHEXEC 3.6 [45] (i.e., a benchmark execution platform
used in SV-COMP °21) to ensure reliable experimen-
tal results. We used five machines with a 3.4GHz CPU
and 16 GB memory for all model checking runs. All machines
used Ubuntu 20.04 and OpenJDK 1.13. The resource limit
for a model checking run was four CPU cores, 15 GB RAM,
and up to 900 seconds of CPU time. The 15 GB RAM
and up to 900 seconds of CPU time are the same resource
limits of SV-COMP ’21 which is considered standard [36].
We provide the implementation of TOUR, replication guide
for experiments, and the raw data of the experiment results
publicly in a GIT repository (see ACCESS . README . md file
in the repository). 2

F. THREATS TO VALIDITY

« Internal validity: A threat to internal validity is possible
bugs in TOUR implementation and the other techniques
we studied. We meticulously verified our implementa-
tions to address this threat.
Additionally, we controlled the model -checking
execution environment using machines with the
same specification and operating environment. Fur-
thermore, we conducted the experiments using the
benchmarking tool BENCHEXEC used in SV-COMP
’21. BENCHEXEC isolates the model checking execu-
tions from the interruption of other processes executed
in the same machine to obtain reliable results. Thus,
we believe that the threat to internal validity is limited.

« External validity: A threat to external validity is the
representativeness of our target programs. We expect

2https://github.com/N akwon-Lee/pacc_cpachecker/tree/DMCforAR
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TABLE 3. The number of solved buggy RealWorld programs and the total
CPU time of BAM and BAM.T; Count.Solved: the number of correctly
solved programs; Count.Time-out: the number of programs that a
technique fails due to time-out; Count.Others: the number of programs
that a technique fails due to reasons other than time-out; Total CPU time:
the total model checking time for 354 buggy RealWorld programs.

[ BAM | BAMT
Count.Solved 100 120 (1 20%)
Count.Time-out 152 131 (1 14%)
Count.Others 102 103
Total CPU-time 154,555s | 136,856s (] 11%)

that this threat is limited since the target programs are
widely used benchmark programs and tested by many
other researchers.

We used target programs that represent general
real-world C programs. RealWorld includes programs
obtained from real-world software projects (e.g.,
Linux-device driver programs), and they cover most of
the C features. Thus, we believe that the threat to external
validity is also limited.

o Construct validity: We used two measures, i.e., the
number of solved programs and CPU time. These mea-
sures have been widely and generally used performance
criteria for model checking in recent studies [21], [25],
[28], [29], [40], [46]. Thus, we believe that the threat to
construct validity is limited.

VI. EXPERIMENTAL RESULT

A. RQI: EFFECTIVENESS OF TOUR ON BUG

DETECTION ABILITY

The results show that TOUR meaningfully improves the
bug detection ability of an ARMC technique. BAM.T
finds bugs in 20% (=(120-100)/100) more programs than
BAM for the 354 buggy programs within 11% (=(154,555-
136,856)/154,555) less total CPU time, as shown in Table 3.
LA.T finds bugs in 118% (=(98-45)/45) more programs than
LA for the 354 buggy programs within 3% (=(126,043-
121,921)/121,921) more total CPU time as shown in Table 4.

The reason for the increased number of solved buggy
programs caused by TOUR in BAM is the reduced number of
failed results caused by time-out. Table 3 shows the number of
buggy RealWorld programs that BAM.T and BAM fail due to
time-out. BAM.T timed out for 131 (| 14%) programs, while
BAM timed out for 152.

The seemingly slower speed (the 3% (=(126,043-
121,921)/121,921) more total CPU time) of LA.T is due to
the weakness of LA that does not support recursive function
calls. In contrast to LA, which terminates as soon as possible
when it observes a recursive execution, LA.T spends more
time avoiding the recursive execution to detect a target path
that does not include recursive executions. As a result, LA.T
reduces the number of failed results caused by the recursion
(i.e., reduced 65% (=(78-27)/78) compared to LA), as shown
in Table 4.
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TABLE 4. The number of solved buggy RealWorld programs and the total
CPU time of LA and LA.T; Count.Solved: the number of correctly solved
programs; Count.Time-out: the number of programs that a technique fails
due to time-out; Count.Error(recursion): the number of programs that a
technique fails due to the recursive function calls; Count.Others: the
number of programs that a technique fails due to reasons other than
time-out and recursion; Total CPU time: the total model checking time
for 354 buggy RealWorld programs.

[ LA | LAT
Count.Solved 45 98 (1118%)
Count.Time-out 99 94
Count.Error(recursion) 78 27 (] 65%)
Count.Others 132 135
Total CPU-time 121,921s | 126,043s (1 3%)

B. RQ2: EFFECTIVENESS OF TOUR ON

VERIFICATION SPEED

The results show that TOUR meaningfully improves the
verification speed of an ARMC technique. BAM.T verifies
15% (=(378-330)/330) more programs in 15% (=(336,940-
287,911)/336,940) less total CPU-time than BAM for
the 652 clean programs in RealWorld.4, i.e., the most com-
plex program group, as shown in Table 5. We focus on com-
plex target programs (i.e., RealWorld.4) because it is more
meaningful to solve challenging programs quickly than to
solve easy programs quickly.

The reason for the increased number of solved clean pro-
grams caused by TOUR in BAM is the reduced number of
failed results caused by time-out. Table 5 shows the number
of clean programs that BAM and BAM.T fail due to time-
out. BAM.T reduces the number of failed results caused by
timeout by 15% (=(316-268)/316) compared to BAM for the
complex programs.

1) IMPROVED VERIFICATION SPEED ON THE ENTIRE SET OF
THE 2688 CLEAN RealWorld PROGRAMS

The results show that TOUR improves the verification speed
of an ARMC technique on the 2,688 clean RealWorld pro-
grams. BAM.T verifies 4% (=(1,996-1,911)/1,911) more
programs in 12% (= (657,265-581,045)/657,265) less total
CPU time than BAM for the 2,688 clean Real World programs
as shown in Table 6.

LA.T solves more programs than LA, but it takes more total
CPU time than LA. LA.T verifies 1% (=(1,420-1,404)/1,404)
more programs in 4% (= (673,734-650,580)/650,580) more
total CPU time than LA for the 2,688 clean RealWorld pro-
grams as shown in Table 6.

2) INCREASING EFFECTIVENESS AS COMPLEXITY INCREASES
The results show that the effectiveness of TOUR increases
with the increasing complexity of clean programs. Table 7
shows the increasing effectiveness of TOUR (in parentheses)
for clean RealWorld.{1,2,3,4} programs with the number of
solved clean programs and the total model checking time of
BAM.T. BAM.T verifies the same number of programs by

3LA.T cannot verify a clean program by bypassing recursions that LA.T
does for buggy programs.
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TABLE 5. The number of solved clean RealWorld.4 programs and the total
CPU time of BAM and BAM.T; Count.Solved: the number of correctly
solved programs; Count.Time-out: the number of programs that a
technique fails due to time-out; Count.Others: the number of programs
that a technique fails due to reasons other than time-out; Total CPU-time:
the total model checking time for the 652 clean RealWorld.4 programs.

[ BAM | BAMT
Count.Solved 330 378 (1 15%)
Count.Time-out 316 268 (| 15%)
Count.Others 6 6
Total CPU time | 336,940s | 287,911s (| 15%)

TABLE 6. The number of solved programs and total CPU time of each
technique for 2,688 clean RealWorld programs; C.SOLV: the number of
programs solved by each technique; T.TIME: the total CPU-time of each
technique.

Technique | C.SOLV [ TTIME
BAM 1,911 657, 265s
BAM.T 1,996 (14%) | 581,045s (] 12%)
TA 1,404 650, 5305
TAT 1,420 (F1%) | 673,734s (T 4%)

taking less than 1% more total CPU-time than BAM for Real-
World. 1, i.e., the set of the least complex programs. BAM.T
solves 15% more programs in 15% less total CPU-time than
BAM for RealWorld.4, i.e., the set of the most complex
programs.

TABLE 7. The number of solved programs and total CPU time of BAM.T
for clean RealWorld.{1,2,3,4} programs; C.SOLV: the number of programs
solved by BAM.T for each PROG.SET (difference ratio compared to that of
BAM); T.TIME: the total CPU-time of BAM.T for each PROG.SET (difference
ratio compared to that of BAM).

PROG.SET [ C.SOLV [ T.TIME

RealWorld. 1 691 0%) 32,2225 0%)
RealWorld.2 542 (T 1%) 89,683s (| 6%)
RealWorld.3 385 1 8%) 171, 229s (. 11%)
RealWorld.4 378  (115%) | 287,911s (| 15%)

TABLE 8. The number of solved programs and total CPU-time of LA.T for
clean RealWorld.{1,2,3,4} programs; C.SOLV: the number of programs
solved by LA.T for each PROG.SET (difference ratio compared to that of
LA); T.TIME: the total CPU-time of LA.T for each PROG.SET (difference
ratio compared to that of LA).

PROG.SET | C.SOLV [ TTIME
RealWorld.1 685 (0%) 46,794s (1 1%)
RealWorld.2 499 (1 2%) 97,608 (1 11%)
RealWorld.3 175 (1 4%) | 230,153s (1 3%)
RealWorld .4 61 (0%) 299,179s (1 13%)

Increasing effectiveness is not shown in LA for clean
RealWorld.{1,2,3,4} programs because both LA and LA.T
hardly verify complex programs, as shown in Table 8. LA.T
verifies 2% more programs in 11% less total CPU-time than
LA for clean RealWorld.2 programs. LA.T verifies 4% more
programs within 3% more total CPU-time than LA for clean
RealWorld.3 programs. For RealWorld.1, LA.T does not out-
perform LA because both LA.T and LA solve most of the
target programs. For RealWorld.4, LA.T does not outperform
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LA because both LA.T and LA hardly solve the complex
programs.

C. RQ3: EFFECTIVENESS OF THE PROPOSED
DISTANCE METRICS
The results show that If is the best distance metric in
terms of both the number of solved programs and the
total CPU time for BAM. For LA, bb is the best dis-
tance metric in terms of the number of solved programs.
BAM.TIf (i.e., the best distance metric in terms of both
the number of solved programs and the total CPU time for
BAM) solves 9% (=(2,096-1,923)/1,923) more programs
in 21% (=(924,237-732,531)/924,237) less total CPU-time
than BAM.T.st (i.e., the worst distance metric for BAM) as
shown in Table 9. LA.T.bb (i.e., the best distance metric in
terms of the number of solved programs for LA) solves 2%
(=(1,500-1,471)/1,471) more programs in 12% (=(817,056-
730,531)/730,531) more total CPU-time compared to LA.T.1h
(i.e., the worst distance metric for LA) as shown in Table 10.
The results also show that appropriate distance metric
selection is critical for improving the effectiveness of ARMC.
BAM.T.st, i.e., the worst distance metric selection (solves
1,923 programs in 924,237 seconds of total CPU time), does
not outperform BAM (solves 2,011 programs in 811,820
seconds of total CPU time) despite the error location directed
search.

D. RQ4: EFFECTIVENESS OF THE DISTANCE

METRIC SELECTION

The results show that TOUR with program-specific
distance metric selection outperforms TOUR with a
single-distance metric. BAM.T solves from 20 (=2,116-
2,096) to 193 (=2,116-1,923) more programs by taking from
2% (=(732,531-717,901)/732,531) to 12% (=(924,237-
717,901)/924,237) less total CPU time than BAM.T.{st,bb,lh,
If} techniques as shown in Table 11. LA.T solves from
47 (=1,518-1,471) to 18 (=1,518-1,500) more programs
than LA.T.{st,bb,lh,If} techniques as shown in Table 12.

TABLE 9. The number of solved programs and total CPU time of
BAM.T.{st,bb,lh,If}; C.SOLV: the number of programs solved; T.TIME: The
total CPU time for 3,042 (both buggy and clean) RealWorld programs.

[ C.SOLV [ TTIME
BAMTst | 1,923 924, 237s
BAM.Tbb | 2,044 791, 910s
BAM.TIh | 2,030 789, 4545
BAM.TIf | 2,096 (T 9%) | 732,531s (1 21%)

TABLE 10. The number of solved programs and total CPU time of
LA.T.{st,bb,Ih,If}; C.SOLV: the number of programs solved; T.TIME: The total
CPU time for 3,042 (both buggy and clean) RealWorld programs.

[ C.SOLV [ TTIME
LA Tst 1,500 822, 982s
LA.T.bb 1,500 (T 2%) | 817,056s (T 12%)
LATH 1,471 730, 531s
LATIf 1,499 827, 401s
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TABLE 11. The number of solved programs and total CPU time of BAM.T
and BAM.T{st,bb,lh,If}; C.SOLV: the number of programs solved; T.TIME:
The total CPU time for 3,042 (both buggy and clean) RealWorld programs.

[ C.SOLV [ T.TIME
BAM.T 2,116 717, 901s
BAM.T.st 1,923 (1 10%) | 924,237s (T 12%)
BAMTDb | 2,044 (1 4%) | 791,910s (T 9%)
BAM.T.Ih 2,030 (1 4%) | 789,454s (T 9%)
BAM.T.If 2,006 (L 1%) | 732,531s (T 2%)

TABLE 12. The number of solved programs and total CPU time of
LA.T{st,bb,lh,If}; C.SOLV: the number of programs solved; T.TIME: The total
CPU time for 3,042 (both buggy and clean) RealWorld programs.

[ CSOLV [ TTIME
LAT 1,518 799, 777s
CATst | 1,500 (1 1%) | 822,982s (1 3%)
LATbb | 1,500 (L 1%) | 817,056s (1 2%)
LCATIh | 1,471 (1 3%) | 730,531s (| 10%)
CATI | 1,499 ([ 1%) | 827,401s (1 3%)

LA.T takes from 3% (=(827,401-799,777)/827,401) to 2%
(=(817,056-799,777)/817,056) less total CPU-time than
LA.T.{st,bb,If} while LA.T.Ih takes less total CPU-time
than LA.T.

VIi. CONCLUSION AND FUTURE WORK

In this paper, we introduced TOUR which improves both the
bug detection ability and the verification speed of ARMC.
TOUR is the first ARMC technique that applies directed
search (based on the distance to an error location) for fast
target path detection in interprocedural programs. Addition-
ally, as shown in Section VI-D, the program-specific distance
metric selection heuristic of TOUR contributes to improv-
ing the performance of ARMC. The experimental results
on the 3,042 real-world C program benchmark confirm the
improved model checking performance of TOUR. For exam-
ple, LA using TOUR finds bugs in 118% more programs
than LA for 354 real-world buggy C programs, and BAM
using TOUR finds bugs in 20% more programs than BAM
in 11% less total CPU time than BAM. BAM using TOUR
verifies 15% more programs in 15% less total CPU time for
652 real-world complex clean C programs.

In future work, we plan to develop new distance metrics to
detect not only short but also “good” target paths. Addition-
ally, we plan to extend the directed search with dynamically
adjusting search methods such as those in the dynamic sym-
bolic execution area [47].
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