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ABSTRACT Recent works have demonstrated excellent state-of-the-art achievements in image restoration
and 3D body reconstruction from an input image. The 3D body reconstruction task, however, relies heavily
on the input image’s quality. A straightforward way to solve this issue is by generating vast degraded datasets
and using them in a re-finetuned or newly-crafted body reconstruction network. However, in future usage,
these datasets may become obsolete, leaving the newly-crafted network outdated. Unlike this approach,
we design a universal framework that is able to utilize prior state-of-the-art restoration works and then self-
boosts their performances during test-time while jointly carrying out the 3D body reconstruction. The self-
boosting mechanism is adopted via test-time parameter adaptation capable of handling various types of
degradation. To accommodate, we also propose a strategy that generates pseudo-data on the fly during test-
time, allowing both restoration and reconstruction modules to be learned in a self-supervised manner. With
this advantage, the universal framework intelligently enhances the performance without any new dataset or
new neural network model involvement. Our experimental results show that using the proposed framework
and pseudo-data strategies significantly improves the performances of both scenarios.

INDEX TERMS Restoration, deblur, super-resolution, denoising, 3D body reconstruction, meta-learning,
self-adaptive, pseudo-data.

I. INTRODUCTION
The task of 3D body reconstruction is gaining popular-
ity in recent times. The 3D version of the human body
can be parsed directly using only a single image as input.
Various works [1]–[8] have been explored to achieve this
objective. Unfortunately, these methods rely heavily on the
input data, namely image, that should satisfy the clean sce-
nario. Degraded image case affects negatively unto the body
reconstruction output, and most of the state-of-the-art works
exclude this constraint.

One may solve this issue straightforwardly by synthe-
sizing a large corrupted image dataset and utilizing it in
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a fine-tuned or newly re-created body network. Another
solution is to generate the corrupted images using physi-
cal tools [9] and annotate the 3D body data via external
devices [10]. However, this pre-generated dataset approach
comes with the cost of high labor work while still unable to
support the network in solving the constantly-change real-
world data. This situation subsequently leaves the newly
crafted network to be outdated. To tackle this issue, the recent
trend is shifted to the life-long learning direction, which
can be applied via test-time adaptations instead of running
a single-forward pass algorithm that only depends on the pre-
generated dataset. Recent 3D body reconstruction work [11]
followed this pathway by self-adapting their network using
its test data via meta-learning [12]. However, again, it is
still constrained to the clean image scenario. Thus, solving
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restoration and reconstruction jointly and adaptively is still an
open matter.

With the challenges exposed in the previous discus-
sion, we propose a joint restoration and reconstruction
framework that solely relies on the input data processed
through a test-time self-improvement fashion. Instead of
crafting a genuine neural network architecture, we construct
a framework in the algorithm forms capable of plugging
any deep-learning-based image restoration modules while
jointly tasked with the 3D body reconstruction module. For
that very reason, we define our framework as a universal
one. To achieve the test-time improvement, we present a
self-adaptation algorithm that fits both modules and opti-
mizes them using only the input data. This strategy is
made possible by borrowing the concept of model agnos-
tic meta-learning (MAML) [12] and adjust it within our
algorithm.

Without any new dataset acquired, one might ques-
tion on how the self-adaptive algorithm works seamlessly.
In this work, we introduce the readers to a term coined
as pseudo-data which is generated on-the-fly during the
test-time and aimed to assist our algorithm. Our straight-
forward yet unique approach for acquiring the pseudo-
data is meant to substitute the new dataset approach itself.
The pseudo-data, generated directly from the test input
image, is split into pseudo-clean and pseudo-corrupted
information. Their elaborations, along with our algo-
rithms, are furthermore discussed in the Method section.
The scope of our study in the restoration case involves
3 major degradation-solver, namely: denoising, deblurring,
and super-resolution (SR). Each of these scenarios is worked
jointly with the 3D body reconstruction under the universal
framework.

In the experimental procedures, we show that the test-time
self-adaptive capability is preserved even though the joint
scenario is applied, yielding better results in both quantitative
and qualitative aspects. Furthermore, we analyze the charac-
teristic of each restoration scenario along with the 3D body
reconstruction results. With this finding, future joint frame-
work applications may utilize this information for further
improvements. In summary, we define our contributions as
follows:
• We introduce a modular-based plug-and-play universal
framework (PPUF) encapsulated within a self-adaptive
algorithm capable of receiving any deep-learning-based
image restoration methods while jointly carrying the 3D
body reconstruction task.

• We introduce the utilization of pseudo-data in test-time
as an alternative yet cheap way than generating a new
vast dataset to support our algorithm.

• We show that using the proposed algorithm and pseudo-
data alone within the joint framework, both restoration
and 3D body reconstruction modules work simultane-
ously while producing significant quantitative scores
and visual quality improvements.

II. RELATED WORKS
A. IMAGE RESTORATION AND 3D BODY
RECONSTRUCTION
The work of image restoration has been explored since
decades ago. The arts of restoration are mainly categorized
into deblurring, denoising, and SR scenarios. In the deblur-
ring case, most works focused on motion deblurring tasks.
These studies have been evolved from traditional blur kernel
prediction based [13]–[15] up to the recent kernel-prediction-
free method via deep learning [16]–[18], particularly GAN
strategy [19]. The trends followed by equipping them with
real-world priors such as human faces [20], [21] and bod-
ies [22]–[24]. Denoising and SR works are also evolving
these days. Reference [25] translated the cleaned version
of an image directly from its noisy input. This approach
is made possible by providing the pairs of clean and noisy
images as a training dataset. Many works [26]–[29] then
followed the same strategy with many modifications on the
neural network level. In the SR case, the trends were mov-
ing from the hand-crafted function-based, such as: random
forest [30], [31] and decision tree [32] approaches up to the
common deep-learning utilization [33]–[35]. Although this
work is mainly implemented for the deblurring, SR, and
denoising scenarios, we believe that other restoration, such
as dehazing [36], [37] and de-raining [38], [39] are also
applicable for future implementation.

3D body reconstruction, on the other hand, is a com-
puter vision task that reconstructs a 3D human body
model from an input image. Most works are evolved by
using the statistical human body prior of [40] which is
directly regressed via hand-crafted functions [5], or even
deep-learning [2], [6]–[8], [41] approaches. The earlier
hand-crafted approach by Bogo et al. [5] utilizes the ini-
tial output of the estimated 2D body joints to regress the
statistical body prior final output. The following work by
Kanazawa et al. [6] embraced the deep learning-based imple-
mentation via generative adversarial network [19]. Their
work [6] utilized specific discriminators that constraint
the 3D body reconstruction results within the boundary
of realistic human body poses. Its improved version [41]
is aimed to hallucinate temporal-based 3D body outputs
with plausible movements. Kolotouros et al. [8] introduced
a straightforward refinement from the work of [6] via
body-fitting mechanism during training. The work of Moon
and Lee [2] surpassed their performances by utilizing the
line-based pixel (lixel) information to better regresses the
3D body prior output. In recent times, some additional
works [42]–[44] are tasked to refine temporal-based 3D
body reconstruction works via (i) gated recurrent units that
connect relatable body features in sequential frames [42],
(ii) additional module that penalizes outlier body poses in
adjacent frames [43], and (iii) temporal re-weighting strategy
that balances the sequential frames’ features [44]. Unlike
these human prior-based approaches, Saito et al. [4] avoided
the prior utilization by directly employing the pixel-aligned
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FIGURE 1. The figure above depicts the overall training scheme for our framework. The procedure is started by the initial learning denoted by the blue
arrow. The transferred weight is then trained under the meta-transfer learning (universal meta training) scheme denoted by the brown arrow.

implicit function to predict the 3D cloth-textured human body
output.

B. LEARNING STRATEGIES FOR COMPUTER VISION TASKS
Unlike the discussions above, some arts mainly focus on
strategies that boost the performance. The early work by [45]
utilized on-demand learning to study multiple restoration
cases such as in-painting, pixel interpolation, deblurring,
and denoising being solved separately. Reference [46] then
introduced a reinforcement learning-based restoration that
is able to solve combined cases automatically. Their cases
include deblurring, de-raining, denoising, and de-JPEG-ing.
The work by [47] constructs an architecture that also solves
a similar scenario intending to improve the recognition task.
Recent trends move toward the adaptive learning strategy
to achieve the life-long demand. This demand emphasizes
the capability of any computer vision function to adapt
to the unknown test data instead of relying on the pre-
generated dataset that might become obsolete in future usage.
To achieve it, recent works exploit the model agnostic meta-
learning [12] algorithm that is known to induce the self-
adaptive capability. These particular works in SR [48]–[50],
motion-deblurring [51], video interpolation [52] and body
reconstruction [11] utilize and adjust the meta-learning algo-
rithm to boost their performances in the test phase.

Inspired by these studies, our work is focused on boosting
the joint work of restoration and 3D body reconstruction
without any modification in the network level and additional
dataset. We describe our strategies in the following section.

III. METHOD
Our PPUF is built by a restoration module (RestoNet (f )) fol-
lowed by a 3D body reconstruction module (BodyNet (�)),
which outputs both restored images and reconstructed bodies,
respectively. It is trained into 2 progressive stages, namely:
(i) initial learning, denoted as blue arrow and (ii) meta-
transfer learning, denoted as brown arrow in Figure 1. Once
trained, the PPUF is run through ourmeta-testing algorithm to

FIGURE 2. Our universal meta testing scheme, which executes
pseudo-data extraction, test-time adaptation, and final testing procedure
using the adapted weights. Blue arrows indicate the supervision function
for loss calculation.

perform test-time self-improvement, as reflected in Figure 2.
We elaborate the details from training to testing procedures
on the following subsections:
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A. INITIAL LEARNING
This stage is regarded as the initial procedure of our
scheme. The aim of this training is to transfer the un-
trained weights to their initial trained versions ((f0, �0) →
(fT , �T )) that are robust in solving restoration as well as
3D body reconstruction. The training involves only the
dataset of Human3.6M [10] as it provides the human key-
point ground truth while we carefully degraded the images
according to the degradation scenario: noisy, blurry, and
low-resolution. In the noisy case, we determine the range
of sigma noise randomly between 10 to 20 during train-
ing. In the deblurring case, fixed Gaussian blur with the
window size of 5 × 5 and randomized standard deviation
(σ ) between 0.05 to 1.2 are utilized. Finally, for the case
of SR, we determine the case of 2× downsampling in our
study.

B. UNIVERSAL META-TRAINING
The next stage is to perform the meta-transfer training that
utilizes the output weights fT , �T of initial learning. This
training is aimed to provide initial stable weights of both
modules that are ready to be adapted during meta-testing. Our
strategy in performing this training is visualized in Figure 1
under the chunk of the brown directional arrow (fT , �T ) →
(fM , �M ). This figure is translated directly to our implemen-
tation in Algorithm 1.

Algorithm 1 followed the meta-learning [12] concept as it
is constructed by 2 important snippets: inner-loop (Line 8-12)
and outer-loop (Line 14-18) operations. The idea of this
training is to explore the best weights position for test-
time adaptation. To achieve this goal, our the training algo-
rithm utilizes 2 data samples, namely task-training (T tr )
and task-testing (T te) batches sampled from a data col-
lection p(T ). T tr and T te are utilized within the inner-
and outer-loop scopes of Algorithm 1, respectively. Each
time the networks are optimized within the inner-loop scope
(Line 11-12), their behaviors are supervised by the outer-loop
optimizer (Line 17-18).

From this point forward, we provide the detailed elabo-
ration of Algorithm 1. Algorithm 1 fed the input data of
corrupted image C , clean image L, and the body ground truth
(3D and 2D keypoints) G. These data are re-sampled for the
T tr and T te batches (Line 4-6). The process is then continued
directly to the inner-loop scopewith a pre-determined number
of iterations i (Line 8-12). Our algorithm restores the image
inside the inner-loop to obtain R and reconstruct the 3D body
parameters S from the restored image R. The next step is to
perform a loss calculation (Line 10) that combines restoration
loss Lf and body reconstruction loss L�. In details, Lf is
defined by:

Lf (L,R) = ‖L − R‖2. (1)

Similarly, L� is represented by:

L�(S,G) = ‖P3(S)− P3(G)‖2 + ‖P2(S)− P2(G)‖2, (2)

Algorithm 1 Universal Meta Training
Input: Collection of corrupted C , clean images L, body
ground truth G from data distribution D, restoration model
fT , and 3D body reconstruction model �T
Parameter: Learning rates α, β
Output: Meta-transferred weights of the restoration and
reconstruction models (fM , �M )
1: Initialize f , � with fT , �T .
2: Generate task distribution p(T ) from D.
3: while not done do
4: Sample task batch T tr and T te from p(T ).
5: Obtain data Ca,La,Ga from T tr .
6: Obtain data Cb,Lb,Gb from T te.
7: for i do
8: Restore : f (Ca) = Ra.
9: Reconstruct : �(Ra) = Sa.

10: Eval : Ltr (f , �) = Lf (La,Ra)+ λL�(Sa,Ga).
11: Update : fi← f − α∇f Ltr (f , �).
12: Update : �i← �− β∇�Ltr (f , �).
13: end for
14: Restore : f (Cb) = Rb.
15: Reconstruct : �(Rb) = Sb.
16: Eval : Lte(f , �) = Lf (Lb,Rb)+ λL�(Sb,Gb).
17: Update : fM ← f − α∇f Lte(f , �).
18: Update : �M ← �− β∇�Lte(f , �).
19: end while
20: return meta-transferred : fM , �M

where P3(.) and P2(.) denote the 3D keypoints and
2D keypoints extraction functions, obtained from the
body parameters of Skinned-Multi Person Linear model
(SMPL) [40] using the 3D body reconstruction network
� [6]. Variable a and b represent the data batch index inside
the inner/outer-loop scope, respectively. Instead of using gra-
dient descent in the inner loop, we utilize the ADAMmethod
with certain learning rates α, β for the restoration and recon-
struction cases, respectively. Once the inner-loop operation
is finished, the process is progressed through the outer-loop
algorithm with similar procedures (Line 14-18).

C. UNIVERSAL META-TESTING
The meta-testing is the main actor in executing the self-
improvement strategy. Our meta-testing in the joint frame-
work is reflected in Algorithm 2. Its scheme is shown in
Figure 2 where 3 sub-procedures are run progressively:
(i) pseudo-data extraction followed by (ii) test-time adap-
tation, and the (iii) final meta-testing. These procedures
correspond directly to the Algorithm 2 in Lines 3-5, 6-10,
and 11-12, respectively.

The pseudo-data extraction stage is important as it pro-
vides a cue to perform self-adaptation of the restoration
and reconstruction modules. In our approach, the pseudo-
data is constructed by 2 particular information: pseudo-clean
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Algorithm 2 Universal Meta Testing
Input: corrupted image C , meta-trained model (fM , �M )
Parameter: Learning rates α, β, maximum iterations N
Output: Self-improved restored image R and reconstructed
3D body S
1: Initialize f , � with fM , �M .
2: Initial restoration: f (C0) = R0.
3: Extract pseudo-images : C0,R0→ CP,LP.
4: Intermediate restoration: f (CP) = RI .
5: Extract pseudo-bodies : �T (C0) = SI , �T (RI ) = SP.
6: for n ≤ N do
7: Eval : L(f , �) = Lf (RI ,LP)+ λL�(SI , SP).
8: Update : fn← f − α∇f L(f , �).
9: Update : �n← �− β∇�L(f , �).

10: end for
11: Final restoration : fN (C0) = RN .
12: Final reconstruction : �N (RN ) = SN

and pseudo-corrupted data. The restoration is supported by
the pseudo-corrupted image CP and pseudo-clean image
LP while the reconstruction module is supported by the
pseudo-corrupted body SI and pseudo-clean body SP.
These pseudo-corrupted data are treated as input data, while
the pseudo-clean data is regarded as the label information
during self-supervised learning. In the following discussion,
we describe our strategies to extract this information for vari-
ous restoration cases. For simplicity, we provide the example
of the denoising case in Figure 2.

• Denoising case For the denoising case, we extractCP by
adding a consistent severe noise to the original corrupted
input image (C0). To be precise, we add noise to the
original noisy input (C0) image with the σ level of 20 so
that it becomes severely corrupted (C0 → CP). This
image is then treated as the pseudo-corrupted image
(CP), while the intermediate denoised image from the
input image (R0) is treated as the pseudo-clean image
(LP) (reflected in Line 2-3 in Algorithm 2). The pseudo-
clean and pseudo-corrupted bodies are extracted from
the restored version of R1 (restored from Cp) and its
initial corrupted inputC0, respectively. The visualization
of these approaches are shown in Figure 2 within the
chunks of pseudo-data extraction for restoration and
pseudo-data extraction for reconstruction.

• Super-resolution case In the super-resolution case, the
main objective is to super-resolved low-resolution image
input to a desired 2× spatial dimension. Its pseudo-
corrupted image (CP) is obtained by downscaling the
low-resolution input by 2×. The input is then treated as
pseudo-clean image LP. With this approach, the pseudo-
corrupted image CP has the size of h/2 × w/2, which
is 0.5× smaller than the original low-resolution (h× w)
input image (treated as LP), and 0.25× than the orig-
inal desired output (2h × 2w). Note that, in the SR
approach, the pseudo-clean SP and pseudo-corrupted SI

FIGURE 3. Re-corrupting the test input data (C0) in the super-resolution
case. This chunk can be substituted directly to the pseudo-data
extraction for restoration step in Figure 2.

FIGURE 4. Re-corrupting the test input (C0) data in the deblurring case.
This chunk can be substituted directly to the pseudo-data extraction for
restoration step in Figure 2.

bodies are extracted by the re-upsampled version of LP
(2×) and CP (4×), respectively. The re-upsampling pro-
cess is applied via classical bilinear interpolation. This
approach is visualized in Figure 3 and can be utilized
for replacing the pseudo-data extraction for restoration
chunk of Figure 2.

• Deblurring case In the deblurring case, we firstly obtain
the initial deblurring result of the blurry input image
(C0 → R0). Both the blurry input and the deblurring
result images are then manually blurred with Gaussian
degradation. Specifically, we set the kernel window
of 5 with σ = 0.8. The degraded version of blurry
input (C0 → CP) and the intermediate deblur (R0)
result are treated as pseudo-corrupted (CP) and pseudo-
clean images (LP), respectively. Similar to the denoising
case, the pseudo-clean and pseudo-corrupted bodies are
extracted from the restored version of R1 (restored from
Cp) and its initial corrupted input C0, respectively. This
approach is visualized in Figure 4 and can also be sub-
stituted with the pseudo-data extraction for restoration
chunk of Figure 2.

Take note that in the case of generating the pseudo-body,
we make use of another identical 3D body reconstruction
network (BodyHelp in Figure 2) to produce the pseudo-clean
body SP from the intermediate restored versionRI (Line 4 and
second term of Line 5 of Algorithm 2). The pseudo-corrupted
body is extracted by using the initial corrupted input C0 with-
out being restored (first term of Line 5 of Algorithm 2). The
BodyHelp module itself is excluded for optimization during

VOLUME 9, 2021 162547



J. S. Lumentut et al.: Universal Framework for Joint Image Restoration and 3D Body Reconstruction

FIGURE 5. The plots above are the summary of the quantitative results in performing test-time adaptation for the tasks of image restoration
((a)-(b)) and 3D body reconstruction ((c)-(d)) in 3DPW benchmark cases. The scores are represented in vertical axes. Our method clearly
boosts the performance without modifying the original architectures of the respective modules.

the test-time backpropagation. Once the pseudo-data is ready,
the algorithm performs the adaptation procedure that is run
within a number of iteration (N ), as highlighted in Line 6-10
in Algorithm 2. The self-adaptation test loss (Line 7) is per-
formed by utilizing the same formula of Eqs. 1 and 2. The
adaptation is illustrated in the test-time adaptation chunk
of Figure 2 where the losses calculation is jointly summed,
and only the RestoNet and BodyNet are being backpropa-
gated. In our implementation, we simply utilize an ADAM
optimizer with the learning rates of each respected algo-
rithm (described in Experiment section). After the self-
adaptation procedure, both end-to-end networks (f , �) secure
their adapted position. As illustrated in Figure 2, the red-
dot object (fN , �N ) is already transferred to its new loca-
tion that is adapted according to the pseudo-data. The final
restoration and reconstruction are performed in Line 11-12 to
produce RN , SN .

IV. EXPERIMENT
A. IMPLEMENTATION SETTINGS
In our experiments, several backbone methods are used for
the restoration procedures, namely: URIE [47] (deblurring
and denoising cases) and EDSR [35] (SR case), which are
available in PyTorch. For the backbone of the 3D body
reconstruction function, we opt to utilize the PyTorch-based
method of SPIN [8] without its additional Simplify [5]
optimization, which essentially equals to HMR [6]. These
PyTorch-based methods were elected as our algorithms are
scripted using the Pytorch library. Human3.6M [10] is the
sole dataset utilized in training the whole framework. The
human image of Figures 1 and 2 are obtained through
HumanEVA [53] and InstaVariety [6] dataset for clearer illus-
tration sake. During training, both networks fed the patch
of 224 × 224 following the strict requirement of HMR [6]
that is plugged into our BodyNet module. For deblurring and
denoising cases, α (learning rate for restoration) is set to
1e-03 using URIE [47] method while the SR case utilizes
α=1e-07 as presented in EDSR [35] method. For the 3D
body reconstruction, β (learning rate for reconstruction) and
weighted constant λ are set to 1e-05 and 5.0 respectively,
following the original work [6]. Batch of data sampled, p(T )
is set to 16 with 50:50 ratio divided to T tr (batch size of 8)
and T te (batch size of 8). T tr and T te are utilized within

TABLE 1. PSNR scores of PPUF in various restoration cases.

inner- and outer-loop operations, respectively. The data batch
in T tr are different from the one in T te. The total required
time for the training scheme is around ∼4 days using a Titan
RTX GPU. In testing, the maximum iteration N is set to 20.

B. PERFORMANCE ANALYSIS
1) PRELIMINARY
We provide a vast benchmarking experiment using the
3DPW [54] dataset. We make use the validation (-v) and
test (-t) sets of 3DPW as they provide the human images
and equipped with the body ground truth such as 3D key
points and SMPL [40] parameters. The mentioned annota-
tions are utilized for calculating the mean per joint position
error (MPJPE) and reconstruction error (RE) commonly
used in SMPL-based benchmarking. Lower error scores of
these metrics indicate better results. Note that the training
set of 3DPW [54] is even excluded during the learning pro-
cess of PPUF. The images on the benchmarked set are pre-
degraded randomly before the testing procedure is run. For
the noisy scenario, the noises are varied using the sigma
values from 10 to 20, and they are added directly to the
image. For the blur scenario, we determine the Gaussian
sigma randomly for 0.05 to 1.2 with the kernel size of 5.
The blur is convolved directly in each benchmarked image.
Finally, on the low-resolution scenario, we determine the case
of 2× downsampling following the recent studies [48], [49]
that are directly applied to the input image. The total bench-
mark data of the 3DPW-validation (3DPW-v) and 3DPW-test
(3DPW-t) cases are 10,412 and 35,515 images. The restored
images are then compared with the clean ground truth by the
metrics of peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM). Higher scores indicate better results.

2) JOINT DENOISING AND 3D BODY RECONSTRUCTION
Webegin our analysis by interpreting the results of restoration
as it is run before the reconstruction task. In the case of
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TABLE 2. SSIM scores of PPUF in various restoration cases.

TABLE 3. MPJPE scores of PPUF in various restoration cases.

TABLE 4. RE scores of PPUF in various restoration cases.

denoising, the restoration is consistently improved during
test time. This argument is clearly visible in our quantitative
scores that are presented in Tables 1 and 2 which denote the
PSNR and SSIM scores, respectively. Here, the denoising
cases are shown in the columns of Denoise-v and Denoise-t
where their data is obtained from the validation and test sets
of the images in 3DPW [54]. The degraded images are added
with the noise as previously discussed in the preliminary
section. Thanks to the pseudo-clean and pseudo-corrupted
data generated in test-time, our PPUF is able to improve
the performance by maximum +0.9842 dB (Denoise-v) and
+1.2731 dB (Denoise-t) from the initial denoising outputs.
Similarly, the SSIM gains about +0.04124 (Denoise-v) and
+0.07518 (Denoise-t). The interesting finding here is that the
performance is relatively stable, although the iterations are
increased. Using the PPUF, no PSNR nor SSIM bounce back
to the initial scores. For clarity, these PSNR and SSIM scores
are re-plot in Figure 5 (a)-(b). The graph of Figure 5 (a)-(b)
clearly demonstrate that the scores ofDenoise-v andDenoise-
t are vastly improved between the initial 3 iterations, followed
by a slight yet consistent improvement when the iterations are
increased.

The latter analysis is then aimed at the 3D body reconstruc-
tion result that is coupled with the denoising task. As shown
in Table 3, the MPJPE scores are suppressed with the margin
of −13.843 mm (Denoise-v) and −12.192 mm (Denoise-t)
from the initial 3D body reconstruction outputs. Using the
PPUF, the MPJPE also hold the same characteristic with the
restoration module as the scores jump around −8.804 mm
(Denoise-v) and −9.066 mm (Denoise-t) with only 3 itera-
tions. Similar and consistent results are also reflected in the
RE performance as seen in Table 4. Maximum errors to be
suppressed are −6.798 mm and −6.406 mm for Denoise-v
and Denoise-t cases. Within only 3 iterations, the RE scores
are suppressed by −4.475 mm (Denoise-v) and −4.569 mm

FIGURE 6. Qualitative results of PPUF in noisy case. Electronic screen is
advised for proper viewing.

FIGURE 7. Qualitative results of PPUF in blurry case. Electronic screen is
advised for proper viewing.

(Denoise-t). From the analysis above, it is clear that our PPUF
helps the denoising and 3D body reconstruction module to
self-improve jointly in test time with the capability of fast
adaptation.

The visual performance of the joint denoising and 3D body
reconstruction is shown in Figure 6. From these examples,
detailed structures that were not present in the initial out-
put are recovered after several iterations. The reconstructed
bodies are also improved when the iteration of the PPUF is
increased. The improvements are emphasized in the cropped
regions. From our perception, the reconstructed body tends
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FIGURE 8. Qualitative results of PPUF in low-resolution case. Electronic
screen is advised for proper viewing.

to have a correct initial position while the minor incorrect
position is self-improved within several iterations. Additional
qualitative results in the denoising and 3D body reconstruc-
tion case are provided in the supplementary material.

3) JOINT DEBLURRING AND 3D BODY RECONSTRUCTION
The deblurring restoration within our PPUF framework also
demonstrates its self-improvement capability. In this case,
the deblurring also utilized the pseudo-clean and pseudo-
corrupted data that are extracted during test-time. From
Table 1, The PSNR scores are significantly improved by
+1.529 dB (Deblur-v) and +1.791 dB (Deblur-t). Similar
to the denoising case, large gains are already scored
within 3 iterations as they reach +1.445 dB (Deblur-v)
and +1.731 dB (Deblur-t) improvements. These results are
also improved in the SSIM level by the maximum gain of
+0.02162 (Deblur-v) and +0.03463 (Deblur-t) as written in
Table 2.

In the 3D body reconstruction case, consistent perfor-
mances are also demonstrated in Tables 3 and 4. The pre-
dicted body joints are re-improved by the reduction of the
error scores by −15.646 mm (Deblur-v) and −11.953 mm
(Deblur-t) as shown in Table 3. Similar to the denoising case,
significant cuts are shown within 3 iterations only, indicating
that the task of deblurring and 3D body reconstruction suc-
ceed in performing fast adaptation jointly.

Qualitative results are shown in Figure 7 where weak arti-
facts are restored after several iterations. The case of rendered
3D body reconstruction results shows a clear difference.
Partial body regions are clearly improved after iterations
occur. Figure 7 shows that the foot positioning are even
re-corrected according to the depth position. To our visual
perception, most updates are developed in the scale as well as
the body-joint rotations levels. Additional qualitative results

in the deblurring and 3D body reconstruction case are also
provided in the supplementary material.

4) JOINT SUPER-RESOLUTION AND 3D BODY
RECONSTRUCTION
In terms of super-resolution, our restoration results still main-
tain high scores output. Unlike the denoising and deblur-
ring cases, the super-resolution is improved slightly by
+0.421 dB (SR-v) and+0.029 dB (SR-t) as shown in Table 1.
Nonetheless, the achieved gains present in each iteration case
denote that the PPUF still maintain the SR module’s self-
improvement capability with no tendency to get significantly
lower scores when iterations are increased. This phenomenon
indicates that the SRmodule in PPUF avoids the catastrophic
forgetting [55] effect, which is a performance reduction
anomaly due to the inability to preserve initial knowledge.

Interestingly, the 3D body reconstruction results in the SR
case achieve the best performance compared to other degra-
dation cases. This phenomenon indicates that the SR case is
relatively easier to be solved by the reconstruction module.
As shown in Tables 3 and 4, the MPJPE and RE scores of
(SR-t) obtain the values of 121.425 mm and 69.889 mm,
respectively. These scores are improved through themargin of
−14.869 mm and −7.819 mm compared to each respective
initial output. These results are directly reflected in the qual-
itative outputs in Figure 8 where restoration performance is
still preserved with high quality, while the body reconstruc-
tion is significantly improved over iterations.

With the vast experiments above, our work proves that
any restoration and 3D body reconstruction arts can be cou-
pled to achieve test-time adaptation. The self-improvement
capability can be achieved thanks to the assistance of the
pseudo-training data introduced in the test stage. Moreover,
we demonstrate the nature of fast-adaptation capability using
the proposed PPUF as most of the modules obtain vast gains
within few iterations. Using only the prior works within our
modules, we observe that adaptive learning is feasible as
long as they are adjusted with a correct algorithm and reli-
able information, such as pseudo-clean and pseudo-corrupted
data. More qualitative results in the SR and 3D body recon-
struction case are also provided in the supplementary mate-
rial. We suggest the readers check all the visual results on
an electronic screen. The supplementary material is provided
in video format to accommodate the reader to easily view
the test-time improvement of the restoration and 3D body
reconstructions results.

While we demonstrate the successes above, our method,
like other self-adaptive works, requires extra time to per-
form test-stage iterations (Line 6-10 in Algorithm 2). How-
ever, our algorithm only spends around ∼3.5 seconds to run
both restoration (SR case using EDSR [35]) and reconstruc-
tion (using HMR [6]) for 20 iterations using the input of
224× 224× 3 image in a Titan RTX machine. The case of
denoising or deblurring (using URIE [47]) joint with the
reconstruction task takes about ∼2.8 seconds. Thus, future
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work that solves automatic-iteration-cutting can benefit test-
time self-improvement schemes in joint-task scenario.

V. CONCLUSION
We presented a universal framework in the algorithm forms
capable of utilizing various prior state-of-the-art restoration
modules, particularly in solving denoising, deblurring, and
SR, while jointly taskedwith 3D body reconstructionmodule.
Our work is motivated by the need for life-long learning
that focuses on adaptive capability while avoiding the clas-
sic approach that requires a vast amount of datasets and
re-crafting specific novel networks that suit the datasets.
With the support of the pseudo-training data during test-
time, our framework can perform temporary self-supervised
training that yields to the performance gain. By this approach,
both restoration and reconstruction modules are endowed
with self-adaptive capability. Our experimental results show
that coupling these tasks with a correct framework and reli-
able pseudo-data obtain significant improvement even within
a few iterations without any performance drop anomaly.
We believe our exploration can be further extended to the
more challenging restoration tasks such as dehazing and
de-raining as their synthesized data are feasible.
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