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ABSTRACT High power white light emitting diodes (LEDs) are the widely opted eco-friendly alternate light
source over incandescent lamps due to their lower power consumption and longer lifetime. The emerging
market demand for LEDs brings about the critical need for adequate reliability testing and lifetime prognosis
as they are predominantly used in uncontrolled environments. The common wear-out failure modes of
LEDs include light output (luminosity) degradation and color shift. Commercially available LEDs have
prolonged lifetime of about 70,000h which makes it impractical to obtain real-time degradation data, which
subsequently complicates the ability to accurately predict the lumen maintenance life. Several attempts have
been made by researchers to develop physics of failure models and / or data driven models for predicting the
remaining useful life (RUL) of LEDs. However, these methods lack generalizability and do not address the
prediction uncertainties caused by unit-to-unit variation. This calls for the need to develop robust prediction
algorithms capable of handling variations in degradation trends due to manufacturing process, system design
and environmental / operating conditions. This study proposes a hybrid prognostic approach which combines
particle filters (PF) and neural networks (NN). The run-to-failure trend of one LED in a lot is used to model a
feedforward neural network and the model parameters are optimized using the particle filter algorithm. The
PF trained NN model is further used for RUL prediction for other LED devices in the lot enabling variations
to be accounted for and naturally embedded into the prognostic framework. The accuracy of proposed hybrid
approach was evaluated using RMSE as the performance metric.

INDEX TERMS Hybrid prognostic algorithm, particle filters, neural networks, remaining useful life, light
emitting diodes (LEDs).

I. INTRODUCTION

Light Emitting Diodes (LEDs) are rapidly dominating the
global markets for solid state lighting (SSL) replacing tradi-
tional light sources such as incandescent bulbs and fluores-
cent lamps. LEDs are energy efficient, environment friendly
and have low health impact due to low UV radiation [1].
Unlike traditional light sources, the efficiency of LEDs does
not depend on its shape or size which makes them a perfect
choice for aviation lighting, television display backlighting,
automobile headlamps, general illumination etc. Although
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LEDs are not used in safety critical applications, there is still
a clear need for better reliability studies in order to meet
the performance expectations of the end-use solutions that
leverage on them.

Prognostics is the study of predicting the remaining useful
life of a system or a device under regular operating use
conditions. Prognostic methodologies have been successfully
applied to several engineering systems or devices such as
lithium-ion batteries [2]-[4], bearings [5], [6], gears [7], [8],
composite materials [9] etc. Applying prognostic method-
ologies on LEDs for predicting the lumen maintenance life
benefits the manufacturers as well as the users by shortening
qualification testing time and enabling faster time to market.
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The common failure modes of LEDs discussed in liter-
ature are light output degradation and color shift beyond a
predefined user-defined threshold. Based on reliability stud-
ies, the Alliance for Solid-State Illumination Systems and
Technologies (ASSIST) categorizes the lumen lifetime as
L50 (light output decline by 50% with reference to the ini-
tial light output) or L70 (70% light output degradation with
reference to initial light output) [10]. Also, many leading
LED manufacturers such as Philips®Lumileds and CREE
strictly adhere to IES (Illuminating Engineering Society)
recommended TM-21 regression methods as the standard
protocol for predicting the lifetime of LED products. The
TM-21 method is a mathematical formulation wherein an
exponential curve is fit to the lumen degradation data between
1000h to 6000h and subsequently, the exponential model is
extrapolated to determine the lifetime of the LEDs. Thus,
it has become a common practice among researchers to com-
pare their method against the TM-21 protocol. However, TM-
21 is incapable of projecting lumen degradation data under
multiple operating/loading conditions. Also, TM-21 projec-
tion method requires at least 6000 hours of lumen depreci-
ation data to be precisely collected at sampling intervals of
1000 hours. Hence, TM-21 method cannot be used as a robust
lifetime estimation tool as data collected from longer / shorter
streams cannot be directly utilized for projection.

Prognostic algorithms are broadly categorized as model-
based methods, data-driven methods and hybrid approaches.
For model-based methods, complete understanding of
the system failure mechanisms, operating conditions and
influence of environmental factors are imperative. Based on
information about system behavior, a physical / empirical
/ phenomenological model that represents the system best
is used for predicting the future behavior of the system.
Data driven methods, on the other hand, identify underlying
degradation patterns/trends in the failure data and use that
information to predict the future state of the system/device.

Amongst model-based methods, filtering-based prognostic
approaches are commonly used for predicting the RUL of
electronic devices. However, they were not the popular choice
for prognosis on LEDs. To name a few, Fan et al. [11] mod-
eled the lumen degradation data of high-power white LEDs
using a nonlinear exponential model and used an unscented
Kalman filter prognostic approach to predict the lumen main-
tenance life. The authors extended their work to predict the
chromaticity shift in phosphor converted white LEDs [12].
In this case, the chromaticity state shift was modeled using
a dual-exponential model. The prediction results of both the
proposed methods were found be more accurate than the
prediction using the TM-21 standard. However, Kalman filter
based methods are severely limited by the assumptions of
linearity and Gaussian noise. Hence, Fan et al. [13] further
developed a particle filter based prognostic approach which
can be applied on non-linear systems with non-Gaussian
noise and proposed this as a replacement to the TM-21 stan-
dard regression method. A single term exponential model was
used to formulate the damage evolution model describing the
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LED lumen degradation. Compared to the TM-21 method,
the PF based prognostic approach predicted the lumen main-
tenance life with a prediction error of less than 5%.

Data-driven methods, on the other hand, are consid-
ered as black-box methods as they rely on statistical and
pattern recognition approaches and do not require spe-
cific failure models. Apart from the least square regres-
sion method recommended in TM-21 standards, several
adaptations of non-linear regression models such as inverse
power law model [14], Arrhenius model [15] and Weibull
functions [16] were employed for predicting the RUL of
LEDs. Chang et al. [17] developed a relevance vector
machine (RVM) regression model to capture the transient
degradation dynamics caused by unit-to-unit variations. The
authors used similarity weights as a measure to deduce the
degree of affinity between two different degradation trends.
Their results showed that the LED qualification testing time
can be reduced drastically from 6000 hours to 210 hours.

Duong et al. [18] proposed yet another prognostic method
using multi-output Gaussian process regression (MO-GPR).
The authors used two sets of experimental data under differ-
ent operating conditions from Ref. [17] to test the proposed
MO-GPR method. The basic idea of the proposed method was
to implicitly learn the correlation between the degradation
traces and use that information to optimize the hyperparame-
ters of the MO-GPR. The results were compared against the
prediction results using particle filters and proved to be effec-
tive even when there were very few historical data available
for training and when the data were not regularly sampled.
However, the prediction accuracy of all the above-mentioned
regression-based methods was compromised due to uncer-
tainties in operating/loading conditions and discontinuities in
data collection. Alternatively, Liu et al. [19] used two dif-
ferent artificial neural network (ANN) model for predicting
the lifetime of multi-chip high power LED light source. The
first ANN was used to quantify the temperature distribution of
high-power white LEDs from the finite element model (FEM)
simulations and the second ANN was subsequently used for
lifetime predictions.

The implementation of prognostic methodologies for
LEDs is particularly challenging owing to the lack of standard
and uniform criteria for evaluating the performance of LEDs.
Though lumen degradation and color shift are the common
failure mechanisms accounted for in literature, these failures
can be triggered by several/combined long-term decays due
to chip degradation, encapsulate degradation and phosphor
degradation etc. Also, these failure mechanisms are difficult
to distinguish which poses hindrance to the development of
failure-specific physical models as well as obtaining training
data that clearly define the underlying state of the system.

One effective approach to address the above-mentioned
concerns is to use hybrid prognostic methods which inte-
grate the strengths of physics of failure models with the
versatility of data-driven methods. Hybrid prognostic algo-
rithms have been successfully applied on several electronic
devices [20]-[23], mechanical systems [8], [24], [25] and
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microelectromechanical systems [26]. Sutharssan et al. [27]
attempted to propose a fusion prognostic approach for LEDs
by combining the logistic regression method with Kalman
filters. However, it was a mere conceptual description and the
authors stopped short of providing any substantial prediction
results.

In this work, we propose a new hybrid prognostic approach
combining particle filters and neural networks for estimat-
ing the RUL of LEDs. Particle filters proved to be a more
robust approach for LED prognosis with its ability to predict
the RUL distribution along with confidence intervals over a
deterministic lifetime prediction, which is less effective and
often subject to large margin of error when it comes to risk-
informed decision making for maintenance or replacements.
In order to overcome the lack of availability of sophisticated
physics-informed damage evolution models to capture all the
intricacies of the degradation traces in the PF framework
and also accounting for the fact that certain unique degra-
dation patterns may be process / manufacturing / equipment
use related and nothing in particular to do with the physics
involved, we propose to use the neural network architecture
as a surrogate model. The choice of neural network model
over other statistical models such as ARIMA was made to
describe the often-complex non-monotonic degradation time
dynamics of LEDs under consideration. The failure modes in
LEDs can range from chip level defects such as dislocations
or dark spots to system level degradation such as degradation
of the cooling element used in an array of LEDs to lower the
junction temperature. Thus, the lumen degradation of LEDs
is influenced by several factors such as materials, thermal
properties and operating conditions. In order to model such
highly non-linear degradation trend, neural network models
would be best suited because of their ability to capture and
learn complex patterns. To the best of our knowledge, this
is the first attempt to propose a PF-NN hybrid algorithm for
LED prognosis.

This paper is organized as follows. In Section II, the LED
lumen degradation data used in this work is explained along
with appropriate NN model selection methods. In Section III,
conventional prognostic approaches namely the feedforward
neural network model and standard particle filter algorithm
are introduced and the prediction results using these con-
ventional methods for LED lumen degradation dataset is
presented. In Section IV, the proposed hybrid prognostic
approach integrating particle filters and neural networks is
introduced and the prediction results for two LEDs using
the proposed approach are presented in Section V. Finally,
Section VI summarizes the present study and also provides
possible recommendations for future work.

Il. DEGRADATION DATASET AND MODEL SELECTION

A. LUMEN DEGRADATION DATASET

The experimental results obtained by Chang et al. in Ref. [17]
are used as the degradation dataset in this work. Sixteen high
power LEDs each with a rating of 3W and maximum junction
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FIGURE 1. (a) The LED lumen degradation dataset of 3 LEDs obtained
from Ref. [17]. The black curve represents the fitted curve for LED-1 using
NN degradation model (b) The fitted curve for LED-1 using 2,3 and

4 hidden neurons.

temperature of 135°C were placed in a temperature chamber.
Aging tests were conducted for all 16 LEDs inside the thermal
chamber with a drive current of 450mA at 55°C. The test
conditions were regulated such that the temperature inside the
chamber does not exceed the maximum junction temperature
of the LEDs. The lumen degradation data for 3 out of the 16
LEDs based on the L70 failure criteria are shown in Fig. 1(a).
LED-1 was used for training and LED-2 and LED-3 were
used as the test dataset in our study. In both the neural network
and particle filter-based analyses which will be shown in the
subsequent sections, we set the failure threshold to be 75%.

B. NN MODEL ARCHITECTURE SELECTION

Selecting an appropriate NN model entails the selection of a
network architecture with optimum number of hidden neu-
rons. Ideally, the number of neurons with the best fit to the
training data is chosen. The network size should be large
enough to fit the data well and at the same time small enough
to reduce overfitting. Thus, the choice of network size affects
the performance of the network model. However, there aren’t
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TABLE 1. BIC analysis of different NN model architectures comprising of
different number of hidden neurons.

No. of Hidden No. of Parameters
Neurons to be estimated BIC Value
2 7 7.9538
3 10 7.8662
4 13 7.8604
5 16 8.3024
6 19 8.1415

any hard-and-fast rules in literature for proper NN model
selection. Hence, for the purpose of our study, we resort to
Bayesian Information Criteria (BIC) to select the network
size. The key idea behind choosing BIC as the metric for
model selection is that BIC measures the ‘in-sample’ fit (i.e.,
model fitness to the training data) but also penalizes the model
based on number of parameters to be estimated by the model.
BIC is defined as

BIC = g *in(n) — 2 = In(L) 1)

where L is the maximized value of the likelihood function of
the model, n is the size of the training dataset and ¢ is the num-
ber of parameters to be estimated by the model. In this study,
the training data is fit into model equations with number of
hidden neurons varying from 2 to 6 (keeping the number
of hidden layers confined to 1). The likelihood function of
the corresponding fitted curve is used for BIC analysis. The
model with minimum BIC value is considered as the best
suited model. The curve fitting results for training dataset
(LED-1) using 2, 3 and 4 neurons are shown in Fig.1(b). The
BIC values pertaining to different network size are shown in
Table 1. Based on the BIC analysis, 4 hidden neurons were
chosen as the appropriate network size for our study.

Ill. PROGNOSTIC ANALYSIS USING STANDARD NEURAL
NETWORK AND PARTICLE FILTERS
A. FEEDFORWARD NEURAL NETWORKS (FFNN)
In this work, a Multi-Layer Perceptron (MLP) with one hid-
den layer and four hidden neurons was chosen for the purpose
of prognosis. For RUL estimation, the feed-forward neural
network (FFNN) model operates in two modes — Training
and Prediction. In the training mode, run-to-failure data of
one of the LED devices in the sample lot is fed as input to the
network model. The input signal is connected to each of the
neurons in the hidden layer and is characterized by weight
(m/l.) and bias (bé) coefficients. While training the network
model, the network parameters (W} and b)) are initialized with
arbitrary values and a backpropagation learning algorithm
is used to iteratively adjust the weight and bias values. The
network parameters are adjusted to reduce the mean squared
error value (MSE) till the parameters converge to an optimal
value.

In the prediction mode, the NN model with network param-
eters estimated in the training mode are used to predict the
failure trend of the test device. The schematic of the network
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FIGURE 2. The schematic representation of Multi-Layer Perceptron (MLP)
neural networks.

architecture used in this work is shown in Fig.2. The MLP
network is characterized by a sigmoidal activation function
between the input and hidden layer and a linear activation
function between the hidden and output layer. The sigmoid
activation function can be expressed as

1
hi=——— 2
U1l s @

where wf.l) and bl(.l) are the weight and bias values correspond-
ing to the input node and k is the time in hours. The time
k for LED lumen degradation is fed into the NN model as
input. It is to be noted that the time k here is not an index of
time data but the actual value of time itself. The Levenberg-
Marquart (LM) learning algorithm is used for training the
network model and the predicted output of the network can
be expressed as:

M
1 1 2 2
8(00, ) 0 = O G (ks + 50 w®) + 52
i=1
3)
where W§2) and bgz) are the weight and bias values associated
with the hidden layer, ng) and bgl) are the weight and bias
values corresponding to the input node and M is the number of
hidden neurons in the NN network. The input layer activation
function is represented by A(.) and the network output g(.)
gives the predicted light output with respect to time k (in
hours).

B. STANDARD PARTICLE FILTER (SPF)

Particle Filters (PF) are a class of non-linear filters based on
sequential Monte Carlo methods. The schematic represen-
tation of the prognostic framework using particle filters is
shown in Fig. 3. In Bayesian filtering techniques, the system
state is represented by a probability density function (pdf).
The basic idea of particle filters is to approximate the system
state pdf by a set of weighted particles. The initial prior
distribution is generated based on user knowledge of system
behavior and the underlying failure mechanisms. A suitable
physical / empirical model which best describes the system
dynamics is chosen as the degradation model. The weighted
particles are propagated through the degradation model.

The degradation model parameters are recursively updated
for all the available measurement data as per Bayes theorem.
This process is called state estimation.

Once the model parameters are tuned to best represent the
dynamics of the system, the degradation model is extrap-
olated to predict the future state of the system. A suitable
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FIGURE 3. The schematic representation of particle filter prognostic
framework.

failure threshold is assumed based on prior knowledge of the
system and the model is propagated with respect to time till
the failure threshold is reached. This process is called state
prediction.

In this work, the neural network model described in Eqn.
(3) is used as the underlying degradation model representing
the system dynamics. Thus, the state transition and measure-
ment function of the PF algorithm can be expressed as

Xk = Xp—1 + wg—1 (€]
7% = glxy, k) + & ()

where x; and x;_; refer to the current and previous state
respectively and @y _1 is the process noise. The state transi-
tion function g, which is where the physical failure model is
usually induced in an incremental form, is now replaced by
the NN degradation model represented by Eqn. (3) and &y is
the measurement noise.

C. RUL ESTIMATION USING FFNN AND STANDARD PF

For FFNN method, LED-1 dataset was used for training a
NN model of 4 hidden neurons using the LM algorithm.
The trained NN model was used to predict the degradation
behavior of LED-2 and LED-3. The network model was
executed for 50 repetitions with 50 random arbitrary initial
values for weights and biases. The prediction results for
LED-2 using FFNN is shown in Fig.4(a). Itis evident from the
prediction results that the degradation traces mostly follow
the training dataset barring a few traces which follow the
actual degradation data of LED-2 depicted by the black curve
in Fig.4(a).

In this work, the choice of 4 hidden neurons was made
based on BIC analysis as already explained in the previous
section. The network size of 4 hidden neurons had the best
fit with minimum BIC values. The curve fitting results are
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FIGURE 4. The prediction curves using the standard prognostic
approaches (a) feedforward neural network (FFNN) model and

(b) standard particle filter (SPF) algorithm. The gray lines in (a) and (b)
represent the prediction traces using 50 repetitions of NN and

5000 particles, respectively.

shown in Fig.1(b). From literature, it can also be inferred
those 4 or 5 hidden neurons are an optimal choice for RUL
prediction in systems with two-phase degradation trends [28].
Thus, despite introducing considerable complexity into the
network model, the trained FFNN model failed to capture the
true degradation trend of the test dataset and the prediction
traces only followed the training dataset, not the test dataset.

As an alternative to the data-driven analysis, we now ana-
lyze the dataset using the PF framework. The initial parameter
guess for the state transition model for the PF was obtained
from curve fitting results.

The NN model (4 hidden neurons) equation expressed
in Eqn. (3) was formulated as an incremental luminosity
degradation model for PF. The algorithm was executed with
5000 particles and the prediction traces for all 5000 particles
are shown in Fig. 4(b).

The results clearly indicate highly unsatisfactory perfor-
mance as the degradation traces completely diverge away
from the actual failure data depicted by the black curve in
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Fig.4(b). The accuracy and performance of the PF algorithm
primarily depends on the model accuracy. Even though a NN
model with adequate complexity (4 hidden neurons) is used
as the degradation model here, 260 hours of available data is
insufficient for the algorithm to estimate the large number of
model parameters (13 of them) accurately. Also, the PF algo-
rithm inherently suffers from weight decay problems due to
particle degeneracy and impoverishment thereby hampering
the diversity of the predicted posterior parameter distributions
which could also affect its performance.

The incompetency of the two standard (FFNN and Stan-
dard PF) prognostic approaches are evident from the pre-
diction results shown in Fig. 4. Moreover, it is to be noted
that the degradation trends shown in Fig.1(a) were obtained
under specific testing conditions and a change in testing
conditions such as a lower drive current or a higher tem-
perature can further alter the lumen degradation behavior of
LEDs. Such scenarios can further worsen the performance
of conventional prognostic approaches. In order to address
these issues, we propose a hybrid particle filter trained neural
network model which has the capability to overcome the
generalization bottleneck faced by conventional approaches.

IV. PROPOSED HYBRID PROGNOSTIC FRAMEWORK

The overall flowchart of the proposed hybrid particle fil-
ter trained neural network framework (HyA) is shown in
Fig. 5. The proposed hybrid approach works in two-stages
— (A) State Estimation and (B) State Prediction. Similar to
conventional prognostic approaches discussed in Section III,
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LED-1 dataset is used for training the NN model and curve
fitting parameters of LED-1 dataset were used to generate
the initial prior distribution for the PF algorithm. A uniform
distribution with £ 3% bounds of the true parameter value
obtained from curve fitting were generated and this was fed
into the PF algorithm as the initial parameter guess values.
The NN model parameters i.e., weight and bias coefficients
then get optimized using the PF algorithm. PF algorithm
recursively updates the model parameters using the degrada-
tion model expressed in Eqn. (3) till the actual End-of-Life of
LED-1. These steps enable the degradation model to estimate
the state parameters closer to the actual / true value and hence
referred to as the state estimation stage of our overall HyA
framework.

Appropriate initialization of the weight and bias coeffi-
cients is crucial for a proper convergence of the NN model.
In this work, the PF estimated model parameters were fed
into the State Prediction stage of HyA. This ensures that
the NN model used for state prediction in PF is config-
ured with informed values of weight and bias coefficients
as a replacement to an arbitrary assignment of weights and
biases. To elaborate further, the posterior distribution of
the NN parameters is represented using a histogram. The
bin with the highest frequency is selected and the corre-
sponding bin width were identified and labelled as lower
limit (LL) and upper limit (UL) as shown in Fig. 5. A uni-
form distribution with the upper and lower limits for each
of the model parameters (weights and biases) were gen-
erated and 50 sets of random samples from that uniform
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FIGURE 6. The lumen degradation prediction curves for LED-2 using the proposed hybrid prognostic approach (HyA) at (a) 260h, (b) 360h and
(c) 560h. The gray lines represent the prediction traces for 50 repetitions and the dotted magenta lines are the obvious classified outliers.

distribution were fed into the NN model as initial weight / bias
coefficients.

The tuned NN model was executed for 50 repetitions
and each repetition was configured with one combination
of the random sample generated from the uniform distri-
bution of NN parameters as the initial parameter guess
values. In other words, the NN model is now being fed
with a non-deterministic pseudo-distribution of weights and
biases represented by the 50 values (instead of a single
point value that is commonly assigned in general, that too
arbitrarily).

The informed initial parameter configuration of the NN
in the HyA framework constrains the NN model parameters
to hover around closer to the true values (of the training
dataset) thus enabling better as well as faster convergence for
prognostication on the test dataset. Finally, the tuned FFNN
degradation model was further fine-tuned on-the-fly for all
the available measurement data from the test dataset using
the LM algorithm. The failure threshold was set to be at 75%
of the initial luminosity and with this definition, the RUL
distribution for the test LED was estimated.

V. RESULTS AND DISCUSSION

A. RUL PREDICTION USING HyA

The run-to-failure data of LED-1 was chosen for training
as stated in the previous sections. The HyA was executed
for 50 repetitions and for each repetition, the weights and
biases for NN were sampled from the uniform distribution
approximation to the highest frequency bin of the PF param-
eter posterior distribution. The prediction results for LED-2
at 260 hours and 360 hours, are shown in Fig. 6(a) and
Fig. 6(b), respectively. For 260 hours, the predictions were
unable to capture the actual degradation trend even though
only 5 repetitions were needed to be classified as unsuc-
cessful/outliers. A particular repetition was considered to be
successful if the prediction trace falls within the 2o bounds
of the predictions. Additionally, if the prediction trace follows
a monotonically increasing trend, then it was considered an
outlier as well. The outliers based on the above-mentioned
criterion are represented by dotted (shown in magenta) lines
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in Fig. 6. The divergent or exponentially increasing trends
observed in few of the traces can be attributed to weight
decay (overfitting / underfitting) while training the NN model
in the state prediction stage of HyA. Very large or very
small weights can cause the output function to be rough and
produce outputs which are beyond the actual range of the data
at a given time instant.

However, for 360 hours, the prediction results clearly
shows that most of the prediction traces manage to capture
the entire degradation trend. Also, all the 50 repetitions were
found to be successful with no monotonically increasing
trends and all the predictions traces with the 2 o bounds
as shown in Fig. 6(b). Barring a few traces, the predic-
tion error for about 45 out of 50 traces were found to be
within acceptable limits. Subsequently, with the availability
of a greater number of measurement data in the test dataset
up to 560 hours, the prediction success rate improved as
shown in Fig. 6(c). Almost 46 out of 50 traces were able
to trace the actual degradation trend. The confidence interval
of the prediction traces of successful repetitions were found
to be narrower compared to the predictions at 360 hours
indicating that with the availability of more data, the NN
model learns the degradation trend better (as one should
expect).

The remaining useful life of the LED can be estimated by

RUL; = EOL — k (©6)

where i refers to the NN repetition count, EOL is the actual
end of life of the LED and k is the failure threshold. The true
RUL of a device is the difference between End-of-life of the
device and the prediction starting point.

The RUL distribution for LED-2 is plotted in Fig. 7. The
RUL values corresponding to successful repetitions (remov-
ing the obvious outliers) were chosen for the purpose. The
actual end-of-life of LED-2 based on assumed failure thresh-
old (75% light output) was found to be 1180 hours. Thus, the
true RUL for 260 hours as the prediction starting point falls
at 920 hours. The RUL distribution at 260 hours is shown in
Fig. 7(a). A large RUL prediction error of about 250 hours
can be observed at 260 hours due to weight decay and the
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TABLE 2. Comparison of RMSE Values with confidence interval (Represented by the 5t and 95th Percentile) for Different Prediction Methods for Test

Data Sets, LED-2 & LED-3 at 260h, 360H and 560h.

LED -2 LED -3
Prognostic
Method 260h 360h 560h 260h 360h 560h
5th 50th 95th 5th 50th 95th 5th 50th | 95th Sth 50th 95th 5th 50th 95th 5th 50th | 95th
PF 14.01 14.63 15.21 8.32 8.58 8.94 8.33 8.98 9.16 11.88 12.05 12.05 9.22 9.97 10.05 8 8.33 8.58
FFNN 4.12 6.58 1045 | 2.97 6.01 12.08 | 2.14 | 4.37 6.66 2.06 5.98 10.43 1.43 5.12 9.78 1.09 3.77 8.96
HyA 3.49 7.03 6.08 3.69 5.63 7.19 0.99 2.56 4.02 2.88 5.52 8.00 1.11 3.98 7.43 2.97 3.03 4.32
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FIGURE 7. The prediction RUL distribution for LED-2 using the proposed hybrid prognostic approach (HyA) at (a) 260h, (b) 360h and
(b) 560h. The green lines represent the true RUL at the respective prediction starting points.
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FIGURE 8. The lumen degradation prediction curves for LED-3 using the proposed hybrid prognostic approach (HyA) at (a) 260h, (b) 360h and
(c) 560h. The gray lines represent the prediction traces for 50 repetitions and the dotted magenta lines are the obvious classified outliers.

wide confidence interval discussed earlier. However, the RUL
prediction error reduced drastically to 10 hours for predic-
tions made at 560 hours as shown in Fig. 7(c).For LED-3
on the other hand, the prediction results were found to be
better and more accurate than LED-2. The prediction results
for LED-3 at 260 hours, 360 hours and 560 hours are shown in
Figs. 8(a), 8(b) and 8(c) respectively. The corresponding RUL
distributions for LED-3 is shown in Fig. 9. The actual end-
of-life of LED-3 was at 1000 hours and hence the true RUL
corresponding to the three different prediction starting points
mentioned above were 740 hours, 640 hours and 440 hours
respectively.

The RUL prediction error were determined to be below
20 hours for all three prediction starting points and there were
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no weight decay issues observed in the prediction results.
The NN weight and bias evolution using standard FFNN
and HyA are discussed in detail in subsection C. It is to be
noted that HyA predictions do not detect the sharp kink in the
degradation trend at 750 hours for both LED-2 and LED-3.
This leaves room for further improvement to optimize the
proposed approach by using a more complex NN architecture
such as RNN or LSTM.

Predictions at 760 hours were performed as well for both
the LEDs and the proposed method outperformed conven-
tional approaches with very good prediction accuracy. For
the sake of brevity, the results are not discussed in this work.
Of the 3 LEDs considered in this work, LED-3 was found to
degrade rapidly. However, the prediction results for LED-3
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FIGURE 9. The prediction RUL distribution for LED-3 using the proposed hybrid prognostic approach (HyA) at (a) 260h, (b) 360h
and (b) 560h. The green lines represent the true RUL at the respective prediction starting points.

using the proposed hybrid approach were found to be even
better than that of LED-2. Thus, it can be concluded that the
proposed approach efficiently captures rapidly deteriorating
non- exponential trends and has the ability to handle unit-to-
unit variations effectively.

B. PERFORMANCE EVALUATION

The commonly used prognostic performances metrics are
root mean squared error (RMSE), mean absolute percentage
error (MAPE) and mean absolute error (MAE). MAPE and
MAE gives the absolute error between the true and predicted
values whereas RMSE gives the standard deviation of the
residuals. MAPE and MAE are not sensitive to outliers com-
pared to RMSE values. So, RMSE is comparatively a more
stringent metric than MAPE and MAE. Hence, we use root
mean square (RMSE) as the performance metric to compare
the prognostic abilities of FFNN and standard PF with the
proposed HyA approach. RMSE is a measure of deviation of
predicted values from the actual degradation data and can be
expressed as:

1
RMSE = | - Z (Xpredicted — xtrue)i )
n k=T

where # is the size of the training dataset, T is the prediction
starting point and & is the time (in hours). The RMSE values
with its confidence intervals (represented by the 5™ and
95" percentile values) for all three prognostic approaches
for both LED-2 and LED-3 are listed in Table 2 for the
three prediction time instants of {260, 360, 560} hours. From
Table 2, it can be inferred that the proposed hybrid algo-
rithm (HyA) in general clearly outperforms both the conven-
tional prognostic approaches with a considerably low value
of RMSE.

Computational time is yet another important aspect to con-
sider while developing prognostic approaches. From Table 3,
it can be observed that standard particle filters with 5000 par-
ticles offer the fastest prognosis. However, the prediction
accuracy of PF is poor for two-phase degradation phenomena.
Similarly, the standard FFNN takes an average of 22 seconds
for execution; however, it has poor performance in terms of
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TABLE 3. Comparison of Computational Time for Different Prediction
Methods for Test Data Sets for LED-2 & LED-3.

Method Computational Time at 360 hours (secs)
LED-2 LED-3
PF 8.81 8.32
FFNN 23.45 21.43
HyA 44.08 43.75

RMSE values. Thus, Hy A proves to be an affordable choice of
prognostic algorithm for achieving good performance accu-
racy with a moderate computational load. It is to be noted
that the simulations were executed in a DELL workstation
(Model- Inspiron 14 —5459) with 16GB RAM and Intel Core
i5 processor.

It is to be noted that there is only one prior study that
we can make some comparison of our results with, which
is the study that reported the raw data used in this work,
Ref. [17]. The authors in Ref. [17] use a simpler definition
of the prediction error purely based on the predicted and true
RUL and taking that less stringent definition (for the sake of
comparison), the average error reported in their work for the
LED data sets studied here is ~2.47%. In comparison, the
average error in RUL prediction based on our HyA frame-
work is ~ 1.67%. This further illustrates the robustness of our
framework.

C. NN MODEL PARAMETER EVOLUTION TRACKING

In order to understand the proposed HyA approach further,
we investigated the parameter evolution during NN training
process based on the backpropagation learning algorithm.
We observed the individual trend for all the 13 parameters
in the NN degradation model used in this work. The weights
and bias values are the learnable parameters of the NN model.
Although the existence of one unique set of optimum NN
parameters which best approximates the degradation data is
improbable, we can deduce a set or a band of NN parameters
which best fits the data. We performed two different case
studies to understand the NN parameter evolution w.r.t time
during training.
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(a) FFNN Input Weight/Bias Evolution
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FIGURE 10. The NN input weight and input bias evolution on the test data set for (a) FFNN with deterministic
initial parameter values and (b) HyA using stochastic PF estimated initial parameter values. The gray lines
represent the parameter evolution traces for 50 repetitions. The yellow lines represent the true values from
curve fitting and the cyan lines represent the mean of the PF estimated parameter values.

1) CASE STUDY 1 — NN PARAMETER EVOLUTION WITH
DETERMINISTIC INITIAL PARAMETER VALUES

Traditionally, the initial parameters values in a standard
FFNN model are arbitrarily assigned and the network
parameters evolve during backpropagation to obtain the
desired output. A standard FFNN model with one hidden
layer and 4 hidden neurons was formulated. The backprop-
agation learning occurs in our NN model using the LM algo-
rithm as it has a faster convergence rate compared to gradient
descent. Also, LM algorithm has the ability to find an optimal
solution even if the initial parameter values are far from the
true parameter values.

The LED — 1 dataset was used for training the FFNN
and for this, the deterministic curve fit parameter values of
LED - 1 using Eqn. (3) were set as the initial deterministic
seed values for the weights and biases in the FFNN. The
NN model was then trained using LM algorithm and the
trained model was used to predict the degradation trend of
the test dataset (LED -2). The NN model was trained with
maximum number of iterations set at 100 1.e., 100 iterations of
backpropagation. The motive behind choosing 100 iterations
was to enable the NN model to learn the degradation trend
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better with the expectation that the model parameters would
eventually converge closer to the true values. The trained
NN model was executed for 50 repetitions for predicting the
degradation state of the test dataset and for each repetition,
the initial parameter values were configured to be the deter-
ministic curve fit extracted values of the training dataset. The
parameter evolutions for the test dataset during backpropaga-
tion (training) were obtained. The input side weight and bias
evolution trends are shown in Fig. 10(a).

The yellow line represents the assumed true parameter
value from curve fitting results of LED — 1 (training dataset).
It can be seen that the input side parameters (grey line traces)
for the test dataset (LED — 2) before backpropagation hover
around the true values. However, after backpropagation, the
output side weight and bias values were found to be erratic
and failed to converge towards the true values as shown in
Fig.11(a). Since the output layer information is critical as it
represents the desired output (lumen output in our case study)
from the network, it can be concluded that the FFNN fails
to train the model with one run-to-failure training dataset
effectively and hence produces poor predictions subsequently
for test datasets LED-2 and LED-3.
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(a) FFNN Hidden Weight/Output Bias Evolution
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FIGURE 11. The NN hidden weight and output bias evolution on the test data set for (a) FFNN with deterministic initial parameter values and (b)
HyA using stochastic PF estimated initial parameter values. The gray lines represent the parameter evolution traces for 50 repetitions. The yellow
lines represent the true values from curve fitting and the cyan lines represent the mean of the PF estimated parameter values.

100

2) CASE STUDY 2 — NN PARAMETER EVOLUTION

WITH STOCHASTIC INITIAL PARAMETER VALUES

FROM PF ALGORITHM

The NN parameter evolutions for the proposed HyA algo-
rithm were also analyzed for comparison. In this case, 50 set
of network parameters obtained from the posterior distribu-
tion of PF algorithm (on the training data set) were used
to configure the NN model. The NN model was trained for
100 iterations and the trained model was executed for 50 repe-
titions. Unlike the standard FFNN model which is configured
with deterministic initial parameter values for each repetition,
the proposed HyA is configured with one new set of PF
trained network parameter values for each repetition. This
attributes to an informed initial parameter configuration each
and every time the algorithm is executed. From Fig. 10(b),
it can be seen that the input side parameters vary drastically
for all 50 repetitions. However, after training, the output side
weight and bias values converge towards the mean of the
PF estimated values (cyan line) as shown in Fig. 11(b). The
cyan line represents the mean of the PF estimated values and
the yellow line represent the true values obtained from curve
fitting. We may infer from the NN parameter evolution in
Fig. 11(b) that the variance in the parameter evolution traces
for HyA is lower than that observed for standard FFFN shown
in Fig.10(b). Thus, it can be concluded that the proposed
HyA algorithm optimizes the model parameters efficiently.
The outliers found in the prediction traces in Figures 6 and 8
using the proposed HyA can be attributed to the few NN
parameter evolution traces which are astray (divergent) from
the PF estimated values as seen in Figs. 10(b) and 11(b).

VI. CONCLUSION
In this work, a hybrid prognostic approach integrating particle
filters and neural networks has been proposed to predict the
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lumen degradation of high-power white LEDs. A feedfor-
ward neural network model was formulated to capture the
light output degradation of LED using curve fitting func-
tions. A uniform distribution of curve fitted parameters within
+3% bounds was used for the initial prior distribution in the
particle filter algorithm. The lumen degradation data of 3
LEDs from literature were used to test the performance of the
proposed approach. The PF algorithm was used to obtain the
posterior distribution of the NN model parameters compris-
ing of weights and bias coefficients for the training dataset,
LED-1. The tuned NN model imbibing the PF estimated
model parameter distributions was further used to predict
the remaining lumen maintenance life of other two LED test
datasets. To the best of our knowledge, the proposed approach
is the first of its kind to be tested for LED lumen degradation
prediction. The prediction results of the proposed HyA were
compared with the conventional standard FFNN and standard
PF approaches. The proposed method proved to be more
effective, efficient and adaptable compared to the conven-
tional purely data and purely model-based approaches using
RMSE and computational time as the metrics for comparison.

Based on our in-depth study, it can be concluded that the
proposed approach is a powerful methodology to address the
prognostic concerns of systems/devices showing significant
unit-to-unit variations, non-monotonicity and even perhaps
varying operating conditions in their degradation profiles.
Note that the accuracy of the prognosis very much depends
on the choice of several parameters for the NN and PF which
include the number of hidden layers, number of neurons and
type of activation function (for NN) and the number of par-
ticles, resampling strategy, underlying degradation model as
well as initial prior distribution (for PF). We have accounted
for all these considerations in our work and chosen the opti-
mal NN architecture by making use of the BIC metric.
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For future work, we intend to introduce suitable weight
regularization methods to the proposed hybrid algorithm.
This can be done by using suitable resampling/roughening
methods within the particle filter algorithm in order to
avoid particle degeneracy and impoverishment. Also, our cur-
rent proposed method uses a purely mathematical empirical
degradation model formulation using the NN architecture as
the only foundation. In order to capture the inflections in the
degradation pattern and the overall trend, a suitable physics
informed model could be used as a surrogate model so that
the NN is only used to capture the residuals and inflections
while the overall trend envelope is captured by the phys-
ical / phenomenological laws of degradation, which might
enable even simpler NN architectures to be used with fewer
model parameters to be learnt without compromising on the
effectiveness of degradation pattern capture and resulting in
further improvisation of the RUL prediction accuracy.
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