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Abstract
In this article, we introduce a new geometrical structure that is the hybrid of a cone
metric space over Banach algebra and a controlled metric-type space. We introduce a
new metric space and prove analogs of Banach-, Kannan- and Reich-type fixed-point
theorems. We also furnish various concrete examples to establish the validity of our
results. The obtained results generalize many well-known results in the literature.
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1 Introduction
In 2018, Mlaiki et al. [1] proposed the idea of controlled metric-type spaces that is the
generalization of a b-metric space [2]. For more information on b-metric spaces and more
generalizations, see [3–6]. They used θ : U × U → [1,∞) instead of b in the triangular
inequality condition by a different approach from Kamran et al. [7] who proposed the
idea of extended b-metric spaces. They established a Banach-like contraction and proved
some fixed-point results in such spaces. This shows that the class of such type of spaces is
much more larger than the class of b-metric spaces and the class of metric spaces. Using
the idea of a controlled metric-type space, several authors have published a number of
papers in different directions (see [8–10]).

In 2007, Huang and Zhang [11] initiated the concept of a cone metric space over a Ba-
nach space as the generalization of metric spaces. They used an ordered Banach space E
instead of R as the range set of metric d, i.e., they used d : X × X → E. They also discussed
Banach-type contraction and proved some fixed-point results. Then, many researchers
gave attention to the study of fixed-point results in such spaces. Rough estimates show
that, more than six hundred papers have been published dealing with the cone metric
spaces [12]. However, recently, some scholars obtained that a cone metric space (X, d) is
equivalent to the usual metric space (X, d∗), where they defined the real-valued metric
function d∗ as the nonlinear scalarization function ξe [13]. However, the current situation
altered when Liu and Xu [14] introduced cone metric spaces over a real Banach algebra.
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They defined generalized Lipschitz mapping and proved some fixed theorems. They es-
tablished a concrete example to elucidate that the fixed-point results in cone metric spaces
over Banach algebras are not equivalent to those in metric spaces. Later, in 2016, Huang
and Radenovic [15] extended the idea of a cone metric space over Banach algebras to cone
b-metric spaces over Banach algebras. They proved Banach- and Kannan-type theorems
for such spaces (see also [16]).

In 1971, Reich [17] introduced a new type of contraction that we call Reich contraction.
It was a generalization of the well-known Banach contraction and Kannan contraction (see
[18, 19]). On the other hand, Samet et al. [20] initiated the idea of α-admissible mapping
in metric spaces. Recently, Malhotra et al. [21, 22] used the idea of α-admissibility in cone
metric spaces over Banach algebras and proved Banach-type and Kannan-type theorems.
Later, in 2017, Hussain et al. [23] used the concept of α-admissible mapping in cone b-
metric spaces over Banach algebras and proved Banach-type results in such spaces.

In this paper, we introduce the definition of a controlled cone metric-type space over a
Banach algebra and then we prove some fixed-point results. We also furnish an example
to show the validity of our obtained results. The last section of this paper consists of some
important consequences of our results. Throughout the paper, we will use only real Banach
algebras with identity.

2 Preliminaries
Let (A,‖ · ‖) be a real Banach algebra with zero element θ . A cone K in A is a nonempty
closed subset of A such that P2 = P ·P ⊆P ,P ∩ (–P) = θ ,P +P ⊆P and λP ⊆P for all
λ ≥ 0. If the interior of K denoted by intK is nonempty, then the cone K is called a solid
cone. If we define a relation 	 on A by t 	 v if and only if v – t ∈ K, then 	 is a partial
order on A. We write t � cv if and only if v – t ∈K and t �= v. Define another partial order
� on A by t � v if and only if v – t ∈ intK. A cone K in A is said to be a normal cone
if for all t, v ∈ A with θ 	 t 	 v, there exists a real number M > 0 such that ‖t‖ ≤ M‖v‖.
The normal constant of K is the least positive constant M for which the above inequality
holds.

Let (A,‖ · ‖) be a unital Banach algebra with identity element e. An element t ∈ A is
said to be invertible if there exists v ∈A such that tv = vt = e. A complex number λ ∈ C is
said to be the spectral value of v ∈A if v – λe is noninvertible in A. The set of all spectral
values of v ∈ A that is denoted by σ (v) is called the spectrum of v. The number rσ (v) (or
r(v)) defined by rσ (v) = sup{|λ| : λ ∈ σ (v)} is called the spectral radius of v ∈A.

Lemma 2.1 ([24]) Let A be a Banach algebra with identity e. Then, the spectral radius r(v)
of v ∈A satisfies

r(v) = lim
n→∞

∥
∥vn∥∥1/n. (2.1)

Furthermore, if r(v) < |λ| for some v ∈A, then (λe – v) is invertible,

(λe – v)–1 =
∞

∑

i=0

vi

λi+1 and r
[

(λe – v)–1] ≤ 1
|λ| – r(v)

.

Lemma 2.2 ([24]) Let A be a Banach algebra and u, v ∈A. If u and v commute, then

r(u + v) ≤ r(u) + r(v) and r(uv) ≤ r(u)r(v).
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Definition 2.3 ([25]) Consider a Banach algebra A with solid cone K. A c-sequence is a
sequence {un} in K such that for every c � θ , there exists N ∈ N such that un � c for all
n ≥ N .

Lemma 2.4 ([15]) Let α,β ∈K be two arbitrary vectors and {un}, {qn} be two sequences in
a solid cone K of a Banach algebra A. Then, {αun + βqn} is a c-sequence.

Lemma 2.5 ([26]) LetA be a Banach algebra andK be a cone inA (it need not be a normal
cone). Then, the following hold:

(u1) If for each c ∈ intK, θ 	 p � c, then p = θ .
(u2) If p ∈K is such that r(p) < 1, then ‖pn‖ → 0 as n → ∞.
(u3) Let c ∈ intK and qn → θ in A as n → ∞. Then, there exists N ∈N such that qn � c

for all n ≥ N .
(u4) If p 	 pk, where p, k ∈K and r(k) < 1, then p = θ .

Definition 2.6 ([15]) Let X be a nonempty set and b ≥ 1 be a constant. A mapping db :
X×X →A is called a cone b-metric over a Banach algebra A if the following axioms hold:

(B1) for all p, t ∈X, db(p, t) � θ and db(p, t) = θ if and only if p = t;
(B2) for all p, t ∈X, db(p, t) = db(t, p);
(B3) for all p, t, u ∈X, there exists b ≥ 1 such that db(p, u) 	 b[db(p, t) + db(t, u)].

The pair (X, db) is called a cone b-metric space over a Banach algebra A.

Remark 2.7 If b = 1, then we say that d1 is a cone metric over a Banach algebra A. Hence,
we can say that a cone b-metric is a generalization of a cone metric.

Example 2.8 Consider the Banach algebra A = C([0, 1]) with unit element e(t) = 1 and
supremum norm where multiplication is defined point-wise. Let X = R and K = {f ∈ A :
f (l) ≥ 0;∀l ∈ [0, 1]}. Define db : X×X →A by

db(p, q)(t) = |p – q|aet , ∀x, y ∈X & a > 1.

Then, db is a cone b-metric on X over a Banach algebra A with b = 2a–1, but it is not a
cone metric on X.

Definition 2.9 ([15]) Let {uk} be a sequence in X where (X, db) is a cone b-metric space
over a Banach algebra A. Then, {uk} is said to be

(i) a convergent sequence that converges to p ∈X if for every c ∈ intK(i.e., θ � c), there
exists a natural number N such that db(uk , p) � c for all k ≥ N ;

(ii) a Cauchy sequence if for every c ∈ intK(i.e., θ � c), there exists a natural number N
such that db(uk , ui) � c for all k, i ≥ N .

The pair (X, db) is said to be a complete cone b-metric space if every Cauchy sequence
in X is convergent in X.

Remark 2.10 ([15, 26]) (i) If {pn} converges to p in X, then {db(pk , p)} and {db(pk , pk+i)} are
c-sequences for any i ∈ N.

(ii) If ‖pk‖ → 0 as k → ∞, then for any c � θ , there exists N ∈N such that for all n > N
we have pk � c.
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Definition 2.11 ([1]) Let X be a nonempty set and s : X × X → [1,∞). A function ds :
X×X → [0,∞) is called a controlled metric type if for all p, v, t ∈X it satisfies

(i) ds(p, v) = 0 iff p = v;
(ii) ds(p, v) = ds(v, p);

(iii) ds(p, t) ≤ s(p, v)ds(p, v) + s(v, t)ds(v, t).
The pair (X, ds) is then called a controlled metric-type space.

Remark 2.12 If for all p, q ∈ X, s(p, q) = b for some b ≥ 1, then Definition 2.11 coincides
with the definition of a b-metric space.

Theorem 2.13 ([1]) Let (X, ds) be a complete controlled metric-type space where ds is con-
tinuous. Let � : X →X be a given mapping such that

ds(�p,�q) ≤ κds(p, q) for all p, q ∈X, (2.2)

where κ ∈ [0, 1), and for each p0 ∈X

sup
m≥1

lim
i→∞

s(pi+1, pi+2)
s(pi, pi+1)

s(pi+1, pm) <
1
κ

, (2.3)

where pi = Tip0. In addition, assume that for every x ∈X, we have

lim
n→∞ s(xn, x) and lim

n→∞ s(x, xn) exist and are finite. (2.4)

Then, � has a unique fixed point 	 and for each y ∈X, �ky → 	.

Now, we want to recall the definitions of generalized α-admissible, α-regular, and gener-
alized Reich-type mappings in the setting of cone b-metric spaces over a Banach algebra.

Definition 2.14 ([27]) Let (X, db) be a cone b-metric space over a Banach algebra A with
K an underlying solid cone. Let α : X × X → [0,∞) and � : X → X be given mappings.
Then,

(i) � is said to be a generalized α-admissible mapping if for all p, q ∈X,α(p, q) ≥ b
implies that α(�p,�q) ≥ b;

(ii) (X, db) is said to be α-regular if for every sequence {uk} ∈X with α(uk , uk+1) ≥ b for
all k ∈ N so that uk → p, α(uk , p) ≥ b.

Definition 2.15 ([27]) Let (X, db) be a cone b-metric space over a Banach algebra A with
coefficient b, K an underlying solid cone, and α : X × X → [0,∞) be a function. Then, a
mapping � : X →X is called a generalized Reich-type contraction if there exist v1, v2, v3 ∈
K such that for all p, q ∈X with α(p, q) ≥ b,

(i) 2br(v1) + (b + 1)r(v2 + v3) < 2;
(ii) d(�p,�q) 	 v1d(p, q) + v2d(p,�p) + v3d(q,�q).

3 Main results
In the following, we introduce a new type of metric space over a real Banach algebra that
is called a controlled cone metric-type space over a Banach algebra. Using such spaces we



Ullah et al. Journal of Inequalities and Applications         (2022) 2022:52 Page 5 of 19

prove some fixed-point theorems for generalized Reich-type contractions and generalized
Lipschitz mappings. Our results extend and generalize some previous well-known results
in the literature.

Definition 3.1 Let A be a real Banach algebra with cone K, X be a nonempty set, and
s : X×X → [1,∞) be a function. A controlled cone metric type onX over a Banach algebra
A is a mapping ds : X×X →A such that

(E1) ds(p, q) � θ for all p, q ∈X and ds(p, q) = θ iff p = q;
(E2) ds(p, q) = ds(q, p) for all p, q ∈X;
(E3) ds(p, v) 	 s(p, q)ds(p, q) + s(q, v)ds(q, v) for all p, q, v ∈X.

The pair (X, ds) is then called a controlled cone metric-type space over a Banach algebraA.

Remark 3.2 It is clear that the class of controlled cone metric-type spaces over Banach
algebra A is larger than the classes of b-metric spaces and metric spaces over Banach
algebras.

The definition of Cauchy sequences, convergent sequences, and completeness for a con-
trolled cone metric-type space over a Banach algebra are the same as cone b-metric spaces
over a Banach algebra defined in Definition 2.9.

In general, ds is not necessarily a continuous function, but in this paper ds will always
mean a continuous function ds : X×X →A.

Example 3.3 Let X = {1, 2, 3} and s : X×X → [1,∞) be defined as s(p, q) = 1 + p + q. Con-
sider the real Banach algebra A = R

2 with solid cone K = {(a, b) ∈ R
2 : a, b ≥ 0}. Assume

that we define ds : X×X →A by

ds(1, 2) = ds(2, 1) = (100, 100);

ds(1, 3) = ds(3, 1) = (1200, 1200);

ds(3, 2) = ds(2, 3) = (800, 800);

ds(1, 1) = ds(2, 2) = ds(3, 3) = (0, 0) = θ .

Clearly, the first and second conditions of a controlled cone metric-type space over a Ba-
nach algebra A are satisfied. For the third condition, we have

s(1, 3)ds(1, 3) + s(3, 2)ds(3, 2) – ds(1, 2)

= 5(1200, 1200) + 6(800, 800) – (100, 100) = (10,700, 10,700) ∈K;

s(1, 2)ds(1, 2) + s(2, 3)ds(2, 3) – ds(1, 3)

= 4(100, 100) + 6(800, 800) – (1200, 1200) = (4000, 4000) ∈K;

s(2, 1)ds(2, 1) + s(1, 3)ds(1, 3) – ds(2, 3)

= 4(100, 100) + 5(1200, 1200) – (600, 600) = (5800, 5800) ∈K.

Hence, for all p, q, v ∈X,

ds(p, v) 	 s(p, q)ds(p, q) + s(q, v)ds(q, v).

Thus, (X, ds) is a controlled cone metric-type space over a Banach algebra A = R
2.
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Remark 3.4 Let (X, ds) be a controlled cone metric-type space over Banach algebra A with
s : X×X → [1,∞). If A = R and K = [0,∞), then (X, ds) is a controlled metric-type space.

We now define a generalized α-admissible mapping and an α-regular space in terms of
controlled cone metric-type spaces over Banach algebras.

Definition 3.5 Consider a controlled cone metric space (X, ds) over a Banach algebra A
and K an underlying solid cone in A. Let � : X →X and α : X×X → [0,∞) be mappings.
Then,

(i) � is said to be a generalized α-admissible mapping if for p, q ∈ X,α(p, q) ≥ s(p, q)
implies that α(�p,�q) ≥ s(�p,�q);

(ii) (X, ds) is said to be α-regular if for every sequence {uk} ∈X with
α(uk , uk+1) ≥ s(uk , uk+1) for all k ∈N so that uk → q, α(uk , q) ≥ s(uk , q).

We are now able to define a generalized Reich-type contraction in the setting of con-
trolled cone metric-type spaces over a Banach algebra.

Definition 3.6 Let (X, ds) be a controlled cone metric-type space over Banach algebra A
withK an underlying solid cone and α : X×X → [0,∞) be a function. Then, a mapping� :
X → X is called a generalized Reich-type contraction if there exist three vectors v1, v2, v3

in K such that for all p, q ∈X with α(p, q) ≥ s(p, q),
(i) 2s(p, q)r(v1) + (s(p, q) + 1)r(v2 + v3) < 2 and for each u0 ∈X with um = �

mu0,

lim
m,i→∞

s(ui+1, ui+2)
s(ui, ui+1)

s(ui+1, um) <
1

‖κ‖ ,

where κ = (2e – v)–1(2v1 + v)forv = v2 + v3;
(ii) ds(�p,�q) 	 v1ds(p, q) + v2ds(p,�p) + v3ds(q,�q).

The main result of our paper is given as follows:

Theorem 3.7 Let (X, ds) be a complete controlled cone metric-type space over a Banach
algebraAwithK an underlying solid cone and α : X×X → [0,∞) a mapping. Suppose that
the mapping � : X → X is a generalized Reich-type contraction with vectors v1, v2, v3 ∈ K
such that

1. � is a generalized α-admissible mapping;
2. there exists u0 ∈X such that α(u0,�u0) ≥ s(u0,�u0);
3. (X, ds) is regular or � is continuous.

Then, there exists a point 	 in X that is fixed under the mapping �.

Proof Let u0 be a point in X such that α(u0,�u0) ≥ s(u0,�u0). For u0 ∈ X, if we define
u1 = �u0, u2 = �u1 = �(�u0) = �

2u0, . . . , un+1 = �un = �
n+1u0, then

α(u0, u1) ≥ s(u0, u1).

However, � is generalized α-admissible and thus

α(�u0,�u1) = α(u1, u2) ≥ s(u1, u2),
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and so by induction we obtain

α(un, un+1) ≥ s(un, un+1).

By Definition 3.6, we have

ds(un, un+1) = ds(�un–1,�un)

	 v1ds(un–1, un) + v2ds(un–1,�un–1) + v3ds(un,�un),

that is,

(e – v3)ds(un, un+1) 	 (v1 + v2)ds(un–1, un). (3.1)

Similarly,

ds(un+1, un) = ds(�un,�un–1)

	 v1ds(un, un–1) + v2ds(un,�un) + v3ds(un–1,�un–1),

i.e.,

(e – v2)ds(un+1, un) 	 (v1 + v3)ds(un–1, un). (3.2)

Adding (3.1) and (3.2), we obtain

(2e – v2 – v3)ds(un, un+1) 	 (2v1 + v2 + v3)ds(un–1, un).

If we take v = v2 + v3, then we obtain

(2e – v)ds(un+1, un) 	 (2v1 + v)ds(un–1, un). (3.3)

Note that

2r(v) ≤ (

s(un, un+1) + 1
)

r(v) ≤ 2r(v1) +
(

s(un, un+1) + 1
)

r(v) < 2.

Hence, r(v) < 1 < 2 and r(v) < 2. Thus, by Lemma 2.1, we deduce that 2e – v is invertible
and (2e – v)–1 =

∑∞
n=0

vn

2n+1 , r((2e – v)–1) < 1
2–r(v) .

Thus, (3.3) becomes

ds(un, un+1) 	 κds(un–1, un), (3.4)

where κ = (2e – v)–1(2v1 + v). The inequality (3.4) implies that for all n ∈N

ds(un, un+1) 	 κds(un–1, un) 	 κ2ds(un–2, un–1) 	 · · · 	 κnds(u0, u1). (3.5)

Now, if we take m > n, then by (3.5), Definition 3.1 and (E3), we have

ds(un, um)
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	 s(un, un+1)ds(un, un+1) + s(un+1, um)ds(un+1, um)

	 s(un, un+1)ds(un, un+1) + s(un+1, um)s(un+1, un+2)ds(un+1, un+2)

+ s(un+1, um)s(un+2, um)ds(un+2, um)

	 s(un, un+1)ds(un, un+1) + s(un+1, um)s(un+1, un+2)ds(un+1, un+2)

+ s(un+1, um)s(un+2, um)s(un+2, un+3)ds(un+2, un+3)

+ s(un+1, um)s(un+2, um)s(un+3, um)ds(un+3, um)

	 . . .

	 s(un, un+1)ds(un, un+1) +
m–2
∑

i=n+1

( i
∏

j=n+1

s(uj, um)

)

s(ui, ui+1)ds(ui, ui+1)

+

( m–1
∏

k=n+1

s(uk , um)

)

ds(um–1, um)

	 s(un, un+1)κnds(u0, u1) +
m–2
∑

i=n+1

( i
∏

j=n+1

s(uj, um)

)

s(ui, ui+1)κ ids(u0, u1)

+

( m–1
∏

k=n+1

s(uk , um)

)

κm–1ds(u0, u1)

	 s(un, un+1)κnds(u0, u1) +
m–2
∑

i=n+1

( i
∏

j=n+1

s(uj, um)

)

s(ui, ui+1)κ ids(u0, u1)

+

( m–1
∏

k=n+1

s(uk , um)

)

s(um–1, um)κm–1ds(u0, u1)

	 s(un, un+1)κnds(u0, u1) +
m–1
∑

i=n+1

( i
∏

j=n+1

s(uj, um)

)

s(ui, ui+1)κ ids(u0, u1)

	
( n

∏

j=0

s(un, un+1)

)

κnds(u0, u1) +
m–1
∑

i=n+1

( i
∏

j=0

s(uj, um)

)

s(ui, ui+1)κ ids(u0, u1)

= ds(u0, u1)
m–1
∑

i=n

( i
∏

j=0

s(uj, um)

)

s(ui, ui+1)κ i.

In the above steps, we use the fact that s(p, q) ≥ 1 and thus x 	 s(p, q)x for any x ∈A. Let

an =

( n
∏

j=0

s(uj, um)

)

κns(un, un+1) and S =
∞

∑

n=1

an.

Since by Definition 3.6, ‖κ‖ limm,i→∞ s(ui+1,ui+2)
s(ui ,ui+1) s(ui+1, um) < 1, the series S converges ab-

solutely. Using the ratio test, we have

lim
n→∞

‖an+1‖
‖an‖ ≤ lim

n→∞
‖κ‖‖κn‖(

∏n+1
j=1 s(uj, um))s(un+1, un+2)

‖κn‖(
∏n

j=1 s(uj, um))s(un, un+1)
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= ‖κ‖ lim
n,m→∞

s(un+1, un+2)
s(un+1, un+1)

s(un+1, um) < 1.

However, A is a Banach algebra and the series S is absolutely convergent and so con-
verges in A. Thus, Sm–1 – Sn = [

∑m–1
i=n (

∏i
j=0 s(uj, um))s(ui, ui+1)κ i] → θ as n, m → ∞ and so

is ds(u0, u1)(Sm–1 – Sn). Hence, by Lemma 2.5, for every c � θ , there exists a natural num-
ber n0 such that for all n ≥ n0, ds(un, um) � c. Thus, by Definition 2.9, {un} is a Cauchy
sequence in X. However, X is complete and so there exists 	 ∈ X such that un → 	 as
n → ∞.

We show that 	 is fixed under the mapping �.
Suppose that � is continuous. It follows that un+1 = �un →�	 as n → ∞. However,the

limit of a sequence is unique and so we have �	 = 	. Hence, 	 is fixed under the mapping
� in this case.

However, if (X, ds) is α-regular, then by Definition 3.5, we obtain

α(un,	) ≥ s(un,	) for all n ∈N

and

ds(	,�	)

	 s(	,�un)ds(	,�un) + s(�un,�	)ds(�un,�	)

	 s(	,�un)ds(	,�un) + s(�un,�	)
[

v1ds(un,	) + v2ds(un,�un) + v3ds(	,�	)
]

	 s(	,�un)ds(	,�un) + s(�un,�	)v1ds(un,	) + s(�un,�	)v3ds(	,�	)

+ s(�un,�	)v2
[

s(un,	)ds(un,	) + s(	, un+1)ds(	, un+1)
]

= s(	,��un)
(

e + s(un+1,�	)v2
)

ds(	, un+1) + s(un+1,�	)v3ds(	,�	)

+ s(un+1,�	)
(

v1 + s(un,	)v2
)

ds(un,	),

which further implies that

(

e – s(un+1,�	)v3
)

ds(	,�	) 	 s(	,�un)
(

e + s(un+1,�	)v2
)

ds(un+1,	)

+ s(un+1,�	)
(

v1 + s(un,	)v2
)

ds(un,	). (3.6)

Similarly,

ds(	,�	)

	 s(	,�un)ds(	,�un) + s(�un,�	)ds(�un,�	)

= s(	,�un)ds(	,�un) + s(�un,�	)ds(�	,�un)

	 s(	,�un)ds(	,�un) + s(�un,�	)
[

v1ds(	, un) + v2ds(	,�	) + v3ds(un,�un)
]

	 s(	,�un)ds(	,�un) + s(�un,�	)v1ds(un,	) + s(�un,��	)v2ds(	,�	)

+ s(�un,�	)v3
[

s(un,	)ds(un,	) + s(	, un+1)ds(	, un+1)
]

= s(	,�un)
(

e + s(un+1,�	)v3
)

ds(	, un+1) + s(un+1,�	)v2ds(	,�	)
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+ s(un+1,�	)
(

v1 + s(un,	)v2
)

ds(un,	),

which further implies that

(

e – s(un+1,�	)v2
)

ds(	,�	) 	 s(	,�un)
(

e + s(un+1,�	)v3
)

ds(un+1,	)

+ s(un+1,�	)
(

v1 + s(un,	)v3
)

ds(un,	). (3.7)

Therefore, by adding (3.6) and (3.7), we obtain

(

2e – s(un+1,�	)v2 – s(un+1,�	)v3
)

ds(	,�	)

	 s(	, un+1)
(

2e + s(un+1,�	)v2 + s(un+1,�	)v3
)

ds(un+1,	)

+ s(	,�	)
(

2v1 + s(	,�	)v2 + s(	,�	)v3
)

ds(un,	),

i.e.,

(

2e – s(un+1,�	)v
)

ds(	,�	) 	 s(	, un+1)
(

2e + s(un+1,�	)v
)

ds(un+1,	)

+ s(	,�	)
(

2v1 + s(	,�	)v
)

ds(un,	). (3.8)

We also note by Definition 3.6 that

2r
(

s(un+1,�	)v
)

= 2s(un+1,�	)r(v) ≤ 2s(un+1,�	)r(v1) +
(

s(un+1,�	) + 1
)

r(v) < 2,

i.e., r(s(un+1,�	)v) < 1 < 2. Thus, by Lemma 2.1, 2e – s(un+1,�	)v is invertible and so (3.8)
implies that

ds(	,�	) 	 (

2e – s(un+1,�	)v
)–1[s(	, un+1)

(

2e + s(un+1,�	)v
)

ds(un+1,	)

+ s(	,�	)
(

2v1 + s(	,�	)v
)

ds(un,	)
]

. (3.9)

By Remark 2.10, the sequences {ds(un+1,	)} and {ds(un,	)} are c-sequences. Hence,
by Lemma 2.4, the sequence {τ1ds(un+1,	) + τ2ds(un,	)} is a c-sequence (where τ1 =
(2e– s(un+1,�	)v)–1s(	, un+1)(2e+ s(un+1,�	)v) and τ2 = (2e – s(un+1,�	)v)–1s(	,�	)(2v1 +
s(	,�	)v)). Therefore, for any c ∈A with c � θ , there exists n0 ∈N such that

ds(	,�	) 	 τ1ds(un+1,	) + τ2ds(un,	) � c,

which further implies by Lemma 2.5 that ds(	,�	) = θ . Therefore, �	 = 	 and this com-
pletes the proof. �

Example 3.8 Let A = C1
R

[0, 1] and ‖f ‖ = ‖f ‖∞ + ‖f ′‖∞. If we define point-wise multiplica-
tion of functions on A, then A becomes a real Banach algebra with identity e(t) = 1. If we
take K = {f ∈A : f (t) ≥ 0, t ∈ [0, 1]}, then K is a nonnormal cone (see [28]). Let X = [0,∞)
and s : X×X → [1,∞) be defined as s(p, q) = 2 + p + q. Define ds : X×X →A by

ds(p, q)(t) = (p – q)2et .
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Then, ds is a controlled-type cone metric overA. Also, note thatX is complete with respect
to ds. We define α : X×X → [0,∞) and � : X →X by

α(p, q) =

⎧

⎨

⎩

s(p, q) if p, q ∈ [0, 1],

0 elsewhere,

and

�(p) =

⎧

⎨

⎩

√
5

3 p if p ∈ [0, 1],

p + 1 if p > 1.

Note that for every p ∈ [0, 1], �p ∈ [0, 1]. Choosing v1(t) = 1
9 + 1

9 t, v2(t) = 1
18 + 1

18 t and
v3(t) = 1

24 + 1
24 t, we obtain that r(v1) = 2

9 , r(v) = r(v2 + v3) = 7
36 . Simple calculations show

that 2(2)r(v1) + (2 + 1)r(v) = 53
36 and so � is a generalized Reich-type contraction as

1
2(p + q + 2)r(v1) + ((p + q + 2) + 1)r(v)

≤ 1
2(2)r(v1) + (2 + 1)r(v)

=
36
53

,

which further implies that 2s(p, q)r(v1) + (s(p, q) + 1)r(v) ≤ 53
36 < 2. Also,

lim
m,i→∞

s(pi+1, pi+2)
s(pi, pi+1)

s(pi+1, pm) = 2

and

‖κ‖ =
∥
∥(2e – v)–1(2v1 + v)

∥
∥

≤
(

72
130

)(
46
72

)

=
23
65

<
1
2

= lim
m,i→∞

s(pi, pi+1)
s(pi+1, pi+2)

s(pi+1, pm).

Similarly, by a simple calculation, one can show that

ds(�p,�q) 	 v1ds(p, q) + v2ds(p,�p) + v3ds(q,�q).

Next, we show that there is a point u0 in X such that α(u0,�u0) ≥ s(u0,�u0). Indeed, for
u0 = 1, we have

α(1,�1) = α

(

1,
√

5
3

)

≥ s
(

1,
√

5
3

)

= s(1,�1).

Next, we show that � is a generalized α-admissible mapping. In fact, if p, q ∈ X are such
that α(p, q) ≥ s(p, q), then by definition of α, p, q ∈ [0, 1]. Therefore, �p,�q ∈ [0, 1] and so

α(�p,�q) ≥ s(�p,�q).

Finally, we show that (X, ds) is α-regular. If we assume that a sequence {pn} in X such
that α(pn, pn+1) ≥ s(pn, pn+1) for all n ∈ N and pn → q ∈ X (as n → ∞), then {pn} ⊆ [0, 1].
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However, [0, 1] is closed and so q ∈ [0, 1]. This implies that α(pn, q) ≥ s(pn, q) for all n ∈N.
Hence, all the conditions of Theorem 3.7 are satisfied and so � has a fixed point 	 = 0.

Theorem 3.9 Let A be a Banach algebra and K be a solid cone in A. Let (X, ds) be a
complete controlled cone metric-type space over A and α : X ×X → [0,∞) be a function.
Suppose that the mapping � : X → X is a generalized Reich-type contraction with vectors
v1, v2, v3 in K such that v1 commutes with v2 + v3 and

1. � is a generalized α-admissible;
2. there exists u0 ∈X such that α(u0,�u0) ≥ s(u0,�u0);
3. � is continuous or (X, ds) is regular;
4. for any two fixed points � , ζ of �, there exists z ∈ X such that α(� , z) ≥ s(� , z) and

α(ζ , z) ≥ s(ζ , z).
Then, there exists a unique point 	 in X that is fixed under the mapping �.

Proof Using Theorem 3.7 and the first three given conditions, we can say that there exists
a point 	 ∈ X that is fixed under the mapping �. We show that this point is unique and
for this, let ζ ∈ Fix(�) such that 	 �= ζ . Then, by Condition 4, there exists z ∈X such that

α(	, z) ≥ s(	, z) and α(ζ , z) ≥ s(ζ , z). (3.10)

Since � is a generalized α-admissible mapping and 	, ζ ∈ Fix(�), by (3.10), we obtain

α
(

	,�iz
) ≥ s

(

	,�iz
)

and α
(

ζ ,�iz
) ≥ s

(

ζ ,�iz
)

, for all i ∈N. (3.11)

By Definition 3.6 and (3.11), we obtain

ds
(

	,�iz
)

= ds
(

�	,�
(

�
i–1z

))

	 v1ds
(

	,�i–1z
)

+ v2ds(	,�	) + v3ds
(

�
i–1z,�iz

)

	 v1ds
(

	,�i–1z
)

+ v3s
(

�
i–1z,	

)

ds
(

�
i–1z,	

)

+ v3s
(

	,�iz
)

ds
(

	,�iz
)

,

which further implies that

(

e – ds
(

	,�iz
)

v3
)

ds
(

	,�iz
) 	 (

v1 + s
(

�
i–1z,	

)

v3
)

ds
(

	,�i–1z
)

. (3.12)

Similarly,

ds
(

�
iz,	

)

= ds
(

�
(

�
i–1z

)

,�	
)

	 v1ds
(

�
i–1z,	

)

+ v2ds
(

�
i–1z

)

,�iz)) + v3ds(	,�	)

	 v1ds
(

�
i–1z,	

)

+ v2s
(

�
i–1z,	

)

ds
(

�
i–1z,	

)

+
(

	,�iz
)

v2ds
(

	,�iz
)

,

which further implies that

(

e – ds
(

�
iz,	

)

v2
)

ds
(

�
iz,	

) 	 (

v1 + s
(

�
i–1z,	

))

v2)ds
(

�
i–1z,	

)

. (3.13)
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Adding (3.12) and (3.13), we have

(

2e – s
(

	,�iz
)

v2 – s
(

	,�iz
)

v3
)

ds
(

	,�iz
)

	 (

2v1 + s
(

�
i–1z,	

)

v2 + s
(

�
i–1z,	

)

v3
)

ds
(

	,�i–1z
)

,

i.e.,

(

2e – s
(

	,�iz
)

v
)

ds
(

	,�iz
) 	 (

2v1 + s
(

�
i–1z,	

)

v
)

ds
(

	,�i–1z
)

. (3.14)

Note that

2r
(

s
(

	,�iz
)

v
) ≤ (

s
(

	,�iz
)

+ 1
)

r(v)

≤ 2s
(

	,�iz
)

r(v1) +
(

s
(

	,�iz
)

+ 1
)

r(v) < 2.

Thus, r(s(	,�iz)v) < 1 < 2 and by Lemma 2.1, we can say that 2e – s(	,�iz)v is invertible
and (2e – s(	,�iz)v)–1 =

∑∞
n=0

(s(	,�iz)v)n

2n+1 , r((2e – s(	,�iz)v)–1) < 1
2–r(s(	,�iz)v) . Thus, by (3.14),

we have

ds
(

	,�iz
) 	 (

2e – s
(

	,�iz
)

v
)–1(2v1 + s

(

�
i–1z,	

)

v
)

ds
(

	,�i–1z
)

,

i.e.,

ds
(

	,�iz
) 	 τds

(

	,�i–1z
)

, (3.15)

where τ = (2e – s(	,�iz)v)–1(2v1 + s(�i–1z,	)v). Therefore, we have

ds
(

	,�iz
) 	 τds

(

	,�i–1z
)

	 τ 2ds
(

	,�i–2z
)

...

	 τ ids(	, z), for all i ∈N.

Since v1 commutes with v2 + v3 = v,

(

2e – s
(

	,�iz
)

v
)–1(2v1 + s

(

�
i–1z,	

)

v
)

=

( ∞
∑

n=0

(s(	,�iz)v)n

2n+1

)

(

2v1 + s
(

�
i–1z,	

)

v
)

= 2v1

( ∞
∑

n=0

(s(	,�iz)v)n

2n+1

)

+ s
(

�
i–1z,	

)

v

( ∞
∑

n=0

(s(	,�iz)v)n

2n+1

)

=
(

2v1 + s
(

�
i–1z,	

)

v
)(

2e – s
(

	,�iz
)

v
)–1,

which shows that (2e– s(	,�iz)v)–1 commutes with (2v1 + s(�i–1z,	)v). Hence, by Lemmas
2.1 and 2.2, we obtain

r(τ ) = r
((

2e – s
(

	,�iz
)

v
)–1(2v1 + s

(

�
i–1z,	

)

v
))
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≤ r
((

2e – s
(

	,�iz
)

v
)–1) · r

((

2v1 + s
(

�
i–1z,	

)

v
))

≤ 1
2 – s(�i–1z,	)r(v)

(

2r(v1) + s
(

�
i–1z,	

)

r(v)
)

< 1.

Then,

2
(

r(v1) + s
(

�
i–1z,	

)

r(v)
) ≤ 2s

(

�
i–1z,	

)

r(v1) +
(

s
(

�
i–1z,	

)

+ 1
)

r(v) < 2

implies that

2r(v1) + s
(

�
i–1z,	

)

r(v) < 2 – s
(

�
i–1z,	

)

r(v).

From Lemma 2.5, it follows that ‖τ i‖ → 0 as i → ∞ and hence

∥
∥τ ids(	, z)

∥
∥ ≤ ∥

∥τ i∥∥
∥
∥ds(	, z)

∥
∥ → 0 (i → ∞).

By Remark 2.10, we conclude that for any c ∈A with c � θ , there exists N ∈N such that

ds
(

	,�iz
) 	 τ ids(	, z) 	 c, ∀i ≥ N .

Thus, by Lemma 2.5, �iz → 	 as i → ∞. Similarly, we obtain that �iz → ζ as i → ∞.
Now, by uniqueness of limit, we conclude that 	 = ζ , which completes the proof. �

Theorem 3.10 Let (X, ds) be a complete controlled cone metric-type space over a Banach
algebra A and K be the associated cone in A. Let � : X → X be a mapping such that for
all p, q ∈X,

ds(�p,�q) 	 κds(p, q), (3.16)

where κ ∈K with r(κ) < 1 and for each p0 ∈ X,

lim
m,i→∞

s(pi+1, pi+2)
s(pi, pi+1)

s(pi+1, pm) <
1

‖κ‖ .

Then, there exists a unique point 	 ∈ X that is fixed under the mapping �. Furthermore,
for each u0 ∈X, the iterative sequence un = �(un–1) = �

nu0 converges to 	.

Proof If we take v1 = κ , v2 = v3 = θ and α(p, q) = s(p, q), then all the conditions of Theo-
rem 3.7 are satisfied, i.e.,� satisfies the condition of Definition 3.6. That is,� is generalized
α-admissible, (X, ds) is regular, and for every u0 ∈X, α(u0,�u0) � s(u0,�u0). Hence, there
exists 	 in X that is fixed under the mapping�. Now, it remains only to show that this fixed
point is unique. Suppose that there is ζ ∈X such that �ζ = ζ . Then, we have

ds(	, ζ ) = ds(�	,�ζ ) 	 κds(	, ζ ).

However, r(κ) < 1 and so by Lemma 2.1, e – κ is invertible. Thus, by Lemma 2.5 ds(	, ζ ) =
θ . �
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Theorem 3.11 Let (X, ds) be a complete controlled cone metric-type space over a Banach
algebra A and K be the associated cone in A. Suppose that � : X → X satisfies the gener-
alized Lipschitz condition, i.e., for all p, q ∈X,

ds(�p,�q) 	 κ
[

ds(�p, p) + ds(�q, q)
]

, (3.17)

where κ ∈K with r(κ) < 1
s(p,q)+1 and for each p0 ∈X,

lim
m,i→∞

s(pi+1, pi+2)
s(pi, pi+1)

s(pi+1, pm) <
1

‖τ‖ ,

with τ = (e – κ)–1κ . Then, there exists a unique point 	 ∈X that is fixed under the mapping
�.

Proof If we take v1 = θ , v2 = v3 = κ and α(p, q) = s(p, q), then all the conditions of Theo-
rem 3.7 are satisfied. Hence, there exists 	 in X that is fixed under the mapping �. Finally,
we show that 	 is a unique fixed point of �. For this, if ζ is another fixed point of �, then

ds(	, ζ ) = ds(�	,�ζ ) 	 κ[ds(	,�	) + ds(ζ ,�ζ ) = θ .

Therefore, 	 = ζ . �

The following is the result of generalized Lipschitz mappings on cone b-metric spaces
over a Banach algebra [15] that becomes a special case of Theorems 3.10 and 3.11 when
we define s(p, q) = b for some b ≥ 1.

Theorem 3.12 ([15]) Let (X, d) be a complete cone b-metric space over a Banach algebra
A with coefficient b ≥ 1 and K be the associated solid cone (not necessarily normal) in
A. Suppose that � : X → X is a mapping such that for all p, q ∈ X one of the following
conditions holds:

(i) d(�p,�q) 	 κd(p, q) where κ ∈K with r(κ) < 1
b .

(ii) d(�p,�q) 	 κ(d(�p, p) + d(�q, q)) where κ ∈K with r(κ) < 1
1+b .

Then, there exists a unique point 	 ∈X that is fixed under the mapping �.

Corollary 3.13 Let (X, ds) be a complete cone metric space over a Banach algebra A and
K be the associated cone in A. Let � : X →X be a mapping such that for all p, q ∈X,

ds(�p,�q) 	 κds(p, q), (3.18)

where κ ∈ K with r(κ) < 1. Then, for each u0 ∈ X, the iterative sequence un = �(un–1) =
�

nu0 converges to a unique fixed point of �.

Proof Taking b = 1 in Theorem 3.12, we obtain the required result. �

Remark 3.14 (i) If we take s(x, y) = b for some b ≥ 1 in Theorems 3.10 and 3.11, we obtain
the main results of [15] for cone b-metric spaces over a Banach algebra.

(ii) By Remark 3.4, we obtain that Theorem 2.13 as a corollary of Theorem 3.10.
(iii) If we take s(x, y) = b for some b ≥ 1 in Theorems 3.7 and 3.9, we obtain the main

results of [27] for cone b-metric spaces over a Banach algebra.
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4 Consequences
In this section, we list some important consequences of our results that generalize Theo-
rems 3.1, 3.2, and 3.4 in Hussain et al. [23], Theorems 3.1 and 3.2 in Xu and Radenovic [26],
Theorems 3.1, 3.2, and 3.5 in Malhotra et al. [21], Theorems 3.1, 3.2, and 3.5 in Malhotra
et al. [22], and Theorems 2.1 and 2.2 in Liu and Xu [14].

Definition 4.1 ([20]) Let X be a nonempty set and α : X × X → [0,∞) be a func-
tion. A mapping � : X → X is said to be an α-admissible mapping if α(p, q) ≥ 1 �⇒
α(�p,�q) ≥ 1.

Definition 4.2 Let (X, ds) be a complete controlled cone metric-type space over a Ba-
nach algebra A and K be the underlying solid cone. A mapping � : X → X is said to be a
generalized α-Lipschitz contraction if for all p, q ∈X with α(p, q) ≥ 1,

ds(�p,�q) 	 κds(p, q),

where κ ∈K with r(κ) < 1
s(p,q) and for each p0 ∈X,

lim
m,i→∞

s(pi+1, pi+2)
s(pi, pi+1)

s(pi+1, pm) <
1

‖κ‖ .

The following theorem becomes a special case of Theorem 3.7 if we define α : X×X →
[0,∞) by α(p, q) = s(p, q) ≥ 1 for all p, q ∈X and take κ = v1, v2 = v3 = θ .

Theorem 4.3 Let (X, ds) be a complete controlled cone metric-type space over a Banach
algebra A and K be the associated solid cone. Suppose that � : X → X is a generalized
α-Lipschitz contraction with Lipschitz constant κ such that

(i) � is α-admissible;
(ii) there exists u0 ∈X such that α(u0,�u0) ≥ 1;

(iii) � is continuous or if a sequence {un} ∈X so that α(un, un+1) ≥ 1 for all n ∈N and
un → q implies that α(un, q) ≥ 1 for all n ∈ N.

Then, there is a point 	 in X that is fixed under �.

For the uniqueness of the fixed point, we use the following extra condition:

∀	, ζ ∈ Fix(�), there existsz ∈X such that α(	, z) ≥ 1 and α(ζ , z) ≥ 1. (4.1)

Theorem 4.4 If we add the condition (4.1) in the assumptions of Theorem 4.3, then the
fixed point is unique.

Proof The assertion follows simply from Theorems 4.3 and 3.9. �

Remark 4.5 (i) If we take s(p, q) = b for some b ≥ 1, then we obtain the main results of
Hussain et al. [23, Theorems 3.1 and 3.2].

(ii) Theorems 3.1, 3.2, and 3.5 in Malhotra et al. [21] become special cases of Theorems
4.3 and 4.4, respectively, with s(x, y) = 1, v1 = 1 and v2 = v3 = θ .

(iii) If we define s(p, q) = 1, v1 = θ and v2 = v3, then Theorems 3.1, 3.2, and 3.3 in Malhotra
et al. [22] become special cases of Theorems 4.3 and 4.4, respectively.
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If the given controlled cone metric-type space (X, ds) over a Banach algebraA is partially
ordered, then we can use the following theorem.

Theorem 4.6 Let (X,�) be a partially ordered set and s : X×X → [1,∞). Let (X, ds) be a
complete controlled cone metric-type space over a Banach algebra A with underlying solid
cone K. Assume that a nondecreasing mapping � : X → X with respect to � satisfies the
following conditions:

(1) there exist vectors v1, v2, v3 ∈ K such that 2s(p, q)r(v1) + (s(p, q) + 1)r(v2 + v3) < 2,
ds(�p,�q) 	 v1ds(p, q) + v2ds(p,�p) + v3ds(q,�q) for all p, q ∈ X with p � q and for
each p0 ∈X with pn = �

np0,

lim
m,i→∞

s(pi+1, pi+2)
s(pi, pi+1)

s(pi+1, pm) <
1

‖κ‖ ,

where κ = (2e – v)–1(2v1 + v) for v = v2 + v3;

(2) there exists u0 ∈X such that u0 ��u0;
(3) � is continuous or if {un} is a nondecreasing sequence in X with respect to � such that

un → q ∈X as (n → ∞), then un � q for all n ∈N.
Then, there exists a point ζ in X that is fixed under the mapping �.

Proof Define a function α : X×X → [0,∞) by

α(p, q) =

⎧

⎨

⎩

s(p, q) if p � q,

0 elsewhere.

Then, � is a generalized Reich-type contraction by Condition (1). Now, since � is a non-
decreasing mapping, � is a generalized α-admissible mapping. Condition (2) implies that
there exists u0 ∈X such that α(u0,�u0) = s(u0,�u0). By Condition (3), we can see that ei-
ther � is continuous or (X, ds) is regular. It follows that all the conditions of Theorem 3.7
are satisfied and so we conclude that there exists a point in X that is fixed under the map-
ping �. �

Corollary 4.7 Let (X,�) be a partially ordered set and s : X×X → [1,∞). Let (X, ds) be a
complete controlled cone metric-type space over a Banach algebra A with underlying solid
cone K. Suppose � : X →X is a nondecreasing mapping with respect to � and the following
assumptions hold:

(1) there exists κ ∈K with r(κ) < 1
s(p,q) so that ds(�p,�q) 	 κds(p, q) for all p, q ∈X with

p � q and for each p0 ∈X with pn = �
np0,

lim
m,i→∞

s(pi+1, pi+2)
s(pi, pi+1)

s(pi+1, pm) <
1

‖κ‖ ;

(2) there exists u0 ∈X such that u0 ��u0;
(3) T is continuous or if {un} is a nondecreasing sequence in X with respect to � such that

un → q ∈X as (n → ∞), then un � q for all n ∈N.
Then, there exists a unique point 	 in X that is fixed under the mapping �.
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Proof The assertion follows directly, from Theorem 4.6 if we take v1 = κ and v2 = v3 =
θ . �

Remark 4.8 (i) Theorem 4.6 becomes [27, Theorem 3.6] if we take s(p, q) = b for some
b ≥ 1.

(ii) If we take s(p, q) = b for some b ≥ 1 in Corollary 4.7, then we obtain Theorems 4.2
and 4.3 of Hussain et al. [23].

(iii) Theorems 2.1 and 2.2 in Nieto and Rodreguez-Lopez [29] are special cases of Corol-
lary 4.7 with s(p, q) = 1 and A = R.

5 Conclusion
In this article, we introduced a new geometrical structure that is the hybrid of a cone
metric space over Banach algebra and a controlled metric-type space. We have defined
a metric space and we proved analogs of Banach-, Kannan- and Reich-type fixed-point
theorems. We also furnished various concrete examples to establish the validity of our
results. The obtained results generalize many well-known results in the literature.
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