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a b s t r a c t

Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a
severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the devel-
opment of the nuclear industry, not all the possible circumstances are taken into consideration. There-
fore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are
needed that can directly monitor severe accident phenomena. This paper presents an interacting mul-
tiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel
phenomena to provide the accident propagation information using reactor vessel (RV) out-wall tem-
perature distribution during severe accidents in a nuclear power plant. The estimation of wall temper-
ature is treated as a state estimation problem where the time-varying wall temperature is estimated
using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall
temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown,
corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five
different types of SA scenarios and the results show that the proposed method has estimated the outer
wall temperature with good accuracy.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nuclear power is very necessary to meet the huge energy de-
mands of the future. Moreover, nuclear power can solve the world
scale threat of global warming as it produces energy through nu-
clear fission rather than chemical burning that generates carbon.
Nuclear power plants generally contain multiple safety systems,
monitoring systems, and sensors that can mitigate and identify
several abnormal accident conditions. However, in case of a severe
accident, it can lead to damage to nuclear fuel and the vessel,
further damaging the containment structures. Consequently, it
leads to the release of harmful radioactive gases to the environment
[1e3]. In severe accident circumstances, the nuclear facilities are to
), jtkim@kaeri.re.kr (J.T. Kim).

by Elsevier Korea LLC. This is an
be designed and operated so that, should a severe accident occur,
the facility can be returned to an appropriately safe and stable
condition with the radiological consequences mitigated subject to
as low as possible. This involves determining the progression of the
accident events, their magnitude, and the characteristics of the
consequences [1e3].

If the supply of cooling water to the reactor vessel (RV) is not
enough or lost, the reactor core remains dry for a considerable time
then the temperature of fuel rods rises and can lead to irreversible
degradation of the core. The core then starts to melt and then
eventually is relocated, typically on a time scale of a few hours at
the most. During core degradation, the coolant system of reactor
supplies cooling water to the core termed as reflooding a degraded
core. In the absence of secondary cooling water, the core gets
overheated and then melts. When the hot core flows to the lower
head filled with water, it produces steam. This causes a pressure
peak or even a steam explosion in the RV, which creates mechanical
stresses that are likely to damage the reactor cooling system.
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Nomenclature

SA Severe Accident
IMM Interacting Multiple Model
FDD Fault Detection and Diagnosis
RV Reactor Vessel
CTMT Containment
KF Kalman Filter
2-DOF two-degree-of-freedom
RW Random-Walk
CV Constant Velocity
CA Constant Acceleration
RPV Reactor Pressure Vessel
OPR-1000 OPR (Optimized power reactor)-1000
SBO Station Blackout
TLOFW Total Loss of FeedWater
LOCA Loss of Coolant Accident
SBLOCA Small Break Loss of Coolant Accident
MBLOCA Medium Break Loss of Coolant Accident
LBLOCA Large Break Loss of Coolant Accident
MFW Main Feedwater
AFW Auxiliary Feedwater
Rx Reactor

SGs Steam Generators
SITs Safety Injection Tanks
RCP Reactor Coolant Pump
x State variable
nx Dimension of State variable
T Temperature

T
·
; dT Rate of Temperature

T
··

Second-order Rate of Temperature
T Matrix transpose
F State transition matrix
H Observation Matrix
G Noise gain Matrix
zk Temperature Measurements
P Error Covariance Matrix
w Process Noise
v Measurement Noise
DT Sampling Time
m Model probabilities
p Transition model probabilities
Q Process noise Covariance
R Measurement noise Covariance
L Likelihood function
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Besides, the RV exposed to a heat flux that can locally be very high,
resulting in erosion of the vessel walls and potentially leading to its
failure. The in-vessel phenomena we mainly classify as core expo-
sure, damage to fuel, corium relocation, and reactor vessel damage,
failure of CTMT, and radiation release to the outside environment
[4e6].

The analysis of severe accident events needs more efficient,
independent, and capable methods for safety diagnosis and severe
accident management. Fault detection and diagnosis (FDD) have
gained a lot of importance recently that assist in the detection of
abnormal SA events [7]. The methods for FDD classification include
model-based methods and knowledge-based methods [7].
Knowledge-based or data-driven methods are applied when there
is a lot of input, output data is available for all scenarios, and
knowledge of the system is known instead of an analytical model
that describes the process. Knowledge-based or data-driven
methods for FDD rely on machine learning and artificial intelli-
gence that include fuzzy systems, neural networks. Moreover,
intelligent methods that extract features from prior knowledge and
diagnostic expertise are also useful for knowledge-based methods
[8e17]. Model-based approaches employ state estimation methods
for FDD when there is prior knowledge of the process model.
Model-basedmethods are efficient when an accurate mathematical
model is available to describe the process. In SA analysis, there is
not much data available for each accident scenario therefore
knowledge-based methods are not preferred. Multiple model-
based FDD can be used for the estimation of outer wall tempera-
ture thus the events can be classified and identified. Kalman filter,
which is very popular in the field of target tracking and estimation,
can be employed to estimate the unknown wall temperature from
the noisy measurement data. Kalman filter uses a single model to
describe the behavior of wall temperature, however during a nu-
clear severe accident, the temperature change is abrupt and com-
plex. Therefore, the state (temperature) that varies continuously in
the case of SA cannot be modeled appropriately using a single
evolution model. Multiple model (MM) approaches with Kalman
filters running in parallel using different evolution models to
describe the behavior of the system can be an appropriate method
for wall temperature estimation in the SA case. A more recent and
efficient method of MM estimation is the interactive multiple
model (IMM) method [18e25]. IMM models the unexpected
changes in the system by switching probabilistically from one
model to another. In IMM based approaches, Kalman filters work in
parallel with each model representing a particular fault or features
and the residual of each KF defined under a certain threshold are
analyzed for the possibilities of faults, and then a decision rule is
used to find out which model or fault(s) have occurred.

The objective of this study is to develop an interacting multiple
model to classify and identify in-vessel events arising after the
severe accident by using the out-wall temperature of the RV. The
measured wall temperature from the sensor is contaminated with
noise and the evolution of wall temperature is random depending
on the SA phenomenon. The noisy temperature datawill not give us
actual information about SA events, and it is necessary to identify or
classify the SA events as early as possible tomitigate the damage. In
this work, the estimation of wall temperature is treated as a state
estimation problem where the temperature, rate of temperature,
and second-order rate of temperature are considered as state var-
iables. The IMM uses a three-parallel bank of Kalman filters oper-
ating with three multiple models based on the random-walk and
Kinematic models (constant velocity and constant acceleration) to
estimate the state variables with good accuracy. From the estimated
wall temperature and rate of temperature, it is possible to predict
the behavior of wall temperature precisely, and through the esti-
mated wall temperature, the in-vessel phenomenon is identified. In
comparison to Kalman filter (KF), IMM is more robust and more
accurate in tracking the behavior of wall temperature in SA con-
ditions. We tested the proposed IMM-FDD method with five
different severe accident scenarios, and the results show good ac-
curacy in estimating the out-wall temperature.

2. Theory and methodology

2.1. Dynamic state estimation of wall temperature

Let us consider the SA phenomenon and the events occurring
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during a severe accident, as illustrated in Fig. 1. To apply interacting
multiple model scheme (IMM) for identifying the in-vessel phe-
nomenon, the inverse problem of estimating the wall temperature
is treated as a state estimation problem. In the state estimation
problem, we need the so-called dynamic model consisting of state
equation and observation equation. The state equation consists of a
mathematical model that tells about the evolution of state vari-
ables, and the observation equation describes the relationship be-
tween the state variables and measured values. At first, consider a
system where the estimation of the state variable x2 <nx , i.e., wall
temperature is governed by a linear stochastic difference equation
[26,27].

xk¼ Fk�1xk�1 þ Gkwk�1 (1)

with a wall temperature measurement done on the outside of the
reactor vessel z2<nz , that is

zk ¼Hkxk þ vk; (2)

where Fk2<nx�nx is the state transition model, Gk2 <nx�nx is the
noise gain model and Hk2<nz�nx is the observation model. The
random variables wk2<nx and vk2<nz denote the process and
measurement noises that are assumed to be white Gaussian and
independent of each other. Our goal is to set a recursive procedure
to estimate state xk, with the previous states x1;, , , ;xk�1, and the
measurements z1; ,,,; zk. Kalman filter is a popular estimation al-
gorithm that estimates the state xk from the available
measurements.
2.2. Models for wall temperature evolution

In the SA situation, the temperature distribution inside the
reactor changes rapidly with time, and therefore it is difficult to
describe it mathematically. The Random-walk model which is a
simple model can be used to describe the behavior of temperature.
Fig. 1. SA phenomenon and the events
A random-walk is a stochastic process described by the two-
degree-of-freedom (2-DOF), an analogy of a drunken man taking
steps in random directions. The random-walk model assumes that
at each time the state variable takes a random step from its pre-
vious value, the steps are independently and identically distributed
in size. The random-walk process is shown here in a discrete form
with wk representing the unbiased Gaussian white noise

xk ¼ xk�1 þwk�1 (3)

Let us consider the state variables to be estimated are the wall

temperature (T), rate of temperature (T
·
), and second-order rate of

temperature (T
··
), i.e., nx ¼ 3 and xk ¼ ½ T T

·
T
·· �T. In the first model

for SA identification, let us consider a simple random-walk model,

where we estimate temperature alone xk ¼ ½T 0 0�T. The mea-
surements available are the outer wall temperature measurement,
i.e., the observation matrix has the form H ¼ ½1 0 0 �. Using the
random-walk model described before, the state transition matrix,
noise gain matrix, and observation matrix in the state-space model
(1e2) have the form [7,27].

F ¼
2
41 0 0
0 0 0
0 0 0

3
5; G¼

2
41
0
0

3
5;H¼ ½1 0 0 � (4)

In the next, kinematic models are applied where along with the
temperature, the first- and second-order derivatives of tempera-
ture are considered as the state variables. Originally, the Kinematic
models were developed in the target tracking area [7] to estimate
the maneuvering target, in which the acceleration and the jerk are
considered as white Gaussian noise for the first- and second-order
kinematic models, respectively. Using the Newton’s equations of
motion, the motion of an object can be represented using velocity
and acceleration. Therefore, if the temperature change is linear, it
can be considered similar to the case where an object is moving
with constant velocity (CV). Assuming, the acceleration term as
occurring during a severe accident.
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noise, i.e. T
··
¼ wk , the equations of motion can be written as

Tkþ1 ¼ Tk þ T
·

kDT þ 1
2
DT2wk (5)

T
·

kþ1 ¼ T
·

k þ DTwk (6)

T
··
¼wk (7)

In the CV model, the state variables are the temperature and the

rate of temperature xk ¼ ½ T T
·

0 �T. Using equations (5) and (6),

the state transition matrix, noise gain matrix, and observation
matrix in the state-space model (1e2) for constant velocity (CV)
model has the form [27].

F ¼
2
41 DT 0
0 1 0
0 0 0

3
5; G¼

2
66664

DT2

2
DT

0

3
77775;H¼ ½1 0 0 �; (8)

here DT is the time step or sampling interval. And, if the temper-
ature has a nonlinear behavior, then it can be considered similar to
the case where the object is moving with constant acceleration
(CA). Here, the state variables are the temperature, rate of tem-

perature, and second-order rate of temperature xk ¼ ½ T T
·

T
·· �T.

Using equations (5)e(7), the state transition matrix, noise gain
matrix, and observation matrix in the state-space model (1e2), for
constant acceleration (CA) model has the form [27].

F ¼

2
66664
1 DT

DT2

2
0 1 DT

0 0 1

3
77775; G¼

2
66664

DT2

2
DT

1

3
77775;H¼ ½1 0 0 � (9)

The estimation of wall temperature, rate of wall temperature,
and second-order rate of the wall temperature would help to un-
derstand the change of temperature distribution more efficiently,
therefore, it helps to predict the SA events at an earlier time.

2.3. Interactive multiple model algorithm

In the case of a severe accident (SA), the temperature distribu-
tion across the reactor vessel (RV) is non-uniform, and the tem-
perature change is abrupt. Therefore, estimation of wall
temperature with Kalman filter employing a single model may not
give desirable results. In these SA situations, a better state transi-
tion model is required other than the random-walk model. Inter-
active multiple model which uses parallel Kalman filters operating
with different state evolution model can be used to have a better
estimation of wall temperature. The IMM algorithm is composed of
an estimate mixer at the input of each model-conditioned filter, a
bank of parallel KF’s, a model probability evaluator, and an estimate
combiner at the output of the filters. The multiple models interact
through themixing, to estimate the time-varyingwall temperature.
Considering that the model transition is governed by the Markov
chain, the model probabilities and transition probabilities are
computed and are used to obtain the mixed estimate for each KF. In
the filtering stage, each KF working with a different evolution
model uses a mixed estimate and available measurement (wall
temperature) to compute a new state estimate. The updated model
probabilities are evaluated based on the Likelihood function.
Finally, the overall state estimate is computed in the form of the
weighted sum of the new estimates and their model probabilities.
The IMM algorithm for state estimation of wall temperature is
summarized below [28,29].

Step 1. Set the initial conditions for three evolution models xi0j0,

Pi0j0, m
i
0, pij, Fiði; j ¼ 1;2;3Þ

Step 2. Mixing (interaction) of the estimates.
The mixed initial condition of the jth filter can be computed as.

� mixing estimate

x0jkjk ¼
X3
i¼1

xikjkm
ijj
k (10)
� mixing covariance

P0jkjk¼
X3
i¼1

�
Pikjk þ

�
x0jkjk � xikjk

��
x0jkjk � xikjk

�T�
m
ijj
k (11)

where x0jkjk and P0jkjk are mixed state and error covariance, respec-

tively. For input of jth model-conditioned KF, model probabilities mijjk
in equations (10) and (11) are defined as

m
ijj
k ≡

1
cj
pijm

i
k (12)

where normalizing constant cj can be calculated by

cj ¼
X3
i¼1

pijm
i
k (13)

where pij is the transition model probability from model i to a
model j that is governed by the Markovian process, defined by

pij ≡Pr
n
Mj

kþ1

���Mi
k

o
; cMi;Mj2Ms (14)

where Prfg is the probability and Mi
k is the event that the ith mode

is in effect at sampling time k, andMs is the set of all possible model
states at all times.

Step 3. Model-conditioned filtering.
Two stages of the model-conditioned KF can be summarized as.

� time update (prediction)

xjkþ1jk ¼ Fkx
0j
kjk (15)

Pjkþ1jk ¼ FkP
0j
kjkðFkÞ

T þ TkQ
j
k (16)
� measurement update (filtering)

Kj
kþ1 ¼ Pjkþ1jk

�
Hj
kþ1

�T�
Sjkþ1

��1
(17)

xjkþ1jkþ1 ¼ xjkþ1jk þ Kj
kþ1e

j
kþ1 (18)

Pjkþ1jkþ1 ¼
�
IjL �Gj

kþ1H
j
kþ1

�
Pjkþ1jk (19)

here Gj
kþ12ℝL�ðEþLÞ is the Kalman gain at the time ðk þ 1ÞT . The
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residuals and their covariances are defined as

ejkþ1 ≡ zjkþ1 � Hj
kþ1x

j
kþ1jk (20)

Sjkþ1 ≡Hj
kþ1P

j
kþ1jk

�
Hj
kþ1

�T þ Gkþ1 (21)

Step 4. Model probability evaluation.

� likelihood function

Ljkþ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
���Sjkþ1

���
r exp

�
� 1
2

�
ejkþ1

�T�
Sjkþ1

�
ejkþ1

�
(22)
� model probability update

mjkþ1 ¼
1
c
Ljkþ1cj (23)

where

c¼
XNm

i¼1

Likþ1ci (24)

Step 5. Combination of estimates.

� overall state estimates
Fig. 2. IMM FDD algorithm for identification
xkþ1jkþ1 ¼
XNm

j¼1

xjkþ1jkþ1m
j
kþ1 (25)
� overall error covariance estimate

Pkþ1jkþ1 ¼
XNm

j¼1

�
Pjkþ1jkþ1 þ

�
xkþ1jkþ1 � xjkþ1jkþ1

	

�
�
xkþ1jkþ1 � xjkþ1jkþ1

�T�
mjkþ1 (26)
3. IMM FDD algorithm for the identification of SA events

A fault detection and diagnosis (FDD) algorithm is developed
using an interactive multiple model scheme to identify the series of
events in a SA scenario. The input data to IMM algorithm is the
temperature data from the sensors located along outside the
reactor vessel (7 data points). IMM FDD algorithm for temperature
starts with an initial guess for temperature, rate of temperature,
and second-order rate of temperature and estimates the wall
temperature distribution (T). The estimated rate of temperature
(dT) enables us to identify the time when the temperature rise or
fall is very sharp, thus it can be used to identify events of SA. The
IMM FDD scheme for the identification of SAs events is illustrated
in the flow diagram given below (Fig. 2).
of events of SAs using wall temperature.
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4. Case study for the identification of in-vessel phenomena
using wall temperature

4.1. Computation of wall temperature distribution for SA scenarios

The temperature distribution of inside, outside core, and on the
wall outside of the reactor vessel (RV) is simulated for the valida-
tion of wall temperature prediction. The MELCOR Code [30] ana-
lyzes the phenomenon of severe accidents to estimate the
relationship of wall temperature increase, in terms of core tem-
perature. The temperature distribution of the core cell, core baffle,
core bypass flow, support barrel, downcomer, wall of reactor
Fig. 3. Nodalization used in the MELCOR code for the calculation of temperature distributio
lower header, and seven data points for the temperature calculation and measurement whi
Region (HS-TEMP.20,013, TW (2,1)), (HS-TEMP.20,009, TW (4,1)), (HS-TEMP.20,004, TW (7,1))

Table 1
The sequence of severe accident scenarios initiated by SBO, TLOFW, SBLOCA, MBLOCA, a

Sequence of events Value of actuation Time [h

Station

RX Trip RX Trip signal 0
Trip of RCP Loss of electric power 0
Dryout of One SG Mass of H2O < 1,000 kg 0.95 (3,4
Dryout of two SG Mass of H2O < 1,000 kg 1.04 (3,7
oxidation of fuel cladding 1,100K 2.59 (9,3
Dryout of core water level Water level < �6.09 m 2.97 (10
Melting fuel cladding 2,100K 3.20 (11
Melting fuel and core 2,800K 3.22 (11
Relocation of melting fuel and core Mass of Relocation Fuel > 0.1 kg 3.24 (11
Failure of RPV Temp of penetration pipe > 1,273K 6.77 (24
Injection from SIT Pressure of RV < 4.3 MPa 6.83 (24
Exhaustion of SIT Level of SIT < 6.21 m 7.11 (25
pressure vessel (RPV) cylinder, and the lower header is calculated
using the MELCOR code. Fig. 3 shows the nodalization used in the
MELCOR code for the calculation of temperature distribution across
inside, outside core, outer wall of RPV cylinder, and lower header.
The design data of OPR(Optimized power reactor)-1000, Korean
standard nuclear power plant is used for the simulation of SA
scenarios. Two high pressure accidents, such as SBO (Station
Blackout), TLOFW (Total Loss of FeedWater) and three low pressure
LOCA accidents, such as SBLOCA(Small Break Loss Of Coolant Ac-
cident), MBLOCA (Medium Break LOCA) and LBLOCA (Large Break
LOCA) are selected as scenarios to simulate the sequence of SAs
using the MELCOR code. A small break of 1.35inch on a cold leg is
n across inside, outside the core, the outer wall of reactor pressure vessel cylinder, and
ch are placed outside of the RV (a) Upper Plenum (HS-TEMP.20,021, TW (1,1)), (b) Core
, and Lower Header (COR-TLH.601, TB (1.1), COR-TLH.301, TB (4.1), COR-TLH.101, TB (7.1)).

nd LBLOCA.

]

Black out TLOFW SBLOCA MBLOCA LBLOCA

0.01 (28s) 0.04 (148s) 0.01 (18s) 0 (6s)
1.57 (5,659s)

05s) 0.25 (908s) 3.51 (12,650s)
31s) 0.25 (900s)
23s) 1.40 (5,025s) 1.57 (5,659s) 0.99 (3,577s) 0.70 (2,520s)
,697s) 1.83 (6,599s) 1.95 (7,037s) 2.67 (9,620s) 0.99 (3,565s)
,522s) 1.80 (6,466s) 1.85 (6,651s) 2.39 (8,591s) 0.89 (3,195s)
,580s) 1.84 (6,625s) 1.89 (6,788s) 2.44 (8,784s) 0.94 (3,385s)
,650s) 1.95 (7,013s) 2.04 (7,338s) 2.79 (10,053s) 1.49 (5,352s)
,358s) 4.90 (17,647s) 12.95 (46,632s) 4.07 (14,656s) 2.72 (9,787s)
,575s) 4.96 (17,868s) 2.61 (9,392s) 0.28 (1,017s) 0.08 (287s)
,596s) 5.25 (18,889s) 12.99 (46,770s) 1.30 (4,697s) 0.22 (777s)
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assumed as the base case of SBLOCA. For the SBO base case, the off-
site power is assumed to be lost. For the TLOFW base case, main
feedwater (MFW) and auxiliary feedwater (AFW) are considered
unavailable. Table 1 shows the sequence of severe accident sce-
narios, such as SBO, TLOFW, SBLOCA, MBLOCA, and LBLOCA initi-
ated accidents.

During the severe accident scenarios, after the Rx Trip occurs,
SGs (SteamGenerators) get dried out, and the fuel assemblies of the
Fig. 4. Distribution of wall temperature of cylinder and lower header of RPV bottom hem
scenario initiated by SBO.

Fig. 5. Results for wall temperature estimation in SBO scenario for data point 4 (HS-TEMP.2
temperature with IMM (c) temperature estimation error (d) model probabilities.
RV are exposed as the water level decreases. The temperature of
fuel cladding increases to 1,100K, and then the oxidation of fuel
cladding occurs. The temperature of core and fuel increases rapidly
and then accelerates to the melting temperature of the fuel. And so,
the wall temperature of the RV increases continuously. Corium, the
melted fuel, comes down to the lower header, i.e., the bottom
hemisphere of the RV, and so the wall temperature of the bottom
hemisphere of the RV increases abruptly. Furthermore, when the
isphere, as an example for a sequence of in-vessel phenomena after severe accident

,000,404) (a) estimated outer wall temperature using KF and IMM (b) estimated rate of
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wall temperature of the lower header reaches 1,273K, then even-
tually the failure of RPV starts. After that, the pressure of the RV
decreases to 4.3MPa, and then the cooling water is injected into the
RV from SITs (safety injection tanks). The temperature of the RV
then decreases while the injected cooling water is dried out. As the
cooling water is dried out, the temperature of the lower header and
wall of the RV again increases rapidly. Fig. 4 shows the distribution
Fig. 6. Results for wall temperature estimation in SBO scenario for data point 6 (COR-TLH
temperature with IMM (c) temperature estimation error (d) model probabilities.

Fig. 7. Results for wall temperature estimation for all seven data points in SBO scenario (a
estimated rate of temperature.
of wall temperature of RPV cylinder and lower header of RPV bot-
tom hemisphere, as an example for the sequence of in-vessel
phenomena after a severe accident scenario initiated by SBO.

The simulation data of the wall temperature of the RV and the
lower header is available from the calculated results of the seven
data points, placed outside of the reactor for the sequence of events
that occur from different severe accident scenarios as shown in
.301) (a) estimated outer wall temperature using KF and IMM (b) estimated rate of

) estimated outer wall temperature using IMM at different locations of the reactor (b)
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Fig. 3. Locations for the data points for temperature measurement
are RX Vessel Upper Plenum 1 Point (TW (1,1) HS-TEMP.20,021), RX
Vessel CoreWall 3 Points (TW (2,1) HS-TEMP.20,013), (TW (4,1) HS-
TEMP.20,009), (TW (7,1) HS-TEMP.20,004)), and Bottom hemi-
sphere three points (TB (1,1) COR-TLH.601), (TB (4,1) COR-TLH.301),
(TB (7,1) COR-TLH.101). The data for temperature is available for five
different SA simulation scenarios, mainly SBO, TLOFW, SBLOCA,
MBLOCA, and LBLOCA, respectively.
4.2. Numerical simulation for wall temperature estimation

The simulated temperature data from seven data points are
labeled as HS-TEMP2002104, HS-TEMP.2,001,304, HS-
TEMP.2,000,904, HS-TEMP.2,000,404, COR-TLH.601, COR-TLH.301,
COR-TLH.101, respectively. The true temperature data is then added
with random white Gaussian noise of standard deviation 0.1 to
account for the instrument and environment errors. To analyze and
identify the sequence of events using IMM and KF, for five SA
scenarios, two data points are selected. The chosen two data points
are HS-TEMP.2,000,404 that corresponds to the lower position of
the reactor core, and COR-TLH.301, the data point located at the
bottom middle hemisphere of the RV. In the implementation of
IMM for temperature estimation, the Markov transition probabili-
ties pij are assigned as 0.9 for i ¼ j and 0.05 for is j and the initial

model probabilities (mi0; i ¼ 1;2;3) were set to be 1
3. The initial

condition for temperature, rate of temperature and second order
rate of temperature for IMM and KF for all the cases is considered as

x0j0 ¼ ½300;0:5;0:5�T. The error covariance matrix is assumed as
Fig. 8. Results for wall temperature estimation in TLOFW scenario for data point 4 (HS-TEM
of temperature with IMM (c) temperature estimation error (d) model probabilities.
100 and the process ment noise covariance are set in the range of
1e-10 for all the cases. The measurement noise covariance is
assumed in the range 1e-8 to 5e-10 for KF and 1e-2 to 5e-2 in the
case of IMM.

4.2.1. Results for SBO scenario
The estimation results of wall temperature for SA scenario SBO

with IMM and KF, for data points HS-TEMP.2,000,404 and COR-
TLH.301 are shown in Fig. 5 and Fig. 6, respectively. The estima-
tion of wall temperature at the reactor core (HS-TEMP.2,000,404) is
shown in Fig. 5(a) and the rate of temperature (dT) is shown in
Fig. 5(b). In Fig. 5(a), it is noticed that the wall temperature in-
creases continuously after 3,400sec. The rate of temperature
change is observed to bemore rapid after 11,711sec, and an increase
of 190K is observed during the next 13,000sec. Then, the temper-
ature drops by around 74 K, and subsequently the temperature is
found to increase continuously to near about 1082 K in 99,990sec.
The slope of the dT plot shown in Fig. 5(b) gives a better illustration
of the wall temperature variation. The positive dT value suggests
there is an increase in wall temperature and negative value sug-
gests there is a decrease in wall temperature. Using the T and dT
plots of Fig. 5(a and b), it is possible to identify the sequence of SA
events. The initial rise in the temperature around 3,400sec indicate
the start of dryout condition, and at 11,711sec there is a rapid in-
crease in wall temperature that points to the start of core reloca-
tion, i.e., melting of fuel corium. Furthermore, RV wall temperature
reduces continuously for a period after 24,780sec due to the in-
jection of cooling water, which is identified as the start of
reflooding. Thewall temperature increases again continuously after
P.2,000,404) (a) estimated outer wall temperature using KF and IMM (b) estimated rate



A.K. Khambampati et al. / Nuclear Engineering and Technology 53 (2021) 532e548 541
27,820sec signaling the end of reflooding. The difference between
the axial temperature of the top, middle, and bottom position of RV
is not much in terms of the sequence of severe accident scenarios.
But, it can be identified that the axial temperatures of the top,
middle, and bottom position of RV is rapidly increasing or
decreasing at the start of dryout condition, the start of core relo-
cation, and the start of reflooding. The temperature estimation er-
ror with IMM and KF is shown in Fig. 5(c). And, as noticed, IMM has
Fig. 9. Results for wall temperature estimation in TLOFW scenario for data point 6 (COR-T
temperature with IMM (c) temperature estimation error (d) model probabilities.

Fig. 10. Results for wall temperature estimation at all seven data points in TLOFW scenario (
estimated rate of temperature.
better estimation performance of wall temperature as compared to
KF when the temperature of RV due to SA changes abruptly and has
nonlinear or linear behavior. The model probabilities for each
model used in the IMM is shown in Fig. 5(d). From Fig. 5(d), the CV
and CAmodels have higher model probabilities values as compared
to the random-walk model when the change inwall temperature is
linear or nonlinear.

Fig. 6 shows the estimation result of wall temperature
LH.301) (a) estimated outer wall temperature using KF and IMM (b) estimated rate of

a) estimated outer wall temperature using IMM at different locations of the reactor (b)
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distribution for the RV bottom hemisphere data point COR-TLH.301.
The wall temperature is estimated with good accuracy by IMM and
KF (Fig. 6(a)). However, the estimation error with single model KF is
large as compared to IMMwhen the temperature change due to SA
events is abrupt (Fig. 6(c)). The dT plot (Fig. 6(b)) shows the esti-
mated rate of temperature and as compared to data point HS-
TEMP.2,000,404, the dT curve of COR-TLH.301 has a higher slope
and magnitude. From T and dT plots, after the time 3,450sec, a
sudden increase in wall temperature is noticed which is labeled as
dryout condition, and at time 11,651sec, a positive spike is observed
in the dT plot that is identified as the start of core relocation.
Further, the negative slope of the dT curve at time 24,580sec in-
dicates a decrease in the wall temperature suggesting the start of
reflooding. After the cooling water dried out, the wall temperature
again starts to rise after 26,630sec, which is termed as the end of
reflooding. After the reflooding ends, the RV temperature rises
rapidly and at 33,250sec, due to a very high temperature, the
reactor reaches a critical stage causing reactor failure. Afterward,
the wall temperature decreases for a short period and again in-
creases continuously. The model probabilities for each KF model
used in the IMM for wall temperature estimation are shown in
Fig. 6(d). Fig. 7 shows the IMM estimation results of T and dT for all
of the seven data points in the SBO SA scenario. The wall temper-
ature at the bottom hemisphere of the RV has a greater fluctuation
as compared to the reactor core area and Upper Plenum. Also, the
sequence of SA events such as dryout, core relocation, coolingwater
injection, and reflooding for the bottom hemisphere data points
appear before as compared to the data points on reactor core and
upper plenum.
Fig. 11. Results for wall temperature estimation in SBLOCA scenario for data point 4 (HS-TEM
of temperature with IMM (c) temperature estimation error (d) model probabilities.
4.2.2. Results for TLOFW scenario
In the next SA scenario TLOFW, the results for the estimation of

the wall temperature are reported in Fig. 8 and Fig. 9, for the data
points HS-TEMP.2,000,404 and COR-TLH.301, respectively. From
Fig. 8, due to the lack of supply of main feedwater and auxiliary
feedwater on the secondary side, the wall temperature increases
rapidly. At 1,000sec, there is a sharp rise in the estimated wall
temperature that signals the start of dryout condition, and around
7,018sec the rate of temperature further increases indicating the
start of core relocation. After that, thewall temperature increases to
an alarming level of 890K, therefore cooling water is introduced at
18,000sec, which suggests the start of the reflooding event. Sub-
sequently, after the reflooding is ended at 20,071sec, the temper-
ature inside the reactor is found to increase again continuously
until 1,050K. The temperature error and model probabilities asso-
ciated with each model in IMM for temperature estimation is
shown in Fig. 8(c and d). IMM has a better estimation of wall
temperature as compared to KF and it is noticed that when the
temperature change has a linear or nonlinear behavior, the CV and
CA model are dominant as compared to the RW model.

The wall temperature estimation using IMM and KF for the
bottom hemisphere data point COR-TLH.301 is shown in Fig. 9.
From the estimated wall temperature and rate of temperature plots
(Fig. 9(a and b)), the SA events are identified and classified as fol-
lows. The wall temperature is stable until 922sec, and the lack of
feedwater causes a rise in the wall temperature, which is termed as
the start of dryout condition. An increase in the slope of the esti-
mated rate of temperature around 7,028sec can be identified as the
start of core relocation. The temperature rises sharply after the core
P.2,000,404) (a) estimated outer wall temperature using KF and IMM (b) estimated rate
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relocation occurred thus bringing the overall core temperature
close to 890K. Due to the injection of cooling water at 18,070 s,
termed as reflooding, the estimated wall temperature decreases,
i.e., the dT curve has a negative slope at 18,070sec. After the
reflooding ends at 19,689sec, the estimated wall temperature in-
creases rapidly to 1280K, and the rate of temperature has a
maximum value, leading to reactor failure. The wall temperature
then drops for a while after the reactor failure, and again it
Fig. 12. Results for wall temperature estimation in SBLOCA scenario for data point 6 (COR-T
temperature with IMM (c) temperature estimation error (d) model probabilities.

Fig. 13. Results for wall temperature estimation at all seven data points in SBLOCA scenario
estimated rate of temperature.
increases continuously. The temperature estimation error and
model probabilities of IMM for temperature distribution are shown
in Fig. 9(c and d). Overall, it is found that IMM has better wall
temperature estimates as compared to KF.

Wall temperature plots and rate of temperature plots for the
TLOFW scenario at all seven data points are shown in Fig. 10. As
seen from Fig. 10(a), the sequence of events in the TLOFW scenario,
such as dryout, core relocation, cooling water injection, and
LH.301) (a) estimated outer wall temperature using KF and IMM (b) estimated rate of

(a) estimated outer wall temperature using IMM at different locations of the reactor (b)
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reflooding for the bottom hemisphere data points occurred early as
compared to the data points on the reactor core and upper plenum.
Moreover, the dT slope for the bottom hemisphere has more
magnitude that signifies the temperature change is more rapid.
Furthermore, the start of core relocation in the lower hemisphere
data point, COR-TLH.601, has occurred early, as compared to the
other data points located on the outer wall.

4.2.3. Results for SBLOCA scenario
In the next SA scenario, we have SBLOCA results for wall tem-

perature estimation. Fig. 11 and Fig. 12 has the result for wall
temperature estimation for data point at HS-TEMP.2,000,404 and
COR-TLH.301. In the case of HS-TEMP.2,000,404 (Fig. 11), the tem-
perature change is not very high as compared to other SA cases,
such as SBO and TLOFW. The wall temperature is found to be stable
until the dryout of SG (Steam Generator) occurs, and a decrease in
temperature is observed which can be attributed due to the in-
jection of cooling water. The estimated wall temperature decreases
to 510K at 25,530sec, and then it increases again as a result of the
exhaustion of cooling water. The water level goes below the 4th
data point (�6.09 m), resulting in a steady increase of the wall
temperature from 510K to 651K. The difference in the wall tem-
perature between the top, middle, and bottom of the RV core is very
high and has a different trend, as compared to SBO and TLOFW
scenarios. Moreover, in the case of HS-TEMP.2,000,404, we could
identify only the starting time of the dryout condition of SG and
cooling water injection. The estimation error of wall temperature is
shown in Figure(11(c)), and IMM has a lower estimation error as
compared to KF. The model probabilities used in IMM for the
estimation of temperature are shown in Fig.11(d). As noticed, when
Fig. 14. Results for wall temperature estimation in MBLOCA scenario for data point 4 (HS-T
rate of temperature with IMM (c) temperature estimation error (d) model probabilities.
there is a sudden drop in wall temperature, the CA model is
dominant, and if the change in wall temperature is steady, then a
combination of CA and CV model is used to estimate the wall
temperature.

In the case of COR-TLH.301 (Fig. 12(a and b)), the estimated
temperature is stable or decreasing at the beginning of SBLOCA SA.
The estimated wall temperature starts to rise after 7,782sec, and at
this instant, the dT curve has a greater magnitude, which indicates
the start of core relocation. Cooling water is injected after 8,646sec,
for discharging steam through the cold-leg small break. The esti-
mated wall temperature decreases gradually until the cooling wa-
ter injection exhausts at 46,271sec. After that, the wall temperature
starts to rise continuously up to 1,200K, and the reactor failure
occurs at 47,621sec, as seen in Fig. 12(a). The dT plot in Fig. 12(b) at
47,621 s has a huge spike that notifies the rapid rise in temperature
to a critical point. In the case of COR-TLH.301, we identify the SA
events such as the starting time of core relocation, cooling water
injection, exhausting time of cooling water, and RPV failure.

The temperature and rate of temperature plots for the SBLOCA
scenario at all seven data points are plotted in Fig. 13. As seen from
Fig. 13(a), the sequence of events in the SBLOCA scenario, such as
dryout, core relocation, cooling water injection, and reflooding, for
the bottom hemisphere data points, appear early, as compared to
the data points on reactor core and upper plenum. Moreover, the dT
slope for the bottom hemisphere has moremagnitude that signifies
the temperature change is more rapid, and the SA events initiated
early at datapoint COR-TLH.101 compared to other data points.

4.2.4. Results for MBLOCA scenario
In the case of the MBLOCA scenario, the water level of the RV
EMP.2,000,404) (a) estimated outer wall temperature using KF and IMM (b) estimated



Fig. 15. Results for wall temperature estimation in MBLOCA scenario for data point 6 (COR-TLH.301) (a) estimated outer wall temperature using KF and IMM (b) estimated rate of
temperature with IMM (c) temperature estimation error (d) model probabilities.
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quickly decreases as compared to the SBLOCA scenario because the
break size is large, and the coolant in the RV discharges quickly
through the location of the break. Fig. 14 displays the results for
wall temperature estimation for data point at HS-TEMP.2,000,404.
The estimated wall temperature is stable, and after the cooling
water is injected at 1,052sec, the temperature decreases continu-
ously (Fig. 14(a)). After 1,052sec, it is observed that the rate of
temperature (dT) is negative until the end of the operation
Fig. 16. Results for wall temperature estimation at all seven data points in MBLOCA scenario
estimated rate of temperature.
(Fig. 14(b)).
In COR-TLH.301, for MBLOCA, the estimated wall temperature is

stable before the injection of cooling water at 400sec. The wall
temperature then decreases continuously until the dryout of
cooling water occurred at 2,800sec. As seen from Fig. 15, after the
dryout of cooling water, the wall temperature is stable because
most of the steam heat source is released outside the RV, and the
melted fuel debris finally comes down to the bottom hemisphere.
(a) estimated outer wall temperature using IMM at different locations of the reactor (b)
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Finally, the wall temperature increases after 5,139sec, and here the
core relocation is initiated.

The Temperature plots and the rate of temperature plots for the
MBLOCA scenario for all seven data points are shown in Fig. 16. For
MBLOCA, except for the lower hemisphere data points, the esti-
mated wall temperature is less than 500K, for a longer period. As
seen from Fig. 16(a), the sequence of SA events of MBLOCA scenario,
such as cooling water injection, dryout of cooling water, and core
relocation for the bottom hemisphere data point, COR-TLH.101 is
initiated ahead as compared to the data points on the reactor core
and upper plenum. Moreover, the dT slope for bottom hemisphere
data points has more magnitude that signifies the temperature
change is more rapid.
4.2.5. Results for LBLOCA scenario
In the case of the LBLOCA scenario, the progression of in-vessel

phenomena is very fast as compared to the MBLOCA and the
SBLOCA scenarios. Due to the large break size, the coolant in RV gets
released quickly through the point of the break. Fig. 17 and Fig. 18
has the wall temperature estimation result for data points at HS-
TEMP.2,000,404 and COR-TLH.301. In the case of the LBLOCA sce-
nario, for the data point at HS-TEMP.2,000,404 (Fig. 17), the esti-
matedwall temperature is stable in the beginning, and after 352sec,
the temperature is found to decrease due to the injection of cooling
water. Cooling water is dried out at 7902 s and thus causing a rapid
rise in the estimated wall temperature until the RPV failure occurs.

But, in the case of COR-TLH.301 (Fig. 18), the estimated wall
temperature is steady until 272sec, and with the inclusion of
Fig. 17. Results for wall temperature estimation in LBLOCA scenario for data point 4 (HS-TEM
of temperature with IMM (c) temperature estimation error (d) model probabilities.
cooling water immediately after the reactor trip, it causes a
decrease in the estimated wall temperature. The estimated wall
temperature rises again after 5,462sec once the cooling water gets
dried up, which can be considered as the starting time of relocation
of melting fuel and core. The estimated wall temperature increases
sharply after 9,676sec, causing the failure of the reactor pressure
vessel at 14,271sec. The temperature change is enormous from
425K to 1358K within 500sec, causing a reactor failure. The dT plot
(Fig.18(b)) has a negative slope in the beginning and then a positive
slope after 5,462sec. Furthermore, the dT curve has a negative slope
at 6,018sec, and then a big positive spike is noticed corresponding
to a huge jump in wall temperatures after 9,676sec (Fig. 18(b)). In
both cases, IMM has a better estimation of temperature as
compared to KF. In both HS-TEMP.2,000,404 and COR-TLH.301, for
LBLOCA, due to the rapid decrease inwall temperature, it is difficult
to find out the time of dryout of cooling water. However, we sup-
pose the core relocation is initiated when the estimated wall
temperature of the lower hemisphere data point COR-TLH.301 in-
creases around 5,462sec.

All the seven data points for T and dT of the LBLOCA scenario are
plotted in Fig. 19. And, the lower hemisphere data points have high
wall temperature values as compared to the data points on the
reactor core. The sequence of events in the LBLOCA scenario, such
as cooling water injection, and core relocation for the bottom
hemisphere data point COR-TLH.101 (yellow) is predicted before as
compared to the data points on the reactor core and upper plenum
(Fig. 19).
P.2,000,404) (a) estimated outer wall temperature using KF and IMM (b) estimated rate



Fig. 18. Results for wall temperature estimation in LBLOCA scenario for data point 6 (COR-TLH.301) (a) estimated outer wall temperature using KF and IMM (b) estimated rate of
temperature with IMM (c) temperature estimation error (d) model probabilities.

A.K. Khambampati et al. / Nuclear Engineering and Technology 53 (2021) 532e548 547
5. Conclusions

An algorithm based on IMM is developed for the identification
of in-vessel phenomena during a severe accident. Identification is
done from the estimated out-wall temperature measurement
recorded outside of the RV. Multiple models using random-walk,
constant velocity, and constant acceleration are used to describe
the evolution of transient temperature. The estimated wall
Fig. 19. Results for wall temperature estimation at all seven data points in LBLOCA scenario
estimated rate of temperature.
temperature and the rate of temperature using IMM are used to
identify the in-vessel phenomena during the progression of SA. The
sequence of the in-vessel phenomenon is classified as core dryout,
corium relocation, reflooding, and reactor failure. IMM using mul-
tiple models has a better estimation of wall temperature as
compared to KF using a single model. Based on the results, it is
found that when the temperature fluctuation is small and random
then the random-walk model is dominant as compared to the CA
(a) estimated outer wall temperature using IMM at different locations of the reactor (b)
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and CV model. Furthermore, if the temperature drop or increase is
abrupt then the CA model is observed to be dominant. And, if the
temperature change is steady, and has a linear or nonlinear
behavior, a combination of CA and CV model are dominant as
compared to the random-walk model. Therefore, the time of core
dryout and core relocation are identified clearly at an early stage of
SA by using the CA and CV models. Model probabilities are evalu-
ated for each of the three temperature models, and the weighted
estimate based on the evaluated model probabilities is used as a
final estimate for wall temperature estimation. An application of a
modified IMM based FDDmodel is useful to classify and identify in-
vessel events arising after the SA by using the out-wall temperature
of the RV.

Unlike the core components, there is no significant change in
the estimated axial temperature on the outer wall, depending on
the severe accident scenarios. However, it can be noticed that there
is an increase in the wall temperature due to core depletion, and
when the safety injection water is injected during the damage of
the reactor pressure vessel, the wall temperature is found to
decrease. The slope of the temperature curve varies according to
the rate of change of wall temperature. Similar to the cylindrical
exterior wall, the temperature variation on the upper head exterior
wall is not as large as the temperature across the core components.
However, as with the cylindrical exterior wall temperature, the
estimated wall temperature on the lower bottom hemisphere in-
creases after the core depletion, reactor pressure vessel damage,
and decreases with the introduction of safety injection water. Also,
the sequence of in-vessel phenomena such as dryout, corium
relocation, cooling water injection, reflooding appears before for
the bottom hemisphere data points as compared to the data points
on reactor core and upper plenum.

An application and installation of measurement of the out-wall
temperature of the RV should be considered carefully, because of
the insulation material on the exterior wall of RV. However, there is
no problem to tightly bend TC (thermocouple) on the exterior wall
of RV.

In future work, the practical application for monitoring of in-
vessel phenomena during a severe accident using the measure-
ment of the out-wall temperature can be considered to integrate
model-based FDD methods with the data-driven methods such as
CNN, RNN, neural network, etc which use the extracted features
from the random-walk model, CA and CV model.
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