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Abstract: This paper presents a theoretical analysis of mobility detection in connectivity-based
localization, which exploits connectivity information as range measurements to anchors at a known
location, to investigate how well and how precise mobility can be detected with connectivity in
short-range networks. We derive mobility detection, miss detection, and false alarm probabilities
in terms of a mobility detection threshold, defined as the minimum distance to detect the mobility,
under the shadow fading channel and arbitrary mobility models to take into account practical and
general scenarios. Based on the derivations, we address the threshold determination with the criteria
in the sense of the minimum average error from miss detection and false alarm. Numerical and
simulation evaluations are performed to verify our theoretical derivations, to show that increasing
anchor numbers can improve the mobility detection probability with a smaller detection threshold,
and that the probabilities are bounded by the weights of miss detection and false alarm. This work is

check for the first attempt at addressing the performance of mobility detection using connectivity, and it can be

updates utilized as a baseline for connectivity-based mobility tracking.
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https:/ /doi.org/10.3390/en14041162 1. Introduction

Connectivity-based localization has been highlighted for wireless networks with
short-range communications (e.g., WiFi, Bluetooth, and Zigbee) where explicit range mea-
surements such as time-of-arrival, time-difference-of-arrival, and angle-of-arrival are not
available due to systematic and/or cost reasons or where the range measurements are
likely to be severely corrupted due to environmental reasons [1]. The importance of
connectivity-based localization is also increasing with the fast-growing IoT (Internet-of-
Things) applications based on device-to-device communication and mesh networking
capabilities [2]. Since connectivity is an implicit (on/off) range measurement that tells
if one is placed within the communication range of another, connectivity-based localiza-
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{ations. tion is known to provide a coarse-grained location. Nevertheless, it is still effective and
fascinating for many applications such as environment monitoring, patient monitoring,
and theft surveillance that are satisfied with space-level accuracy (depending on the com-

munication range and scenarios, space may correspond to room, building, zone, block,

or others), while having strict requirements for simple implementations (the demand on
simplicity in implementation generally arises from the limitations on computation power
and processing capabilities of devices as well as overall cost) and robustness against non-
distributed under the terms and  Predictable channel variations. In addition, connectivity-based localization can be utilized
conditions of the Creative Commons [0 complement range-based localization for reducing the search region and convergence
Attribution (CC BY) license (https://  time (i.e., time-to-first-fix) [3,4], which are critical factors for real implementations.

creativecommons.org/licenses /by / Pioneering efforts focused on the localization problem in static wireless sensor net-
40/). works, targeting environment monitoring applications where none of the nodes including
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blueanchors, which are placed at perfectly known locations and act as references for node
localization, are moving once deployed. Routers, also referred to as access points in a
more general sense, typically play the role of anchor in WiFi networks, while special
nodes acting as anchors are called as beacons in Bluetooth and Zigbee. The terms are
interchangeably used with seed nodes in the field of wireless sensor networks. The most
straightforward approach [5] to the static localization problem is to provide the centroid
of directly heard (seen) anchors, which are referred to as one-hop anchors. However, it
is well-known that the centroid has low accuracy and low availability. It is worth not-
ing that there is a trade-off between accuracy and availability since accuracy is inversely
proportional to and availability is proportional to the transmission ranges of the anchors.
To overcome the drawbacks of the centroid, Niculescu and Nath proposed the Distance
Vector-Hop (DV-Hop) algorithm [6] applying a multihop fashion and multilateration where
the distance to each anchor is computed as the product of the hop counts to the anchor and
the average distance per hop, which is the ratio of the sums of distances and hop counts
between the anchors. This is feasible in isotropic networks where the shortest path of any
node pair forms a linear shape, but fragile in practice due to the network anisotropy (e.g.,
non-uniform node deployments, irregular radio propagation) [2,7]. Many modifications
of the DV-Hop algorithm have been made to deal with the anisotropy issues by deriving
new average distances per hop [8-14], by refining the distance [7,9,15,16] and location
estimates [14,17-19], and/or by selecting reliable anchors [10,20-22] with understanding
of the path and topology properties. Further details are available in [7,23,24].

As a variety of mobile applications have been introduced, mobility (location) tracking
has become more challenging. To resolve the connectivity-based mobility (location) tracking
problem, Hu and Evans [25] proposed a Monte Carlo localization (MCL) algorithm using
random particles. More specifically, the MCL algorithm randomly deploys particles within
a circle centered at the previous location estimate with a radius of the maximum distance
movable in a discrete unit time and computes the centroid of those valid particles that
are placed within the coverage of two-hop anchors under the unit disk graph (UDG)
model [26], which is an ideal channel model not taking into account any uncertainties
during propagation. In [27], the concept of building a bounding box was adopted to
reduce the computational complexity from the particles that are filtered out by the anchors
and not used for tracking, and further modifications were made to narrow down the
bounding box for achieving higher computational efficiency by imposing more constraints
from the information of one/two-hop anchors [28-31], neighboring nodes [28,30], historical
anchors [32,33], and/or historical location estimates [31]. It is obvious that as the dimension
of the constraints increases, a smaller box is drawn and results in improvement in not only
computational efficiency, but also tracking accuracy. However, they all have missed one
important point: that the underlying assumption on the maximum movable distance can
adversely affect the performance, and the worst case occurs when a node is not moving. To
handle this issue, it is necessary to determine whether a node has moved or not, which is
referred to as the mobility detection problem in this paper.

Theoretical studies, of which results serve as baselines for designing localization
systems in mobile scenarios, have been also made to measure lower bounds on localization
errors caused by movements that cannot be detected with connectivity information [34-37].
The concept of the lower error bound was first defined in [34] as the expectation of a
maximum movable distance that does not bring changes in connectivity to the anchors.
Here, the maximum movable distance was defined with the areas that other anchors do
not exist under a Poisson node distribution and the UDG radio model [26]. MacLean
and Datta [35] pointed out that the result of [34] is only applicable for scenarios with
small movements, and they presented a new lower bound that incorporates errors from
a large movement. The lower bound due to a small movement was revisited under a
shadow fading channel model in [36] to consider practical aspects. Gui et al. [37] proposed
algorithmic methods to compute lower bounds for real deployments in both UDG and
fading models, while the ones derived in [34-36] are fully probabilistic bounds. As none of
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the previous works has addressed the mobility detection problem in connectivity-based
localization, no theoretical studies on mobility detection have been done, while the former
theoretical studies [34-37] have focused on the accuracy perspective.

This paper is the first to address the connectivity-based mobility detection problem and
to build theoretical foundations which will open up new possibilities in both the academic
and industrial fields of research and application. We first provide a general framework of
the connectivity-based mobility detection in terms of a mobility detection threshold. Based
on this framework, three performance metrics, which are mobility detection, miss detection,
and false alarm probabilities, are defined and derived under the shadow fading channel
model and arbitrary mobility models. We then discuss the threshold determination from
the perspective of minimizing the average error with respect to miss detection and false
alarm. The results from this work can serve as a technical guide for designing connectivity-
based localization systems in mobile scenarios; for example, deriving the minimum number
of anchors to achieve a specific resolution (detection threshold) required for an application.

The remainder of this paper is organized as follows. Section 2 describes the system
and channel models. Section 3 provides the definition and derivation of mobility detection,
miss detection, and false alarm probabilities. Section 4 addresses the determination of the
mobility detection threshold. Section 5 provides numerical results to validate the theoretical
foundations. Section 6 concludes this paper along with discussions on future work.

Notation: Throughout the paper, vectors and matrices are denoted by lowercase and
uppercase bold letters, respectively. The superscript T denotes the transpose operation.
The cardinal number of a set is denoted by | - |. The Euclidean norm of a vector is de-
noted by || - ||. E[-] represents the expectation of a random vector. N/ (u, L) represents a
normal distribution with mean u and covariance Z. ¢(-) denotes the probability density
function (PDF) of the standard normal distribution and ®(-) is its cumulative distribution
function (CDF).

2. System and Channel Models

We consider a mobile node to be localized with the aid of multiple anchors at known
locations in a two-dimensional circular space, denoted by S, with a radius of R [36]. The
anchors are randomly deployed according to a Poisson distribution with rate A. Under the
Poisson deployment, the number of anchors is represented by a random variable A with
4 = E[A] = AntR?. The anchors are assumed to be stationary once they are deployed at
known points, denoted by {p1, p2,...,pa} where p, = [x,,,]” is the location of the a-th
anchor. It is worth noting that a single mobile node is assumed for the sake of simplicity,
but the scenario can be simply extended to multiple mobile nodes without any additional
assumption.

At any time 7, the location of the mobile node is denoted by m,, = [x,, y/x] T and the
distance from the mobile node to the a-th anchor is defined as d, , = ||ps — my||. Then,
the received signal power (in dBm) is expressed as [38]

da,n

—= 1
da,O + Vg, ( )

Tan = 10 — 1017 log,,

where 1, is the received signal power (in dBm) at the reference distance d, ¢ (typically, Im
for short-range communications [39,40]) for the a-th anchor, # is the path loss exponent, and
van ~ N(0,0?) is a zero-mean Gaussian random variable with variance o2 representing
the shadowing effect. The connectivity between the mobile node and the a-th anchor
is assumed to be made if r;,, > 7 where 7 is a signal level threshold, typically corre-
sponding to the required signal-to-noise-ratio for data decoding. This model is typically
adopted for both line-of-sight and non-line-of-sight propagation in short-range communi-
cations and can be found in related literature [39,40] as well as in the ITU (International
Telecommunication Union) recommendations (e.g., ITU-R P.1238 [41] and P.1411 [42]). The
parameters in (1) have different values with respect to wireless communications systems
and device specifications, and it is also known that the values are different across oper-
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ational areas and over time due to environmental changes (e.g., temperature, humidity,
properties of obstacles) [2,38]. According to the recent works [39,40], it has been reported
thatr,o € [—68.99, —56], € [1.87,2.87], ¢ € [0.20,4.60] for Bluetooth Low Energy (BLE).
Typical values of -y are in the ranges of [—95, —70] for BLE [43] and of [—100, —85] for IEEE
802.15.4 [44].

It is assumed that the shadow fading effects at subsequent times 7 and n + 1 are
correlated and modeled as a bivariate normal distribution as follows:

1 [ Va,n |2_2P(Zn)vanvan+l
Van) = exp | ——— o , 2
fVa,n( a,n) 2?1 7P(Zn)2 p ( 20_2(1 _p(zn)z) ( )
where v, = [0an, Vgns1]’, zn = |my —my, 1], and p(z,) is the spatio-tempral correlation
between v, , and v, ,+1. According to [38], p(z,) is given as
Zn
p(zn) =e><p<—d —T>, (©)
dec

where d 4. is the decorrelation distance and T is a temporal correlation coefficient, normal-
ized by a sampling period.

3. Theoretical Foundations of Mobility Detection in Connectivity-Based Localization
3.1. Definition of Mobility Detection, Miss Detection, and False Alarm Probabilities

The fundamental idea behind connectivity-based localization is to provide the feasible
region where the mobile node can be located by translating <y into the maximum achievable
distance dmax to communicate with an anchor based on (1). The location is then typically
estimated to be the centroid of the feasible region drawn by multiple anchors in the
least squares sense [45]. This yields that mobility can be detected from a change in the
feasible region. In other words, the mobile node is considered having moved if the
node finds at least one anchor whose connectivity has changed in a subsequent time
interval. Making a decision with only information in a subsequent time interval (he
dimension of measurements is two) may be inappropriate in practice where the changes in
connectivity can occur due to sudden appearance/disappearance of moving obstacles and
radio interference, even though the mobile node has not moved. A practical strategy to
handle this issue is to increase the number of measurements by extending the observation
period and to test if the number of changes exceeds a threshold. This strategy is simple
and effective to mitigate the effect of such unexpected cases so that it is typically adopted
in many studies and designs [7,46,47]. However, in this paper, we consider a system using
two subsequent measurements for mobility detection to build a theoretical framework
providing foundations for further research.

To provide intuitive insights on the connectivity-based mobility detection, a simple
example is presented in Figure 1 where the mobile node is tracked with three anchors of
which the maximum achievable distances are denoted by the dashed line under the absence
of uncertainties in signal levels. As long as the mobile node moves within the colored
area where the node maintains the connectivity with all the anchors, its mobility cannot
be detected; otherwise, the mobility can be simply detected by any connectivity-based
localization algorithms. The minimum distance to detect the mobility for a certain level
of performance is typically defined as the resolution, denoted by €, which is determined
depending on propagation characteristics and system configurations including anchor
numbers, anchor deployments, and others. It is also worth noting that € can be understood
as the threshold to decide if the node is moving for a subsequent time period from the
detection interpretation.
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Anchor 1 Anchor 2

Anchor 3

Figure 1. A conceptual illustration of mobility detection in connectivity-based localization.

By defining €, we can construct the following simple hypothesis in terms of the
movement, denoted by z,, during the time interval of n and n + 1:

Ho :zy € [0,€],

4)

Hq:zy € (€,R].

From the connectivity establishment condition r,,, > 7, we have two cases that change

connectivity in the subsequent time interval: i) r,,, > yand 7,41 < 7; and ii) 7, < 7y and

Tan+1 = 7. Let T be the set of anchors whose connectivity with the mobile node changes,
and it can be defined as

T= {a| (ram—1) (fans1 —7) <0, Va}. %)

When the mobile node moves by z;, the probability that connectivity between the mobile
node and the a-th anchor does not change is simply derived from (2), which is given by

- — 7 — 6
=1 —Q(”"”U'Y) - Q(rjj”) P2, )

where Q(-) is the Q-function, Fy,, (V4,1 is the CDF of V, ,, Yan = [Y — Pan, ¥ — fﬂ,nH]T,
and 75, = E[rgn].

Recall that in the connectivity-based localization, the node is considered in moving
when the connectivity with at least one anchor changes. Mathematically, it can be expressed
as | T| > 0. Accordingly, the probabilities of mobility detection Pp (€), miss detection Py (€),
and false alarm Pr(e) are respectively defined as

Pr(a eT | Z= Zn) = Pr(”a,n Z YV lansl = ')’) + Pr(”a,n <V tan+1 < 'Y)

Pp(e) £ Pr(|T| > 0] H1) = 1— Pp(e),

Py(e) = Pr(|T] = 0| Ha),

Pp(e) 2 Pr(|T| > 0| Ho) =1 —Pr(|T| = 0| Ho).
N———

correct rejection

lI>

@)
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3.2. Derivation of Pp, Py, and P

Given the PDF f(z) and CDF Fz(z) for the movement 0 < Z < R, Pr(#y) = Pr(0 <
Z <€) =Fz(e) and Pr(H1) = Pr(e < Z < R) =1 — Fz(e). Then, the three probabilities
are simply derived as

L _Pr(TI=0e<Z<R)

Pp(e) = 1= (e) , 8)
_ Pr(|T|=0,e<Z<R)
PM(G)_ 1_FZ(€) 7 (9)
. Pr(|T|=00<Z<e¢)
PF(e) - 1 FZ (€> 7 (10)
where (8) and (9) hold for Fz(€) < 1, and (10) is feasible for Fz(e) > 0. Here,
R
Pr(|7T|=0,e < Z<R)= / Pr(|T| = 0,7 = zy) dz
® (11)
= [ f2z)Pe(T] = 012 = 22) dz,
Pr(T|=00<Z <€) = [ Pr(T| =02 =z,) dz,
/ (12)

_ ./Oefz(zn)Pr(|T| —0|Z = 2,) dzn.

Under the Poisson anchor deployment, Pr(|7| = 0|Z = z,) and h(z,) are given as [36]

Pr(|T] = 0] Z = z4) = exp{pa(h(za) = 1)}, (13)
h(zn) = 2 ;Z’;ZPr(a €T |Z=2z,)dS. (14)

h(zy,) cannot be expressed in a closed form, but it can be calculated with computer simula-
tions using a Monte Carlo method and simple curve fitting methods. Figure 2 shows the
changes of h(z,) with respect to z, and ¢, computed with Monte Carlo simulations, where
R =100,d,0 =1,dcor =2, T =1, and 5 = 2.2. It is obviously seen that /(z,) decreases
with larger z, and higher ¢, which lead to a larger difference in received signal power
in the subsequent time interval. After the computation of /(z,), Pp(€), Py (€), and Pr(e)
derived in (8)—(10) can be further computed.

0.75

0.7+

0.65

0 10 20 30 40 50
Z'H

Figure 2. The changes of h(z,) with respect to z, and ¢.
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For Fz(€) =1, Pp(e) and Py, (¢€) are defined as

Pp(e) =1 —exp{ua(h(e) —1)} (15)

Py (e)

using the L'Hospital’s rule (see Appendix A for the proof) and Pr(€) becomes

Pr(e) =1 —Elexp{pa(h(za) = 1)}] (16)

since fz(z) > 0 only for 0 < z < e. Similarly, for Fz(e) =0,

Pp(e) =1 —E[exp{pa(h(zs) —1)}] (17)
Py (e)
and
Pr(e) = 1—exp{palh(e) —1)}. (18)

The proof of (18) appears in Appendix B.

3.3. Asymptotic Analysis

When o — oo, (2) is approximated to a uniform distribution over all feasible values of
v, and both (6) and (14) converge to 1/2. In other words, the probabilities of connectivity
to any anchor being maintained and being changed are exactly half and half regardless of
the movement, even if the separation to the anchor is very small. This yields

Pr(|7|=0,e < Z<R)= /eRfZ(zn)exp(—VTA)dzn ={1- Fz(e)}exp(—%) (19)

2

By substituting (19) and (20) into (8)—(10), the asymptotic performance of Pp(€), Pui(€),
and Pr(e) is given as

Pr(|71=0,0<Z<e) = /Oefz(zn)exp(—%q)dzn = FZ(G)exp(—V—A). (20)

PS(e) = PP(e) =1 — exp(—%/*) and PS(e) = exp(—%f‘). 1)

It is a general principle that the probability of connectivity being changed increases

as the channel variation becomes more severe due to multipath and other interference. In

addition, the more anchors there are, the lower probability that | 7| = 0. As a consequence,

the probability that the mobile node says in moving gradually increases with the number y 4

of anchors even though z, < € and Fz(€) ~ 1. This implies the reduction in the probability

of determining #Hy. Thus, it can be clearly seen in (21) that the detection and false alarm

probabilities increase while the miss detection probability decreases with increasing the
anchor numbers.

4. Threshold Determination for Minimizing the Average Error

A threshold in a detection problem is typically determined as the likelihood ratio,
while the detection threshold € in our problem is a design parameter to be set properly
depending on system settings and applications. In this section, we discuss how to set the
best €, denoted by e, from the perspective of minimum average error cost under zero cost
for making right decisions.

Given a priori probabilities Pr(#() and Pr(#H;), the average error cost C,(€) arising
from the wrong decisions (i.e., miss detection and false alarm) is

Ce(e) £ aPr(H1)Pum(e) + (1 — a)Pr(Ho) Pr(e), (22)
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where 0 < a < 1 is the cost for miss detection, and 1 — & corresponds to the cost for
false alarm. In addition to €, the cost « is another factor that controls the overall cost and
further detection probabilities. We show that the probabilities are bounded by « at the end
of this section. The selection of « is also discussed with numerical analysis in Section 5.
Substituting (8)—(10) into (22) yields

R
Cele) = [ falzn)explpalh(z:) —1)} dz

(23)

€

+ (1= ) [F2€) = [ folon) exp{ua(hizn) — 1)}
As the cost changes in terms of €, which determines the integration region, the problem

is then formulated to find €y minimizing (23), which is either increasing or decreasing

or convex with respect to €. The behavior of (23) can be determined by using the first

derivative test:

dC,(€)

= f2(e)[(1 — &) —exp{pa(h(e) — 1)}]20. (24)
(23) is increasing if (24) has always a positive value for any €, which is given as

(1—a)—exp{pua(h(e)—1)} >0. (25)

Since h(e) < 1is a probability and is a decreasing function, as shown in Figure 2, (25)
should hold for € = 0 at which h(e) has the maximum value to (23) to be an increasing
function, and this gives the condition for (23) being increasing;

In(1—a)
Similarly, from 9C,(€)/de < 0, we can say that (23) is decreasing when
In(1 —a)
pa < "R -1 (27)

In addition, the average cost function is said to be convex and has the minimum
value at

co = b1 (1 + h‘(l”‘)) 28)
Ha
when
In(1—a) ey, < In(1—a) (29)

hR) —1 =M= -1

Because h(€) is decreasing, the convexity of (23) is guaranteed since the first derivative
has a negative value in € € (0,¢p) and a positive value in € € (e, R) if the derivative
becomes zero at €. Therefore, we have

In(1—«
R, for }IA < h<(1{)_]?,
_ In(1—a) In(1— oc) In(1 — &)
= 1 ke Sl <=
€ h (l—i— i >, for h(R) 1< < g R0y —1" (30)
In(1—«
0, for s > A ((0) 1)

Figure 3 presents simulation results that show how €y changes with respect to 4 and
« under the uniform random walk with a uniform direction (refer to (34)) and the settings
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as the same as in Figure 2. It is clearly shown that ¢y decreases exponentially with 4 as
expected from Figure 2 and (30). This indicates that increasing the number of anchors
improves the detection resolution. In other words, the more anchors we use, the smaller
movement we can detect. Another interesting observation is that & controls the change
rate of €p. As « is set to a larger value, €y decreases slowly with the increase of y4. This
is because Pr(#1)Pyr(ep) remains dominant against Pr(#)Pr(ep) in (22) for a large value
of a. For any f7(z), Pr(#H1)Pu(eo) returns (11), which integrates a probability over (e, R].
Thus, € is required to be larger to minimize Pr(H1)Py(€).

100 ; :
—a=1/2
—a=2/3

80 a=4/51

60 -

€0

40 +

20 +

0 5 10 15 20 25 30 35
©A

Figure 3. ¢p under different 4 and «.

Furthermore, the following propositions can be made with the results in Section 3 and

show that the probabilities with (30) are bounded by « for ;lzr(‘l(zl)f_"i)) <pp < IZ‘(((}):? .

Proposition 1. As Fz(eg) approaches zero (ey — 0 is a sufficient condition for Fz(ep) — 0),
Pr(eq) converges to w.

Proof of Proposition 1. By substituting (28) into Pr(ep) in (18),

. In(1 — «a) )}
1 Pr(ep) =1 — 14— -1 = . 31
g m F(€o) EXP{#A< 0 (31)

O

Proposition 2. As Fz(ey) approaches one (¢y — R is a sufficient condition for Fz(eg) — 1),
Pp(ep) and Pyi(eg) converge to w and 1 — a, respectively.

Proof of Proposition 2. By substituting (28) into Pp and Py in (15),

) In(1— ) > }
Iim Pp(ey) =1—ex 1+ —-—1 =uq, 32
Fz(e0)—1 b (<o) p{liA< HA (2)

li P, = 1 1—-P =1-—ua.
pim m(€o) . ((}:5;1( p(€0)) w (33)

O

5. Numerical Results and Discussion

This section verifies and analyzes the theoretical results derived in Sections 3 and 4
through simulations and numerical evaluations using MATLAB. The settings for simu-
lations and numerical evaluations are listed in Table 1. All the anchors are assumed to
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be homogeneous, and the propagation characteristics are assumed to be the same such
thatdig =dpyo=---=dygpandrig=ry0 = -+ =r40. We adopt random walk mobility
models for f7(z), which are generally used to emulate tracking scenarios with a broad
range of targets in nature move [48]. For simulations, a mobile node is placed at the origin,
and anchors are randomly deployed with a Poisson distribution with varying p4 in S
centered at the origin with an area of 71R2. In each simulation, the mobile node moves
along a random direction from the uniform probability over [0, 27| by a step length (travel
distance) randomly drawn from random walk mobility models. In this paper, we assume a
uniform random walk model whose PDF is given as

, for0 <z < dmayx,

fg(z) = dmax (34)
0, for dmax <z <R,
and a truncated Gaussian random walk model whose PDF is given as
¢ Z7Hz
( i ) for0 <z <R (35)

PO o) ()]

where yz and oz denote the mean of the travel distance and its standard deviation, re-
spectively. Since anchors are assumed to be deployed with a Poisson distribution in this
paper, the detection performance in all directions is almost the same in the case of node’s
movement made in a random direction with the uniform probability over [0,27], and thus
the effect of movement direction becomes negligible in our work.

Table 1. Parameters used in simulations and numerical evaluations.

Parameters Descriptions Values References

R Radius of space & 100 m -
Path loss exponent 2.2 [39,40]

o Noise level 1dB [39,40]

do Reference distance for the a-th 1m [40]

¢ anchor

Received signal power for the

Ta0 a-th anchor at d, o —68.99 dBm [40]

ddec Decorrelation distance 2m [49]
Temporal correlation

T coefficient, normalized by the 1 [49]
sampling period

0% Signal level threshold —100 dBm [44]

. Maximum communication ~50 m. Calculated by (1)

range

Figure 4 presents comparisons in Pp(€p), Pp(€p), and Pr(eg) between theoretical and
simulation results to verify the theoretical calculations derived in Section 3. A total of
100,000 simulations were conducted for « = 0.5 under the uniform random walk model.
According to (29), p4 was set to be between 3 and 14 to meet the convexity of (23), and the
other parameters were set to the values in Table 1. We have clearly seen in Figure 4 that the
theoretical calculations and simulations provide almost the same results. It is also seen that
the increase in 4 leads to both Pp(ep) and Pr(ep) increasing, but Pys(€g) decreases.
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Figure 4. Comparisons in Pp(eg), Pp(€o), and Pr(eg) between theoretical and simulation results.

Assuming a Poisson distribution, a larger number of anchors indicates increasing
the dimension of the constraints on the area where a node can be located. Here, the area
is the region, denoted by the colored area in Figure 1, that connectivity to any anchor
is not changing. Thus, as the dimension of the constraints is getting higher, we have a
smaller area and higher detection resolution, that is, €y becomes smaller as seen in Figure 3.
The smaller area also implies that the node is nearly dmax away from some anchors, and
the connectivity with those anchors is likely to change with signal fluctuations. In this
sense, for Pr(Hg) < Pr(H1), Pp(eo) and Pr(e€p) increase with the increase of 114, but Pr(€)
is upper-bounded by a as proved in the Proposition 1. For Pr(#g) > Pr(*1), Pm(e€o)
increases while Pp(eg) and Pr(eg) decrease. Nevertheless, since Pp () is lower-bounded
by « and Py(€p) is upper-bounded by 1 — « as proved in the Proposition 2, we can still
control the detection performance by varying «.

The relevant results are presented in Figure 5 that shows the three probabilities under
truncated Gaussian random walk models with pz € [0,50]. In this analysis, it is assumed
thata = 0.5, yg = 4, and 0z = 5. €p is then given to be 25.8 (near the median of the
range of yy) according to (28). As yz becomes smaller compared to €y, Pr(Ho) = Fz(€p)
approaches one, and Pp(€p) has the minimum, but not goes to below «, referred to as the
Proposition 2. Not only Pp (o), butalso Pr(€g), which is upper-bounded by « (referred to as
the Proposition 1), has the maximum values for yz = 50 at which Pr(#o) = Fz(ep) becomes
near zero. From the results, we can establish directions for selection of « depending on
Zmin that is a smallest value of z satisfying F7(zmin) = 1 compared to €. When znmin < €,
« should have a value larger than 0.5 to ensure Pp(eg) > Pp(€p); otherwise, a lower
value of « is preferable to minimize the upper bound of Pr(ep). Maximizing the overall
performance such as the ratio Pr(#1)Pp(€p) to Pr(H1)Pa(eo) plus Pr(Ho)Pr(€p) may be a
good option for selecting «. It is worth noting that approaches to the selection of a should
be determined according to the system policy.

Figure 6 shows the cost function and the detection probability under the uniform
random walk model with varying u4 and a. All the other settings are the same as in
Table 1. As discussed above, the decrease in € results in the increase in the gap between
Pr(Ho), which goes to zero, and Pr(#; ), which goes to one, for a larger number of anchors
under the uniform random walk model. Consequently, the concern of the miss detection
remains dominant while the false alarm becomes insignificant in our mobility detection
problem, which is reformulated as the problem of minimizing the miss detection. « also
raises the weight on the miss detection. Thus, the cost function decreases and the detection
probability increases over 4, and both increase with the increase in . The corresponding
Pr(H1)Pp(eo), Pr(H1)Pum(eo), and Pr(Ho)Pr(eg) are presented in Figure 7, which clearly
shows that the overall detection performance is improved by increasing ji 4 and setting a
smaller value for «.
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6. Conclusions

In this paper, the theoretical foundations

of connectivity-based mobility detection

were developed by defining and deriving Pp(€), Py(€), and Pr(€) in terms of a mobility
detection threshold € under the shadow fading channel and arbitrary mobility models.
The determination of the optimal detection threshold was made with respect to the an-
chor number from the perspective of the average error cost minimization. Through the
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numerical evaluations, we showed that the detection resolution and the mobility detection
probability are improved by increasing the number of anchors, and that the probabilities
are bounded by the costs of miss detection and false alarm, which was also theoretically
proven. We believe that our results can be used as potential foundations upon which others
facilitate the design, development, and deployment of connectivity-based localization
supporting mobility.

Author Contributions: Conceptualization, S.L. and S.K. (Sunwoo Kim); methodology, S.L. and S.K.
(Sungjin Kim); software, I.B. and S.K. (Sungjin Kim); validation, S.L., IB., S.K. (Sungjin Kim) and S.K.
(Sunwoo Kim); formal analysis, I.B. and S.K. (Sungjin Kim); investigation, I.B. and S.K. (Sungjin Kim);
resources, I.B. and S.K. (Sungjin Kim); data curation, S.L.; writing—original draft preparation, S.L.
and S.K. (Sungjin Kim); writing—review and editing, S.L., I.B. and S.K. (Sunwoo Kim); visualization,
S.K. (Sungjin Kim); supervision, S.L. and S.K. (Sunwoo Kim); project administration, S.K. (Sunwoo
Kim); funding acquisition, S.K. (Sunwoo Kim). All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the ICT Research and Development Program of
MSIP/IITP (Standard technology development and its international standardization for T2X services
based on 5G) under Grant 2020-0-00505.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BLE Bluetooth Low Energy

CDF Cumulative Distribution Function
DV-Hop Distance Vector-Hop

IoT Internet-of-Things

ITU International Telecommunication Union
MCL Monte Carlo Localization

PDF Probability Density Function

UDG Unit Disk Graph

Appendix A. Proof of (15)

Assuming Fz(e) ~ 1, fz(z,) is approximated to zero when z, > €. From the
L'Hospital’s rule, Pp(e€) in (8) and Py(€) in (9) can be expressed as follows:

lim Pp(c)=1_ lim de J2n)eplpati(z) —1)}dz,

Fy(e)—>1 Fy(e)—1 1—Fz(e)
o 2l ep{ualie) ~ 1) (A1)
Fz(e)—1 fz (6)
1 - expfpuah(e) ~1)}.
le(ier)r*;l Pyp(e) = le(ier)nﬁl(l —Pp(e)) = exp{pa(h(e) —1)}. (A2)

Appendix B. Proof of (18)

Assuming Fz(€) ~ 0, fz(zx) is approximated to zero when 0 < z, < e. From the
L'Hospital’s rule, Pr(€) in (10) can be expressed as follows:

foefZ(Zn) exp{pa(h(zn) — 1)} dz,

lim Pr(e)=1— lim

Fz(e)—0 Fz(e)—0 Fz(¢e)
e fz(@exp{palhle) 1)} (A3)
Fz(e)—0 fz(€)

=1 —exp{pa(h(e) —1)}.
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