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ABSTRACT: An efficient optimization technique based on a metaheuristic and an artificial neural
network (ANN) algorithm has been devised. Particle swarm optimization (PSO) and ANN were used N
to estimate the removal of two textile dyes from wastewater (reactive green 12, RG12, and toluidine r

blue, TB) using two unique oxidation processes: Fe(Il)/chlorine and H,0,/periodate. A previous

study has revealed that operating conditions substantially influence removal efficiency. Data points ‘l

were gathered for the experimental studies that developed our ANN-PSO model. The PSO was used (.o » - @

to determine the optimum ANN parameter values. Based on the two processes tested (Fe(II)/chlorine - § - - § » »
and H,0,/periodate), the proposed hybrid model (ANN-PSO) has been demonstrated to be the most e ¥ e\
successful in terms of establishing the optimal ANN parameters and brilliantly forecasting data for ‘v

RG12 and TP elimination yield with the coefficient of determination (R2) topped 0.99 for three | _ " .- ;. =~

distinct ratio data sets.

1. INTRODUCTION

To remove organic pollutants, nutrients, and other impurities,
a typical wastewater treatment plant uses a variety of physical,
chemical, and biological unit processes. Detritus that is
solubilized by microorganisms may only be removed using
natural treatment.”” Industrial effluents are sometimes more
challenging because of high organic matter content, non-
neutral pHs, salinity, or the inclusion of synthetic chemicals
with long persistence and low biodegradability.” This treat-
ment chain is suitable for the majority of household
wastewaters. One of the most common occurrences is
wastewater from the textile industry. The color is still
discernible at low concentrations (less than 1 ppm for some
dyes).d'_7 Toxic, carcinogenic, mutagenic, or teratogenic
compounds are often found in textile wastewater. For the
most part, the chromophore grouping of a dye is employed to
sort it out. Although anthraquinone, xanthene, phthalocyanine,
and sulfur are also utilized, most chemicals are azo (—N=N-)
derivatives.” Some substances may alter wastewater treatment
facilities, leading to more stable and harmful organisms, or they
may not change and remain unchanged. For decades, scientists
have been working to create advanced oxidation processes
(AOPs) that are more environmentally friendly.”'® Hydroxyl
radical *OH, a potent oxidant (E° = 2,8 V) and highly reactive
species to most organic contaminants in situ, is produced by
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AOPs. AOPs include the Fenton system (Fe(II)/H,0,), UV/
H,0,, H,0,/0;, UV/O,, and UV/TiO,."" An alternative to
H,0, and UV has recently been explored: the UV/chlorine
procedure. It has been tried in a pilot or full-scale plant for
water treatment, drinking water processing, and groundwater
remediation."” In this process, several free radicals, including
*OH, CL"°7, and CIO®, are generated to collectively remove
micropollutants at a much faster rate. Micropollutant
elimination is an important goal for environmentalists and
scientists alike. Utilizing multiple free radicals in a novel class
of oxidation processes is one way to achieve this goal."”> As
with UV/chlorine, UV/periodate acts as a multifree radical
generator, producing radicals such as 10;°, 10,°, *OH, 10;,
O(’P), O,, and H,0, for the removal of a variety of water
contaminants."*~"”

To integrate the results of experiments, mathematic models
were regarded as appropriate. Kinetic modeling models have
many constraints because of their complicated nature and
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nonlinearity, limiting the parameters.'®™>” Scientists have put

out fuzzy logic (FL) models, artificial neural networks
(ANNs), and other ML techniques. The latter have been
applied to processes in several studies.”® *® Machine learning
(ML) offers practical solutions to solve challenging issues in
various industrial applications.” ML includes computer
algorithms and statistical methods required for data-driven
control, estimation, prediction, classification, or clustering.37

Although it is not practicable, complicated problems that
were difficult to describe and analyze may now be appraised
using these methods.”® Several ANNSs, such as a multilayer
perceptron, are based on the human brain (MLP). This
rigorous mathematical model often used in ML may explain
any nonlinear relationship between input and output sets. An
ANN is a collection of neurons linked by two fundamental
parameters (connection weights and thresholds).>” ™' Neural
network techniques such as Levenberg—Marquardt (LM),
scaled gradient descent (SGD), and gradient descent with
momentum (GDWM) are among the most often employed
(GDM). Adaptation, learning, and generalization may occur
even when working with nonlinear functions. Contrarily, the
speed of convergence of BPNN algorithms is slow. Some
metaheuristic optimization approaches, such as the genetic
algorithm (GA), firefly algorithm (FA), ant colony optimiza-
tion (ACO), particle swarm optimization (PSO), and differ-
ential evolution (DE), may be utilized to solve these problems.
They help the ANN find more optimal solutions faster,
increasing its overall efficiency. Techniques like PSO and GA
illustrate this trend.*”*' To cope with the most complex and
complicated issues in optimization, they are the most
promising global optimization approaches.**™*°

They have recently discovered two new oxidation methods
for efficiently removing textile colors from wastewater.””**
These two reactions, Fe(Il)/chlorine and H,O,/periodate,
have been discovered as multiple sources of free-radical
oxidation of organic contamination. Cl°, ClO® and CL,°*~
chlorine radicals have been implicated in the Fe(II)/Chlorine
process,”*” while 10,® and 10," iodine radicals, as well as
singlet oxygen ('O,), have been implicated in the H,0,/
periodate system.*”*’

e Fe(II)/chlorine process

Fe(II) + HCIO — Fe(Ill) + *OH + CI” (1)
Fe(II) + HCIO — Fe(IIl) + CI° + OH™ (2)
*OH + HCIO — CIO® + H,0 (3)
CI* + HCIO - CIO* + H' + CI” 4)
Cl"+ClI” =Cl,*” (5)
CI* + H,0 — HCIO*™ + H' (6)
HCIO"™ = "OH + CI” (7)
HCIO*” + H" - CI° + H,0 (8)
HCIO*™ + CI” - CL"~ + OH~ 9)
Cl,*” 4+ H,0 — CI” + HCIO*” + H* (10)
CL,*~ + "OH - CI” + HCIO*~ (11)
CL"™ + CL,"™ - Cl, + 2CI” (12)

Cl'+ Cl* - Cl, (13)
Cl'+ CL*" - Cl, + CI” (14)
Cl, + H,0 —» HCIO + H" + CI” (15)
‘OH + °OH - H,0, (16)
Cl,"” + *OH — HCIO + CI” (17)
CIO® + CIO®* - Cl,0, (18)

e H,0,/periodate

10,” + H,0, —» 10,* + 0,°” + H,0 (19)
H,0, + 0, — "OH + OH™ + O, (20)
10,” +20,"” + H,0 —» 2'0, + 10,” + 2 OH"~
(21)
20,°” +2H,0 - 'O, + H,0, + 20H~ (22)
0, + *OH - 'O, + OH~ (23)
*OH + °OH - H,0, (24)
'0, = 70, + hv (A = 643 nm) (25)
'0, +'0, = ('0,),*>2(°0,) + hv
(A = 478 nm) (26)
0,” + H' =2 HO," pKa = 4.8 (27)
H,0, + *OH — HO," + H,0 (28)
10,” + 10;,* - 10,* + 10, (29)
10,* + 10,* — 1,04 (30)
L,Os + H,0 - 10,” + 10,” + 2H" (31)
10,° + 10,° — 1,04 (32)

L,Og + H,0 - 10,” + I0,” + 2H" + O,  (33)
1I0,” + *OH — IQ," + OH (34)

To degrade RG12 and TB textile colors fast, we used
Fe(1I)/chlorine and H,0,/periodate processes. Several opera-
tional variables, including as reagent dosages, solution
temperature, and pH, were examined throughout a wide
range of reaction times. Industrial applications need a
modeling technique that maximizes the efficiency of both
kinetic processes.

This work aimed to develop a hybrid model (ANN-PSO) for
the case of the removal of RG12 and TB dyes from wastewater
utilizing Fe(II)/chlorine and H,0,/periodate oxidation
processes. The PSO metaheuristic optimization was combined
with ANN to construct a feasible model for predicting and
optimizing the removal of textile colors from wastewater
effluent using Fe(1I)/chlorine and H,0,/periodate, respec-
tively. The model’s adaptability and durability were shown
using the R® coefficient and the root mean square error
(RMSE) between the predicted and experimental datasets.

https://doi.org/10.1021/acsomega.2c00074
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2. EXPERIMENTAL DATA

Merouani et al.*”*® developed the ANN-PSO model by
assessing the removal kinetics of RG12 and TB dyes from
aqueous solutions under different experimental settings,
utilizing the Fe(Il)/chlorine and H,0,/periodate oxidation
systems, respectively. The testing methodology and data are
summarized in Text S1 in the Supporting Information.

For the Fe(II)/chlorine system, 146 datasets were collected
from the experimental assessment of the removal kinetics of
RG12 over time under various experimental factors such as
solution pH (3—7.9), chlorine dosage (25—250 mM), Fe(II)
initial concentration (5—100 M), initial RG12 concentration
(Cy: 10—100 mg/L), and liquid temperature (20—40 °C). For
H,0,/periodate, 169 datasets were collected from the
experimental assessment of TB removal kinetics over time
under various experimental factors: initial H,0, concentration
(10—200 mM); initial periodate dosage (0.5—10 mM); initial
solution pH (3—10.5); initial TB concentration (Cy: S—S0
mg/L); and liquid temperature (10—50 °C).

3. MATERIALS AND METHODS

3.1. ANN Methodology. Input (IL), output (OL), and
intermediate or hidden (HL) layers (Figures S1 and S2 of the

Table 1. Data Distribution of RG12 and TB Removal into
Three Sets

divide rand percentage (%) divide data
system 1: RG12, Fe(II)/chlorine process

train ratio 70 102

test ratio 15 22
validation ratio 1S 22

system 2: TP, H,0,/periodate process

train ratio 70 119

test ratio 15 25
validation ratio 1s 25

Table 2. Range of All Parameters

parameters minimum value maximum value
system 1: RG12, Fe(II)/chlorine process

IL

pH 3 8
[chlorine], (uM) 25 1000
[Fe(11)], (uM) 0 100
C, (mg/L) 10 100
temp. (°C) 10 40
OL

RGI2 removal (mg/L) 3.59 44.26
system 2: TB, H,O,/periodate process

IL

[H,0,]o (mM) 3 8
[10,7], (mM) 25 1000
pH 3 11
temp. (°C) 10 50
C, (mg/L) S 50
OL

TB removal (mg/L) 2.04 22

Supportin% Information) are the three architectural levels of
ANNs.*>** Neurons (or nodes) are essential computer
components used in parallel computing.”*~>> Neurons work
together to detect input data sets commonly seen.*

y=f(X 5mw) +0 (35)

fis the transfer function; x; is the neuron’s inputs; and wy; is the
link between IL and HL (weights) and the HL’s threshold of j
neuron.””>? Constructing and training neuronal networks has
as its primary goal the minimization of the objective function
(or fitness function), which in turn leads to better predictions
for new input.”>>’ The latter compares the output and
experimental data sets to determine how well the network
operates. The fitness (error) function may thus be written as
follows:

RMSE = Ei:l ()f B yo)
\ N (36)

N is the number of experiments, and y; and y, are the
calculated and experimental data, respectively.’’

3.2. Particle Swarm Optimization. It is a nature-inspired
evolutionary computing technology based on the movement
and intelligence of swarms, such as ants and birds.** Kennedy
and Eberhart created PSO in 1995 as a resilient stochastic
optimization approach. Numerous optimization problems,
such as function optimization, fuzzy control, and pattern
recognition, have been solved using this approach.”>>”

Arbitrary particles, also known as solutions, are supported by
the PSO algorithm. The search space (or the state space) is
transformed into a swarm that seeks only the most advanta-
geous options. The PSO training iteration uses the experience
of individual particles and those around them to adjust their
position and speed.

Vi = w-V] + ¢rand, (Pbest]y — X[3)

+ ¢yrand, (Gbest;y — Xi3) (37)
Xir:iﬂ = Xircli + Vircll+1 (38)

Vit s the new velocity; Pbestl is the best position of the
particle during training; Gbestly is the best position among all
the particles in the swarm during the training iteration. The
cognitive influence is Pbestyy — Xjy and the social influence is
Gbestly — XU ¢; and ¢, (acceleration constants) are the
cognition and social weights, respectively.

w is the inertia weight (or inertia constant).” rand, and
rand, generate random values ranging from 0 to 1. An example
of the standard flow chart for the PSO approach may be seen
in Figure S3 (Supporting Information).

The fundamental idea behind the PSO approach is that each
particle is accelerated toward its Pbestiy and Gbest}y positions at
each iteration.

When searching for the k-dimension and m-size of the
acceleration, each particle may be represented as follows: X; =
(%, xpexip); Vi = (v, vpvp) (see Figure S4 in the
Supporting Information).

3.3. PSO Approach. Analysis of state space is carried out
by using a collection of particles. Weights and thresholds are
stored in each particle for later adjustment.”

Figure SS of the Supporting Information shows the crucial
phases of the ANN-PSO hybrid algorithm.

1. Importing experimental data.
2. Define ANN structure, weights, and thresholds.
3. Compute the number of weights and thresholds:

Z=AB+BC+B+C (39)

https://doi.org/10.1021/acsomega.2c00074
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Table 3. Optimal ANN-PSO Parameters (System 1: RG12, Fe(II)/Chlorine Process)

wj 1 2 3 4 S 6 7 8 9 10 11
1 —-1.91 1.395 —0.742 0.878 —0.695 —1.91 1.547 —-0.42 0.419 191 0.408
2 1.709 —0.568 —0.803 1.91 —1.691 —0.101 1.344 1.285 0.839 —1.896 —1.004
3 —0.318 —0.817 0.333 0.073 —1.054 —1.91 0.516 —-1.91 -0.216 —1.08 0.879
4 1.67 1.69 —-1.91 —-1.1587 191 —-1.91 —-1.91 0.291 191 —1.231 0.307
S —-1.239 0.936 —0.122 —1.503 0.994 191 -191 0.463 191 —0.42 —-191
wy; 1 2 3 4 S 6 7 8 9 10 11
1 1.049 —1.446 —-0.993 1.615 0.436 -0.271 —-0.357 -191 0.822 0.992 —-1.727
Gj 1 2 3 4 S 6 7 8 9 10 11
1 -1.097 -0.193 —1.447 1.8 -1.734 0.669 —0.585 -1.293 0.855 1.119 1.91
0, —1.097
50 R?=0.99975 20 R?=0.99993 50 R?=0.99987
gm I 8 °
: E g
an % 20 g 35
% .§15 I% 30
:|T 20 l;j <
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Figure 1. Regression plot of the output (ANN-PSO) and experimental data sets (System 1: RG12, Fe(II)/chlorine process): (a): training, (b):
testing, and (c): validation.

Table 4. Optimal Weights and Thresholds of ANN Using the PSO Algorithm (System 2: TP, H,0,/Periodate Process)

wj 1 2 3 4 S 6 7 8 9 10 11 12 13 14
1 —0.770 0.900 —0.395 1.310 1.310 -1.163  0.771 1.310 —0.941 -0.317  —0.182 1.310 1.163 —-1.310
2 0.193 1.310 —0.549 —1.310 0.699 0.956 0.546 0.763 —-1.116 0.955 1.214 0.696 —0.217 0.288
3 —1.020 0.487 0.178 —-1.310 0.706 -0.273 —-0.597  0.259 —-1.310  0.682 0.274 0.485 -1.310 —1.021
4 —0.432 1.031 —-1.910 1.310 1.310 —0.035  0.544 0.603 —1.310  0.064 —-0.422  —0.355 —-1.310 0.310
S 0.252 1.310 —-1.310  0.149 —-1.310 0.751 —0.163 —0.435 —0.908 —0.358 0.235 —-0.287  0.521 0.212
wy; 1 2 3 4 S 6 7 8 9 10 11 12 13 14
1 —1.067 0.132 —1.190 0.115 —0.059 —0.886 —1.310 —1.310 —1.310 —0.057 0.938 0.846 0.216 1.310
9] 1 2 3 4 S 6 7 8 9 10 11 12 13 14
1 —1.094 0.965 -1310 -1.197 -1310 0.261 —-1.261 0.391 1.310 1.310 1.300 0.256 —-0.623  —0.612
0, —1.094
25 R?=0.99908 R?=0.9963 25— R?=0.99823
22
o Data’
© Fit »** N2 ©
52 * O=E gy! < 18 820
4 % = e
: ,, S 16 £
é 15 o A % 14 g 15
g o re I5‘12 g
W & 10 :T 10+
T I
3° 34 3
2
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Experimental Experimental Experimental
@ ® ©

Figure 2. Regression plot of the output (ANN_PSO) and experimental data sets (System 2: TP, H202/periodate process): (a): training, (b):
testing, and (c): validation.

A, B, and C are for IL, HL, and OL, respectively. 6. Adjust ;c};e location and velocity (6%5137 anc)lr 138)
4. Initialize parameters. 7. f(Xy ) < J: (1P bestiy) Then Pbestiy™ ' = Xig
S. Calculate the error, Pbest and Gbest. Else Pbestiy" "~ = Pbestiy
13821 https://doi.org/10.1021/acsomega.2c00074
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8. If (X" ") < f(Gbestly) Then Gbestly™ ' = X3!
Else Gbest;* ' = Gbesty
9. The ANN parameters’ results are shown (weights,
thresholds).

3.4. Database and Termination Criteria. Table 1
illustrates how the 146 experimental datasets for the Fe(II)/
chlorine system and the 169 H,O,/periodate system were split
into 70% training, 15% testing, and 15% validation. Initial
solution pH, initial chlorine (or H,0,) concentration, initial
Fe(Il) (or periodate) concentration, initial RG12 (or TB)
concentration, and initial liquid temperature are all factors in
the IL. The removal efficiency of RG12 (or TP) is saved in the
OL (see Table 2).

To evaluate or confirm the algorithm’s halting conditions,
the stopping criteria of this algorithm is considered or validated
when the maximum number of iteration or minimum RMSE is
attained.

4. RESULTS AND DISCUSSION

It is feasible to assess whether or not the mathematical model’s
predictions stand up under investigation using experimental

50
® ANN-PSO model
*  Exp
40 Fit
0
(0]
(2]
© 30
®©
o
kel
2
[$]
S 20
o
o
10
0

0 10 20 30 40 50
Experimental datasets

Figure 3. ANN-PSO-predicted datasets against experimental data sets
(System 1: RG12, Fe(II)/chlorine process).
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Figure 4. Plot of ANN-PSO predicted datasets against experimental
data sets (System 2: TP, H,0,/periodate process).

data. Training the ANN-PSO hybrid model necessitates
altering the number of neurons in the intermediate. Transfer
functions are sigmoid in both the HL and OL. Most
optimization strategies use it as a fitness function when
assessing the proposed model’s training performance. We are
searching for parameters (weights and thresholds) that
minimize the objective function (RMSE) between the
anticipated outcomes of our models and the experimental
datasets.

4.1. Fe(ll)/Chlorine System. The five parameters in the IL
were initial solution pH (from 3 to 7.9), initial chlorine
concentration (from 2S5 to 1000 M), initial Fe(Il) concen-
tration (from O to 100 M), initial RG12 concentration (from
10 to 100 mg/L), and liquid temperature (from 10 to 40 °C).
The OL includes RG12 removal (3.59—44.26 mg/L).

The best optimal parameters were ¢; and ¢,, of 1.25 and 2.5,
respectively. w = 0.15; maximum number of iterations = 4500,
and swarm size is 15:

e Fifty-five weights, w; (11 X 5) correlating IL with HL.
e Eleven weights, w;; correlating HL with OL.

Eleven thresholds, 6; for HL’s neurons.
e One threshold 6 for the OL (see Table 3).

Consequently, a S:11:1 network (three layers) is the
ultimate architectural network (i.e., five nodes in the IL, one
HL with eleven nodes, and one node in the OL, respectively).
After each training iteration, two variables, Pbest and Gbest,
determine how each solution changes its position and velocity.
The RMSE objective function assesses the model’s prediction
ability by minimizing the difference between the actual and
predicted data sets. As seen in Figure la, the ANN-PSO hybrid
model presents and updates parameters (weights and thresh-
olds) following its objective function, determining the output
datasets throughout training. In Figure 1b, it can be seen how a
network’s performance is evaluated when training is completed
using a network test. Data sets for RG12 removal from
wastewater treatment concentrations are forecasted using
network validation in Figure lc.

Figure 1 demonstrates the network output from the
proposed mathematical ANN-PSO model, and the exper-
imental data sets for the three stages (training, testing, and
validation) generated using MATLAB software. The practical
data sets were classified into three types: training data sets
(70%), testing data sets (15%), and validation data sets (15%).
For the three phases, the coefficients of determination (R?) are
0.99975, 0.99993, and 0.99987. The RMSE for each stage
(training, testing, and validation) is 0.00181, 0.00084, and
0.00129, respectively. These statistics demonstrate strong
performance across all data sets, with (R?) values closer to
unity and an RMSE less than 0.0012. This shows that all data
fall along a 45-degree line with a slope = 1. The network
outputs generated by the ANN-PSO hybrid model and
relevant experimental data sets have the same linear
connection (perfect correlation, “Perfect fit”).

4.2, H,0,/Periodate System. The initial H,0O, concen-
tration (10—200 mM), initial IO,~ concentration (from 0.5 to
10 mM), initial solution pH (3—11), liquid temperature (10—
50 °C), and initial TB concentration (5—50 mg/L) were the
five parameters in the IL. The elimination quantity in the OL is
2.04-22 mg/L.

Table 4 shows the most optimum parameters of the ANN
model derived using the PSO method (c; and ¢, equal to 1.25
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Table 5. Comparison of ANN-PSO Results Obtained for Both Systems

models ANN model design R? RMSE

training testing validation training testing validation
ANN-PSO: system 1¢ 05/11/2001 0.99975 0.99993 0.99987 0.00181 0.00084 0.00129
ANN-PSO: system 2k 5-14-1 0.99908 0.9963 0.99823 0.00174 0.0035 0.00273

“RG12, Fe(II)/chlorine process. bTp, H,0,/periodate process.

and 2.5, respectively, w = 0.25, a maximum number of
iterations =4500, and swarm size = 15).
They are distributed as follows:

w;; (70 = 14 X 5) correlating IL with HL.
wj; (14) correlating HL with OL.

0; (14) for HL’s neurons.

0, (1) for OL.

The final architectural network is three layers: (5:14:1)
network.

Figure 2 depicts the proposed mathematical ANN-PSO
model’s network output and the associated experimental data
sets for the system H,0,/period throughout the three stages
(training, testing, and validation) using MATLAB software.
The practical data sets were classified into three types: training
data sets (70%), testing data sets (15%), and validation data
sets (15%).

The coefficient of determination, R?, was 0.99908, 0.9963,
and 0.99823 for the three stages, respectively. The RMSE
values for the three stages (training, testing, and validation)
were 0.00174, 0.00350, and 0.00273, respectively. It is
determined that the correlation is perfect because R” is near
one and RMSE values are less than 0.0018.

Figures 3 and 4 compare the numerically simulated RG12
and TB removal (i.e, RGI2 removal and TB Removal
datasets) to the experimental data sets. The best fitting of
the experimental data was also obtained for the two cases,
revealing the ability of the ANN-PSO model toward predicting
RG12 and TB removal.

For new RGI12 data sets, Fe(II)/chlorine and H,O,/
periodate processes were predicted more precisely using the
ANN-PSO model. Table S.

It can be concluded that the experimental and simulated
findings agreed very well.

5. CONCLUSIONS

This work investigates the use of a new approach based on an
ANN and PSO method to remove RG12 and TB dyes from
wastewater utilizing Fe(II)/chlorine and H,O,/periodate
oxidation processes. The ANN training function adjusts the
weights and threshold values according to the PSO approach.
The use of MATLAB software carried out the results. The
coefficient of determination (R?) from the ANN-PSO hybrid
mathematical model topped 0.99 for three distinct ratio data
sets from two independent systems. The proposed ANN-PSO
model effectively predicts new RG12 and TB removal data sets
with high (R*) and low RMSE values.

B ASSOCIATED CONTENT

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.2c00074.

Experimental and data collection, different experimental
runs for the removal of RG12 (mg/L) using the Fe(I)/
chlorine oxidation system, different experimental runs

13823

for the removal of TB (mg/L) using H202/periodate
oxidation system, ANN topology, standard flow chart of
the PSO algorithm, concept of changing a particle’s
position in PSO, and flow chart of the ANN-PSO hybrid
mathematical model (PDF)

B AUTHOR INFORMATION

Corresponding Authors

Byong-Hun Jeon — Department of Earth Resources and
Environmental Engineering, Hanyang University, Seoul
04763, Republic of Korea; Email: bhjeon@hanyang.ac.kr

Yacine Benguerba — Department of Process Engineering,
Faculty of Technology, University Ferhat ABBAS Setif-1,
19000 Setif, Algeria; © orcid.org/0000-0002-8251-9724;
Email: benguerbayacine@yahoo.fr

Authors

Abdelhalim Fetimi — Laboratoire des Procédés Membranaires
et des Techniques de Séparation et de Récupération, Faculté
de Technologie, Université de Bejaia, 06000 Bejaia, Algeria

Slimane Merouani — Laboratory of Environmental Process
Engineering, Department of Chemical Engineering, Faculty of
Process Engineering, University Constantine 3 — Salah
Boubnider, 25000 Constantine, Algeria

Mohd Shahnawaz Khan — Department of Biochemistry,
College of Science, King Saud University, Riyadh 11451,
Saudi Arabia; © orcid.org/0000-0002-4599-5924

Muhammad Nadeem Asghar — Department of Medical
Biology, University of Québec at Trois-Rivieres, Trois-Rivieres,
Québec G9A SH7, Canada

Krishna Kumar Yadav — Faculty of Science and Technology,
Madhyanchal Professional University, Bhopal 462044,
India; © orcid.org/0000-0002-4228-2726

Mourad Hamachi — Laboratoire des Procédés Membranaires
et des Techniques de Séparation et de Récupération, Faculté
de Technologie, Université de Bejaia, 06000 Bejaia, Algeria

Ounissa Kebiche-Senhadji — Laboratoire des Procédés
Membranaires et des Techniques de Séparation et de
Récupération, Faculté de Technologie, Université de Bejaia,
06000 Bejaia, Algeria

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c00074
Notes

The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

M.S.K. acknowledges the generous support from Research
Supporting Project (RSP-2021/352) by King Saud University,
Riyadh, Kingdom of Saudi Arabia.

https://doi.org/10.1021/acsomega.2c00074
ACS Omega 2022, 7, 13818—13825


https://pubs.acs.org/doi/10.1021/acsomega.2c00074?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00074/suppl_file/ao2c00074_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Byong-Hun+Jeon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:bhjeon@hanyang.ac.kr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yacine+Benguerba"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8251-9724
mailto:benguerbayacine@yahoo.fr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Abdelhalim+Fetimi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Slimane+Merouani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohd+Shahnawaz+Khan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4599-5924
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Nadeem+Asghar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Krishna+Kumar+Yadav"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4228-2726
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mourad+Hamachi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ounissa+Kebiche-Senhadji"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00074?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00074?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

B REFERENCES

(1) Henze, M.; van Loosdrecht, M.C.M.; Ekama, G. A.; Brdjanovic,
D. Biological wastewater treatment: principles, modelling and design;
IWA Publishing: United Kingdom, 2008; pp 1-511.

(2) Sarayu, K; Sandhya, S. Current Technologies for Biological
Treatment of Textile Wastewater—A Review. Appl. Biochem.
Biotechnol. 2012, 167, 645—661.

(3) Ameta, S. C., Ameta, R, Eds.; Advanced oxidation processes for
wastewater treatment: emerging green chemical technology, 2nd ed;
Academic Press: United Kingdom, 2018; pp 1—412.

(4) Guzman-Duque, F.; et al. Effects of sonochemical parameters
and inorganic ions during the sonochemical degradation of crystal
violet in water. Ultrason. Sonochem. 2011, 18, 440—446.

(5) Li, Z.; Sellaoui, L.; Franco, D.; Netto, M. S.; Georgin, J.; Dotto,
G. L.; Bajahzar, A.; Belmabrouk, H.; Bonilla-Petriciolet, A.; Li, Q.
Adsorption of hazardous dyes on functionalized multiwalled carbon
nanotubes in single and binary systems: Experimental study and
physicochemical interpretation of the adsorption mechanism. Chem.
Eng. ]. 2020, 389, No. 124467.

(6) Brido, G. V.; Jahn, S. L,; Foletto, E. L.; Dotto, G. L. Highly
efficient and reusable mesoporous zeolite synthetized from a
biopolymer for cationic dyes adsorption. Colloids Surf, A 2018, 556,
43-50.

(7) Dotto, G. L.; Vieira, M. L; Gongalves, J. O.; Pinto, L. A.
Remogio dos corantes azul brilhante, amarelo creptsculo e amarelo
tartrazina de solugbes aquosas utilizando carvao ativado, terra gtivada,
terra diatomacea, quitina e quitosana: estudos de equilibrio e
termodinémica. Quim. Nova 2011, 34, 1193—1199.

(8) Carmen, Z.; Daniela, S. Textile organic dyes-characteristics,
polluting effects and separation/elimination procedures from industrial
effluents-a critical overview; IntechOpen: Croatia, 2012; pp 55—386.

(9) Remucal, C. K;; Manley, D. Emerging investigators series: the
efficacy of chlorine photolysis as an advanced oxidation process for
drinking water treatment. Environ. Sci.. Water Res. Technol. 2016, 2,
565—579.

(10) Glaze, W. H.; Kang, J. W. Advanced oxidation processes for
treating groundwater contaminated with TCE and PCE: laboratory
studies. J. — Am. Water Works Assoc. 1988, 80, 57—63.

(11) Stefan, M. L, Ed; Advanced oxidation processes for water
treatment: fundamentals and applications; IWA publishing: United
Kingdom, 2017; pp 1—681.

(12) De Laat, J.; Stefan, M. UV/Chlorine process; IWA Publishing:
London, 2018; pp 383—428.

(13) Bendjama, H.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.
Efficient degradation method of emerging organic pollutants in
marine environment using UV/periodate process: case of chlorazol
black. Mar. Pollut. Bull. 2018, 126, 557—564.

(14) Weavers, L. K; Hua, L; Hoffmann, M. R. Degradation of
triethanolamine and chemical oxygen demand reduction in waste-
water by photoactivated periodate. Water Environ. Res. 1997, 69,
1112—1119.

(15) Chia, L. H.; Tang, X.; Weavers, L. K. Kinetics and mechanism
of photoactivated periodate reaction with 4-chlorophenol in acidic
solution. Environ. Sci. Technol. 2004, 38, 6875—6880.

(16) Tang, X.; Weavers, L. K. Decomposition of hydrolysates of
chemical warfare agents using photoactivated periodate. J. Photochem.
Photobiol, A 2007, 187, 311-318.

(17) Tang, X.; Weavers, L. K. Using photoactivated periodate to
decompose TOC from hydrolysates of chemical warfare agents. J.
Photochem. Photobiol, A 2008, 194, 212—219.

(18) Biswas, S.; Pathak, P. N;; Roy, S. B. Kinetic modeling of
uranium permeation across a supported liquid membrane employing
dinonyl phenyl phosphoric acid (DNPPA) as the carrier. J. Ind. Eng.
Chem. 2013, 19, 547—-553.

(19) Kaya, A.; Alpoguz, H. K,; Yilmaz, A. Application of Cr (VI)
transport through the polymer inclusion membrane with a new
synthesized calix [4] arene derivative. Ind. Eng. Chem. Res. 2013, 52,
5428—-5436.

(20) Kaya, A; Onac, C.; Alpoguz, H. K; Yilmaz, A; Atar, N.
Removal of Cr (VI) through calixarene based polymer inclusion
membrane from chrome plating bath water. Chem. Eng. J. 2017, 283,
141—-149.

(21) Kolev, S. D.; St John, A. M,; Cattrall, R. W. Mathematical
modeling of the extraction of uranium (VI) into a polymer inclusion
membrane composed of PVC and di-(2-ethylhexyl) phosphoric acid.
J. Membr. Sci. 2013, 425—426, 169—175.

(22) Kozlowski, C. A.; Walkowiak, W. Removal of chromium (V1)
from aqueous solutions by polymer inclusion membranes. Water Res.
2002, 36, 4870—4876.

(23) Meng, X.; Wang, C.; Zhou, P.; Xin, X.; Wang, L. Transport and
selectivity of indium through polymer inclusion membrane in
hydrochloric acid medium. Front. Environ. Sci. Eng. 2017, 11, 1—10.

(24) Parhi, P. K. Supported liquid membrane principle and its
practices: A short review. J. Chem. 2013, 2013, 1—-11.

(25) Yang, Q. Kocherginsky, N. M. Copper removal from
ammoniacal wastewater through a hollow fiber supported liquid
membrane system: modeling and experimental verification. J. Membr.
Sci. 2007, 297, 121—-129.

(26) Yang, X.; Duan, H; Shi, D; Yang, R; Wang, S.; Guo, H.
Facilitated transport of phenol through supported liquid membrane
containing bis (2-ethylhexyl) sulfoxide (BESO) as the carrier. Chem.
Eng. Process.: Process Intesif. 2015, 93, 79—86.

(27) Kozlowski, C. A. Kinetics of chromium (VI) transport from
mineral acids across cellulose triacetate (CTA) plasticized membranes
immobilized by tri-n-octylamine. Ind. Eng. Chem. Res. 2007, 46,
5420—5428.

(28) Le, L. T.; Nguyen, H.; Dou, J.; Zhou, J. A comparative study of
PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the
heating load of buildings’ energy efficiency for smart city planning.
Appl. Sci. 2019, 9, 2630.

(29) Moosavi, S. R; Wood, D. A,; Ahmadi, M. A,; Choubineh, A.
ANN-based prediction of laboratory-scale performance of CO2-foam
flooding for improving oil recovery. Nat. Resour. Res. 2019, 28, 1619—
1637.

(30) Gambhir, S.; Malik, S. K; Kumar, Y. PSO-ANN based
diagnostic model for the early detection of dengue disease. New Horiz.
Transl. Med. 2017, 4, 1-8.

(31) Ahmadi, M. A; Bahadori, A;; Shadizadeh, S. R. A rigorous
model to predict the amount of dissolved calcium carbonate
concentration throughout oil field brines: side effect of pressure and
temperature. Fuel 2015, 139, 154—159.

(32) Geethanjali, M.; Slochanal, S. M.; Bhavani, R. PSO trained
ANN-based differential protection scheme for power transformers.
Neurocomputing 2008, 71, 904—918.

(33) Ahmadi, M.; Chen, Z. Machine learning-based models for
predicting permeability impairment due to scale deposition. J. Pet.
Explor. Prod. Technol. 2020, 10, 2873—2884.

(34) Ahmadi, M. A. Developing a robust surrogate model of
chemical flooding based on the artificial neural network for enhanced
oil recovery implications. Math. Probl. Eng. 2015, 2015, 1-9.

(35) Ahmadi, M. A. Neural network based unified particle swarm
optimization for prediction of asphaltene precipitation. Fluid Phase
Equilib. 2012, 314, 46—51.

(36) Ahmadi, M. A,; Soleimani, R.; Lee, M.; Kashiwao, T.; Bahadori,
A. Determination of oil well production performance using artificial
neural network (ANN) linked to the particle swarm optimization
(PSO) tool. Petroleun 2015, 1, 118—132.

(37) Khayyam, H.; Jamali, A; Bab-Hadiashar, A.; Esch, T;
Ramakrishna, S.; Jalili M.; Naebe, M. A novel hybrid machine
learning algorithm for limited and big data modeling with application
in industry 4.0. IEEE Access 2020, 8, 111381—111393.

(38) Soleimani, R.; Shoushtari, N. A, Mirza, B.; Salahi, A.
Experimental investigation, modeling and optimization of membrane
separation using artificial neural network and multi-objective
optimization using genetic algorithm. Chem. Eng. Res. Des. 2013, 91,
883—903.

https://doi.org/10.1021/acsomega.2c00074
ACS Omega 2022, 7, 13818—13825


https://doi.org/10.1007/s12010-012-9716-6
https://doi.org/10.1007/s12010-012-9716-6
https://doi.org/10.1016/j.ultsonch.2010.07.019
https://doi.org/10.1016/j.ultsonch.2010.07.019
https://doi.org/10.1016/j.ultsonch.2010.07.019
https://doi.org/10.1016/j.cej.2020.124467
https://doi.org/10.1016/j.cej.2020.124467
https://doi.org/10.1016/j.cej.2020.124467
https://doi.org/10.1016/j.colsurfa.2018.08.019
https://doi.org/10.1016/j.colsurfa.2018.08.019
https://doi.org/10.1016/j.colsurfa.2018.08.019
https://doi.org/10.1590/S0100-40422011000700017
https://doi.org/10.1590/S0100-40422011000700017
https://doi.org/10.1590/S0100-40422011000700017
https://doi.org/10.1590/S0100-40422011000700017
https://doi.org/10.1039/C6EW00029K
https://doi.org/10.1039/C6EW00029K
https://doi.org/10.1039/C6EW00029K
https://doi.org/10.1002/j.1551-8833.1988.tb03038.x
https://doi.org/10.1002/j.1551-8833.1988.tb03038.x
https://doi.org/10.1002/j.1551-8833.1988.tb03038.x
https://doi.org/10.1016/j.marpolbul.2017.09.059
https://doi.org/10.1016/j.marpolbul.2017.09.059
https://doi.org/10.1016/j.marpolbul.2017.09.059
https://doi.org/10.2175/106143097X125849
https://doi.org/10.2175/106143097X125849
https://doi.org/10.2175/106143097X125849
https://doi.org/10.1021/es049155n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es049155n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es049155n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jphotochem.2006.10.029
https://doi.org/10.1016/j.jphotochem.2006.10.029
https://doi.org/10.1016/j.jphotochem.2007.08.014
https://doi.org/10.1016/j.jphotochem.2007.08.014
https://doi.org/10.1016/j.jiec.2012.09.029
https://doi.org/10.1016/j.jiec.2012.09.029
https://doi.org/10.1016/j.jiec.2012.09.029
https://doi.org/10.1021/ie303257w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie303257w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie303257w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cej.2015.07.052
https://doi.org/10.1016/j.cej.2015.07.052
https://doi.org/10.1016/j.memsci.2012.08.050
https://doi.org/10.1016/j.memsci.2012.08.050
https://doi.org/10.1016/j.memsci.2012.08.050
https://doi.org/10.1016/S0043-1354(02)00216-6
https://doi.org/10.1016/S0043-1354(02)00216-6
https://doi.org/10.1007/s11783-017-0950-6
https://doi.org/10.1007/s11783-017-0950-6
https://doi.org/10.1007/s11783-017-0950-6
https://doi.org/10.1155/2013/618236
https://doi.org/10.1155/2013/618236
https://doi.org/10.1016/j.memsci.2007.03.036
https://doi.org/10.1016/j.memsci.2007.03.036
https://doi.org/10.1016/j.memsci.2007.03.036
https://doi.org/10.1016/j.cep.2015.05.003
https://doi.org/10.1016/j.cep.2015.05.003
https://doi.org/10.1021/ie070215i?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie070215i?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie070215i?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/app9132630
https://doi.org/10.3390/app9132630
https://doi.org/10.3390/app9132630
https://doi.org/10.1007/s11053-019-09459-8
https://doi.org/10.1007/s11053-019-09459-8
https://doi.org/10.1016/j.nhtm.2017.10.001
https://doi.org/10.1016/j.nhtm.2017.10.001
https://doi.org/10.1016/j.fuel.2014.08.044
https://doi.org/10.1016/j.fuel.2014.08.044
https://doi.org/10.1016/j.fuel.2014.08.044
https://doi.org/10.1016/j.fuel.2014.08.044
https://doi.org/10.1016/j.neucom.2007.02.014
https://doi.org/10.1016/j.neucom.2007.02.014
https://doi.org/10.1007/s13202-020-00941-1
https://doi.org/10.1007/s13202-020-00941-1
https://doi.org/10.1155/2015/706897
https://doi.org/10.1155/2015/706897
https://doi.org/10.1155/2015/706897
https://doi.org/10.1016/j.fluid.2011.10.016
https://doi.org/10.1016/j.fluid.2011.10.016
https://doi.org/10.1016/j.petlm.2015.06.004
https://doi.org/10.1016/j.petlm.2015.06.004
https://doi.org/10.1016/j.petlm.2015.06.004
https://doi.org/10.1109/ACCESS.2020.2999898
https://doi.org/10.1109/ACCESS.2020.2999898
https://doi.org/10.1109/ACCESS.2020.2999898
https://doi.org/10.1016/j.cherd.2012.08.004
https://doi.org/10.1016/j.cherd.2012.08.004
https://doi.org/10.1016/j.cherd.2012.08.004
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00074?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

(39) Bisi, M.; Goyal, N. K. Artificial Neural Network Applications for
Software Reliability Prediction; John Wiley & Sons, 2017; pp 1 —312.

(40) Kim, P. MATLAB Deep Learning: With Machine Learning,
Neural Networks and Artificial Intelligence, 1st ed.; Springer Science +
Business Media: New York, 2017; pp 1-21.

(41) Rakitianskaia, A. S. Using particle swarm optimisation to train
feedforward neural networks in dynamic environments; Diss. University
of Pretoria, 2012; pp 1-271.

(42) Momeni, E,; Armaghani, D. J.; Hajihassani, M.; Amin, M. F.
Prediction of uniaxial compressive strength of rock samples using
hybrid particle swarm optimization-based artificial neural networks.
Measurement 2015, 60, 50—63.

(43) Ding, S.; Xu, L;; Su, C,; Jin, F. An optimizing method of RBF
neural network based on genetic algorithm. Neural Comput. Appl.
2012, 21, 333—-336.

(44) Cheng, R;; Jin, Y. A social learning particle swarm optimization
algorithm for scalable optimization. Inf. Sci. 2015, 291, 43—60.

(4S) Clerc, M.; Kennedy, J. The particle swarm-explosion, stability,
and convergence in a multidimensional complex space. IEEE Trans.
Evol. Comput. 2002, 6, 58—73.

(46) El Sadek, H.; Zhang, X.; Rashad, M.; Cheng, C. Improvement
of Interior Ballistic Performance Utilizing Particle Swarm Optimiza-
tion. Math. Probl. Eng. 2014, 2014, 1-10.

(47) Chadi, N. E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.;
Ashokkumar, M. H,0,/Periodate (I0,”): A novel advanced oxidation
technology for the degradation of refractory organic pollutants.
Environ. Sci.: Water Res. Technol. 2019, §, 1113—1123.

(48) Meghlaoui, F. Z.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.;
Ashokkumar, M. Rapid catalytic degradation of refractory textile dyes
in Fe (II)/chlorine system at near neutral pH: radical mechanism
involving chlorine radical anion (Cl,”)-mediated transformation
pathways and impact of environmental matrices. Sep. Purif. Technol.
2019, 227, No. 115685.

(49) Meghlaoui, F. Z.; Merouani, S.; Hamdaoui, O.; Alghyamah, A ;
Bouhelassa, M.; Ashokkumar, M. Fe (III)-catalyzed degradation of
persistent textile dyes by chlorine at slightly acidic conditions: the
crucial role of CI2@— radical in the degradation process and impacts
of mineral and organic competitors. Asia-Pac. . Chem. Eng. 2021, 16,
No. €2553.

(50) Chadi, N. E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.;
Ashokkumar, M. Influence of mineral water constituents, organic
matter and water matrices on the performance of the H,0,/I0, -
advanced oxidation process. Environ. Sci.: Water Res. Technol. 2019, S,
1985—1992.

(51) Gevrey, M.; Dimopoulos, I; Lek, S. Review and comparison of
methods to study the contribution of variables in artificial neural
network models. Ecol. Modell. 2003, 160, 249—264. .

(52) Rankovi¢, V.; Radulovi¢, J.; Radojevig, L; Ostojic, A.; Comic, L.
Neural network modeling of dissolved oxygen in the Gruza reservoir,
Serbia. Ecol. Modell. 2010, 221, 1239—1244.

(53) Fetimi, A.; Déas, A.; Benguerba, Y.; Merouani, S.; Hamachi, M.;
Kebiche-Senhadji, O.; Hamdaoui, O. Optimization and prediction of
safranin-O cationic dye removal from aqueous solution by emulsion
liquid membrane (ELM) using artificial neural network-particle
swarm optimization (ANN-PSO) hybrid model and response surface
methodology (RSM). J. Environ. Chem. Eng. 2021, 9, No. 105837.

(54) Kiranyaz, S.; Ince, T.; Gabbouj, M. Multidimensional particle
swarm optimization for machine learning and pattern recognition;
Springer: Berlin, 2014; pp 1-321.

(55) Jiang, J; Trundle, P.; Ren, J. Medical image analysis with
artificial neural networks. Comput. Med. Imaging Graphics 2010, 34,
617—631.

(56) Eslamimanesh, A.; Gharagheizi, F.; Mohammadi, A. H; Richon,
D. Artificial neural network modeling of solubility of supercritical
carbon dioxide in 24 commonly used ionic liquids. Chem. Eng. Sci.
2011, 66, 3039—3044.

(57) Alba, E., Marti, R., Eds.; Metaheuristic procedures for training
neural networks; Springer Science & Business Media: New York, 2006;
Vol. 36, pp 1-249.

13825

(58) Bonyadi, M. R;; Michalewicz, Z. Particle swarm optimization
for single objective continuous space problems: a review. Evol.
Comput. 2017, 25, 1-54.

(59) Eberhart, R. C.; Shi, Y.; Kennedy, J. Swarm intelligence;
Academic Press: United States of America, 2001; pp 1—497.

(60) Gudise, V. G.; Venayagamoorthy, G. K. Comparison of particle
swarm optimization and backpropagation as training algorithms for
neural networks. In Proceedings of the 2003 IEEE Swarm Intelligence
Symposium, 03EX706; IEEE, 2003; pp 110—117, 10.1109/
§1S.2003.1202258S.

[0 Recommended by ACS

Continuous Heterogeneous Fenton-Type Process for
Dye Pollution Abatement Intensified by Hydrodynamic
Cavitation

Gabriel Salierno, Maria Alejandra Ayude, et al.
NOVEMBER 08, 2021

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH READ =

Effective Removal of Acid Dye in Synthetic and Silk
Dyeing Effluent: Isotherm and Kinetic Studies

Elizaveta Sterenzon, Hadas Mamane, et al.
DECEMBER 30, 2021

ACS OMEGA READ &

Hybrid System of Flocculation-Photocatalysis for the
Decolorization of Crystal Violet, Reactive Red X-3B, and
Acid Orange II Dye

Yuanfang Wang, Chen Liu, et al.

NOVEMBER 30, 2020

ACS OMEGA READ &'

Synergistic Mechanism of Combined Inhibitors on the
Selective Flotation of Arsenopyrite and Pyrite

Xiaohao Sun, Hongyang Xu, et al.
FEBRUARY 10, 2022

ACS OMEGA READ

Get More Suggestions >

https://doi.org/10.1021/acsomega.2c00074
ACS Omega 2022, 7, 13818—13825


https://doi.org/10.1016/j.measurement.2014.09.075
https://doi.org/10.1016/j.measurement.2014.09.075
https://doi.org/10.1007/s00521-011-0702-7
https://doi.org/10.1007/s00521-011-0702-7
https://doi.org/10.1016/j.ins.2014.08.039
https://doi.org/10.1016/j.ins.2014.08.039
https://doi.org/10.1109/4235.985692
https://doi.org/10.1109/4235.985692
https://doi.org/10.1155/2014/156103
https://doi.org/10.1155/2014/156103
https://doi.org/10.1155/2014/156103
https://doi.org/10.1039/C9EW00147F
https://doi.org/10.1039/C9EW00147F
https://doi.org/10.1016/j.seppur.2019.115685
https://doi.org/10.1016/j.seppur.2019.115685
https://doi.org/10.1016/j.seppur.2019.115685
https://doi.org/10.1016/j.seppur.2019.115685
https://doi.org/10.1002/apj.2553
https://doi.org/10.1002/apj.2553
https://doi.org/10.1002/apj.2553
https://doi.org/10.1002/apj.2553
https://doi.org/10.1039/C9EW00329K
https://doi.org/10.1039/C9EW00329K
https://doi.org/10.1039/C9EW00329K
https://doi.org/10.1016/S0304-3800(02)00257-0
https://doi.org/10.1016/S0304-3800(02)00257-0
https://doi.org/10.1016/S0304-3800(02)00257-0
https://doi.org/10.1016/j.ecolmodel.2009.12.023
https://doi.org/10.1016/j.ecolmodel.2009.12.023
https://doi.org/10.1016/j.jece.2021.105837
https://doi.org/10.1016/j.jece.2021.105837
https://doi.org/10.1016/j.jece.2021.105837
https://doi.org/10.1016/j.jece.2021.105837
https://doi.org/10.1016/j.jece.2021.105837
https://doi.org/10.1016/j.compmedimag.2010.07.003
https://doi.org/10.1016/j.compmedimag.2010.07.003
https://doi.org/10.1016/j.ces.2011.03.016
https://doi.org/10.1016/j.ces.2011.03.016
https://doi.org/10.1162/EVCO_r_00180
https://doi.org/10.1162/EVCO_r_00180
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00074?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/acs.iecr.1c02571?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acs.iecr.1c02571?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acs.iecr.1c02571?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acs.iecr.1c02571?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acs.iecr.1c02571?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.1c04111?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.1c04111?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.1c04111?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.1c04111?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.0c04285?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.0c04285?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.0c04285?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.0c04285?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.0c04285?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.1c06902?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.1c06902?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.1c06902?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
http://pubs.acs.org/doi/10.1021/acsomega.1c06902?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1656298218&referrer_DOI=10.1021%2Facsomega.2c00074
https://preferences.acs.org/ai_alert?follow=1

