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ABSTRACT This paper presents a new short zero-knowledge argument for the range proof and arithmetic
circuits without a trusted setup. In particular, it can achieve the shortest proof size of the proof system
categories without a trusted setup. More specifically, when proving that a committed value is a positive
integer less than 64 bits, except for negligible error in the 128-bit security parameter, the proof size is
576 bytes long, which is 85.7% the size of the previous shortest proof due to Bünz et al. (Bulletproofs, IEEE
Security and Privacy 2018). Similarly, circuit satisfiability can be proven with less communication overhead.
Nevertheless, computational overheads in both proof generation and verification are comparable with those
of Bulletproofs. Bulletproofs is established as one of the important privacy-enhancing technologies for a
distributed ledger due to its trustless feature and short proof size. In particular, it has been implemented
and optimized in various programming languages for practical usage by independent entities since it was
proposed. The essence of Bulletproofs is based on the logarithmic inner product argument with no zero-
knowledge. This paper revisits Bulletproofs from the viewpoint of the first sublinear zero-knowledge
argument for linear algebra due to Groth (CRYPTO 2009) and then propose Bulletproofs+, an improved
variety of Bulletproofs. The main component is the zero-knowledge weighted inner product argument
(zk-WIP) which enables to reduce both the range proof and the arithmetic circuit proof. It already has zero-
knowledge properties, there is no additional information when reducing zk-WIP, and it incurs a minimal
transmission cost during the reduction process. Note that zk-WIP has all characteristics of the inner product
argument, such as an aggregating range proof and batch verification; thus, Bulletproofs+ is superior to
Bulletproofs in all aspects.

INDEX TERMS Zero-knowledge proofs, range proofs, arithmetic circuit.

I. INTRODUCTION
Adistributed ledger is a database that is consensually shared
and synchronized across multiple nodes without a trusted
administrator. The blockchain is one type of distributed
ledger, where the database consists of linked blocks, called
chains, and cryptocurrency, such as Bitcoin [1], is a rep-
resentative application of the blockchain. The benefit of a
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distributed ledger is that it is immutable and that any inde-
pendent observer can verify its validity without the aid of a
trusted third party. The transparency of the natural realization
of distributed ledgers often causes a data privacy issue since
all information is public. For instance, all transaction details,
including the sender, the receiver, and the amount transferred,
are public in Bitcoin.

Noninteractive zero-knowledge proofs (NIZKs) enable the
data owner to generate proof to convince observers of the
validity of the data without disclosing it. Range proofs are
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special NIZKs for membership in a predetermined inter-
val. That is, the prover first commits to a value using
a commitment scheme and then proves that a committed
value lies in a given interval. The range proof has broad
applications that include blockchain-based cryptocurrencies
in particular. For example, using a range proof, each trans-
action can be confidentially transferred without disclosing
the amount transferred by including only the zero-knowledge
proof validity of the transaction [2].

Due to its distributed and transparent nature, a short NIZK
without a trusted setup is highly desired in the context of
a distributed ledger. Bünz et al. [3] proposed a short NIZK
without a trusted setup, called Bulletproofs, on the basis
of the techniques of Bootle et al. [4]. Bulletproofs pro-
vides the shortest proof size, which is indeed incomparably
shorter than the other range proof systems when a trusted
setup is undesired. In fact, [4] achieved the first logarith-
mic communication complexity, and Bulletproofs improve
Bootle et al.’s protocol so that the proof size is reduced by
a factor of 3 and the protocol is suitable for proving state-
ments on committed values. Hoffmann, Klooß, and Rupp [5]
improved Bulletproofs to efficiently cover more expressive
relations than rank 1 constraint systems. Even though [5]
presents a more generic approach than Bulletproofs, they
failed to reduce the proof size in specific arguments such
as range proofs. Recently, Bünz, Fisch, and Szepieniec [6]
devised a novel polynomial commitment scheme based on
the class group and proposed the first succinct NIZK with-
out trusted setup, called Supersonic, on the basis of their
polynomial commitment scheme. Although Supersonic has
strengths in both low verification costs and a short proof size,
its minimum proof size is at least× 6 that of Bulletproofs for
the 128-bit security level, and the gap becomes larger when
increasing the security level. Bulletproofs are established as
an important privacy-enhancing technology for distributed
ledgers due to its trustless features and short proof size. In par-
ticular, it has been implemented and optimized in various
programming languages for practical usage by independent
entities: Java [7], C [8], C++ [9], Rust [10], [11], Go [12],
Haskell [13], among others.

This paper presents, Bulletproofs+, an improved variety of
Bulletproofs with a shorter proof size. That is, Bulletproofs+
achieves the shortest proof size in the NIZK category without
a trusted setup. We compare the proof size of the range
proof protocol of Bulletproofs+ with that of Bulletproofs in
Table 1 for typical data types on a scale from 8 bits to 64 bits.
The proof size of our range proof is ×0.8 ∼ 0.857 of that
of Bulletproofs. Note that computational overheads in both
proof generation and proof verification in Bulletproofs+ are
comparable to those of Bulletproofs. To achieve a shorter
proof size, we revisits Bulletproofs from the viewpoint of the
first sublinear zero-knowledge argument for linear algebra
due to Groth [14]. Bulletproofs employ the inner product
argument without zero-knowledge as the essential ingredient.
In [14] and Bulletproofs+, the main ingredient is the zero-
knowledge weighted inner product argument (zk-WIP),which

enables to reduce both the range proofs and the arithmetic
circuit proofs. Briefly, Bulletproofs mask committed values
with random numbers to give a zero-knowledge property to
the inner product argument and to reduce to the inner product
argument, committed values become random polynomials
of degree 1 and it makes 5 elements for reduction. In con-
trast, zk-WIP already has zero-knowledge properties, our
protocol needs no random number anymore, and it enables
the reduction to zk-WIP by only one element. Therefore,
the benefit of reducing zk-WIP is the minimal transmission
cost during the reduction process, which makes the overall
proof size of Bulletproofs+ smaller than that of Bulletproofs.
Furthermore, like Bulletproofs, Bulletproofs+ has additional
extensions, such as aggregating range proofs and batch
verification.

A. OUR APPROACH
1) WHY WEIGHTED INNER PRODUCT?
The inner product argument based on a homomorphic com-
mitment scheme such as a generalization of the Pedersen
commitment [14], [15] is employed as a core building block
for more complicated relations such as linear algebra equa-
tions, range relations, and circuit satisfiability [3], [4], [14].
More precisely, Groth [14] proposed efficient reductions from
the advanced arguments to the inner product argument, and
Bootle et al. [4] and Bünz et al. [3] improved Groth’s result
in terms of the communication overhead by imposing more
interactions between the prover and the verifier. However, this
is not a major burden in the random oracle model [16] since
this approach can be converted into the noninteractive argu-
ment through the Fiat-Shamir heuristic [17] in the random
oracle model.

In fact, when Groth proposed the reduction from the
advanced argument for linear algebra equations, he used the
weighted inner product (WIP) argument as well as the inner
product argument as ingredient protocols. For a constant
vector c ∈ Znp, the WIP with respect to c, denoted by �c,
is defined as

�c : Znp × Znp → Zp
(a, b) 7→ 〈a, (c ◦ b)〉,

where 〈 〉 denotes the standard inner product and ◦ denotes
the componentwise product (a.k.a. the Hadamard product).

At the heart of the reductions to the WIP argument is the
batch processing of several equations so that the commu-
nication overhead is reduced. For example, the Hadamard
product equation between two vectors a and b, denoted by
a ◦ b = c ∈ Znp, is a set of n equations, and this equation can
be converted by imposing a random integer y into the equation

〈a,
(
(y, y2, . . . , yn) ◦ b

)
〉 = 〈c, (y, y2, . . . , yn)〉 ∈ Zp. (1)

The prover can thus convince the verifier of the original
Hadamard product equation a ◦ b = c ∈ Znp by convincing
(1) for randomly chosen y. Both sides of (1) can be directly
considered as the WIP with respect to the coefficient vector
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TABLE 1. Logarithmic zero-knowledge range proofs.

(y, y2, . . . , yn). Therefore, an efficient proof protocol for the
WIP is necessary for this approach.

2) LOGARITHMIC ZERO-KNOWLEDGE ARGUMENT FOR
WEIGHTED INNER PRODUCT
Groth [14] proposed zk-WIP with linear communica-
tion overhead, which is an ingredient protocol for more
advanced arguments for linear algebra equations. Subse-
quent works [3], [4] employed an inner product argu-
ment without zero-knowledge as an ingredient protocol,
but zero-knowledgeness for advanced relations such as cir-
cuit satisfiability is achieved by the reduction to the inner
product argument. Wahby et al. [18] presented a logarith-
mic zero-knowledge argument for the inner product between
a hidden vector and a public vector, which is different
from the (weighted) inner product between two hidden vec-
tors in [14]. Hoffmann, Klooß, and Rupp [5] proposed a
zero-knowledge argument for the inner product between
two hidden vectors satisfying certain constraints, which was
called the almost zero-knowledge proof protocol by the
authors. To blind witness vectors, they used random vectors
depending on the witness, which constrains the witness to
some degree. To our knowledge, there is no specific con-
struction for a logarithmic WIP proof protocol with full
zero-knowledge, where both WIP input vectors are perfectly
hidden.

The starting point of this work is logarithmic inner prod-
uct arguments whose the main component is the following
equality as well as the bilinearity of the inner product. For
the sake of simplicity, let n be an even number n = 2̂n for
some integers n̂ and a = (a1, a2), b = (b1, b2) ∈ Zn̂p × Zn̂p.
Then, one can obtain

〈a, b〉 = 〈a1, b1〉 + 〈a2, b2〉. (2)

That is, an inner product can be represented by the sum of
two half-length inner products. This property is essential for
reduction to a half-length inner product, which leads to loga-
rithmic communications. The WIP is also a bilinear map and
satisfies a similar property to (2) when c is the Vandermonde
vector, e.g., c = (y, . . . , yn) ∈ Znp.

a�(y,...,yn) b = a1 �(y,...,ŷn) b1 + (ŷn · a2)�(y,...,ŷn) b2. (3)

Let us give an intuition for a logarithmic WIP argument
w.r.t. (y, . . . , yn) ∈ Znp. Assume that the prover commits to
vectors a1, a2, b1, b2 ∈ Zn̂p and integers cL = a1�(y,...,ŷn) b2,
c = a �(y,...,yn) b, cR = (ŷn · a2) �(y,...,ŷn) b1 ∈ Zp and
aims to convince the verifier of the relation c = a�(y,...,yn) b.

The bilinearity of the WIP and (3) guarantee that the follow-
ing equation holds for a random challenge e.

(ea1 + e−1ŷna2)�(y,...,ŷn) (eb2 + e
−1b1)

= e2a1 �(y,...,ŷn) b2 + a�(y,...,yn) b+ e−2(ŷna2)�(y,...,ŷn) b1
(4)

In our protocol, the verifier can calculate the commitments
to (ea1 + e−1ŷna2) and (eb2 + e−1b1) and inputs of the WIP
of the left-hand side in (4) with the aid of the prover. Let
ĉ := e2cL + c + e−2cR. Then, the commitment to ĉ can
be publicly calculated using the homomorphic property of an
underlying commitment scheme, and this calculation can be
used as the result of theWIP when taking (ea1+e−1ŷna2) and
(eb2 + e−1b1) as input. Thus, the equality between (4) and
ĉ for randomly chosen e guarantees the equality between
each coefficient of a power of e of the right-hand side in (4)
and that of ĉ, so that we have c = a �(y,...,yn) b. There-
fore, a WIP proof w.r.t. (y, . . . , yn) between n-dimensional
vectors is reduced to a WIP proof w.r.t (y, . . . , ŷn) between
n̂-dimensional vectors.

The commitment to the hidden vector of length n, which
is the input of the reduction, and each transmission sent
by the prover during the reduction is blinded by random
group elements chosen by the prover so that the witness is
perfectly hidden from the viewpoint of the verifier. Using
the discrete logarithms of such random group elements, the
prover updates the blinding factor in the commitment to the
new hidden vector of length n̂, which is the output of
the reduction.

Constant communication is sufficient for each reduction
step, and a number of rounds of O(log2(n)) is sufficient for
reducing to a dimension 1 WIP proof protocol. For the final
step of the zk-WIP proof protocol, we devise a variant of the
Schnorr protocol, which requires 2 group elements and 3 field
elements. Therefore, the proposed zk-WIP protocol requires
communication of 2 log2(n)+ 5 field or group elements.

3) ONE ROUND REDUCTION FOR BULLETPROOFS-LIKE
PROTOCOLS
Bünz et al. proposed a short zero-knowledge argument called
Bulletproofs, which includes an aggregate range proof proto-
col with logarithmic size in the witness size and an arithmetic
circuit proof protocol with logarithmic size in the circuit
size. Both aggregate range proof and arithmetic circuit proof
protocols are built on their inner product proof protocol.

We show that when our zk-WIP proof protocol is used as an
ingredient protocol, one commit-and-challenge round is suf-
ficient to reduce from advanced protocols such as aggregate
range proof and arithmetic circuit proof to the zk-WIP proof
protocol. In particular, the prover sends only a group element
in our reductions.

Let us explain the idea of the reduction for our single-range
proof protocol. The prover’s goal is to convince the verifier
that witness v belongs to an interval [0, 2n− 1], equivalently,
the prover knows a binary vector of the witness v of length n.
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To show a binary vector, the prover begins by committing to
aL , aR ∈ Znp satsifying

aL − aR = 1n ∧ aL ◦ aR = 0 ∧ 〈aL ,2n〉 = v, (5)

where 1n = (1, . . . , 1) is a vector filled with 1’s in all entries
and 2n = (1, 2, . . . , 2n−1) is a vector consisting of powers
of 2. If aL and aR has other than 0 and 1, (5) cannot be satisfied
and the verifier can be convinced. To reduce communication
overhead, the verifier sends a random challenge y ∈ Zp to
utilizeWIP. Then, 2n+1 equations in (5) are batched to aWIP
equation. Therefore, we place each term of the left-hand sides
of the equations in (5) into a distinct monomial coefficient
with variables y and z as follows.(
aL − 1n · z

)
�(y,...,yn)

(
aR + 2n ◦ (yn, yn−1, . . . , y)+ 1n · z

)
= aL �(y,...,yn) aR + yn+1〈aL ,2n〉

+ z · (aL − aR)�(y,...,yn) 1
n
− ζ (y, z) ∈ Zp, (6)

where ζ (y, z) = yn+1z〈1n,2n〉 + z2〈1n,−→y n
〉 and −→y n indi-

cates (y, . . . , yn). Each term of the right-hand sides in (5)
is either constant or the witness v and appears as a distinct
monomial coefficient with variables y and z in

0+ yn+1v+ z1n �(y,...,yn) 1
n
− ζ (y, z). (7)

Therefore, the remaining part of our range proof protocol is
to run the zk-WIP protocol w.r.t. (y, . . . , yn) that convinces(
aL − 1n · z

)
�(y,...,yn)

(
aR + 2n ◦ (yn, . . . , y)+ 1n · z

)
= yn+1v+ z1n �(y,...,yn) 1

n
− ζ (y, z). (8)

By the homomorphic property of an underlying commitment
scheme, the commitments to inputs and output of the WIP
in (8) can be publicly calculated from public parameters and
the commitment sent by the prover at the beginning of our
range protocol. Therefore, both the prover and the verifier
can run the zk-WIP protocol. Similarly, aggregate range proof
and arithmetic circuit proof protocols can be reduced to the
zk-WIP proof protocol through one commit-and-challenge
round.

B. APPLICATIONS
1) BLOCKCHAIN: CONFIDENTIAL TRANSACTIONS, SMART
CONTRACTS, AND MORE
Although Bitcoin [1] supports pseudonymity, it does not
guarantee perfect privacy [19], [20]. To address the confi-
dentiality issue, Maxwell [2] proposed the concept of the
confidential transaction, where every piece of information
except validity is hidden, in the UTXO model. Here, the
UTXO is an unspent transaction output, and the UTXOmodel
indicates that each transaction should fully spend the outputs
of previously unspent transactions. A confidential transaction
consists of commitments to a set of inputs and a set of outputs
with a Pedersen commitment scheme [15]. Although the
homomorphic property of the Pedersen commitment enables
the verifier to check whether the sum of inputs is equal to the
sum of outputs, the verifier cannot verify whether a sender has

enough balance to involved amounts, and thus a sender should
provide additional evidence for this. The range proof exactly
resolves this problem and is thus essential in confidential
transactions.

Monero [21], [22] is a well-known privacy-enhanced
blockchain project that employs confidential transactions in
the UTXO model. Each transaction in the UTXO model
has 2.5 outputs on average. The range proof should be
attached for each transaction output in Monero so that on
average, 2.5 range proofs are required for each transac-
tion. The size of each transaction with two outputs was
reduced from 13 kB to 2.5 kB since Bulletproofs for aggre-
gate range proof were integrated with Monero in 2018.
Bulletproofs+ for aggregate range proof is 96 bytes smaller
than Bulletproofs in 128-bit security so that when applying
Bulletproofs+ instead of Bulletproofs to Monero, two output
transactions were further reduced and finally obtained 2.4 kB.
Therefore, Bulletproofs+ can save more than 1 MB every
day. Beside Monero, a similar effect can be obtained from
the other privacy cryptocurrencies such as QusQuis due to
Fauzi et al. [23] Compared to Monero, QuisQuis makes
UTXO sets nonmonotomically growing by introducing a new
notion called updatable public keys; however, Bulletproofs
still play an essential role in QuisQuis. Thus, Bulletproofs+
can also affect QuisQuis by reducing the transaction size.

Mimblewimble [24]–[26] aimed to resolve privacy and
scalability problems in Bitcoin. In the UTXO model, the
sums of input transaction values and output transaction values
should be the same, apart from a transaction fee, and anyone
can obtain a commitment to 0 from the valid transaction.
Then, a sender signs a transaction under the commitment
to 0 (as the public key), which implies that no money van-
ished and none was created. Through this, they simplify the
structure of a confidential transaction; however, they still
require the sender’s balance check for the validity of the
transaction, and thus, a range proof is indispensable. Grin [27]
and Beam [28] are major implementations of Mimblewim-
ble. For a million blocks, 10 million transactions (2 inputs,
2.5 outputs average) and 100,000 unspent outputs, the UTXO
size is nearly 520 MB, and among them, almost 517 MB
is allocated to the range proofs [27]. UTXO size can be
significantly reduced to approximately 90MB (100MB)with
Bulletproofs+ (Bulletproofs).

There are several attempts to employ range proofs in smart
contracts. A confidential transaction is first proposed based
on the UTXO model; however, a smart contract platform
usually takes an account-based model. To construct a confi-
dential transaction for the smart contract, it should support
not only range proofs but also statements on algebraically
encoded values to execute arbitrary smart contracts securely.
Zether [29] suggests a confidential transaction compatible
with a smart contract platform, especially Ethereum [30],
called confidential transfers. Additionally, Findora [31] is one
of the projects employing Bulletproofs on a smart contract.
The main feature of [31] is supporting audits on a confi-
dential transaction, and it enables us to prove more nuanced
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statements with selective disclosure. Both [29] and [31] sup-
port confidential asset transfer, and range proofs and arith-
metic circuit proofs are necessary. Thus, Bulletproofs+ can
also enhance the efficiency of the account-based model.

2) RANGE PROOFS
Range proof is an essential tool for resolving privacy issues
in digital financial technology, including distributed ledgers,
e.g., [32]. Banks perform the process of identifying and ver-
ifying the identity of the client when opening an account.
Due to regulations such as laundering antimoney and know-
ing your customer, this process becomes mandatory and
causes privacy issues. The zero-knowledge proofs enable this
process to be performed without disclosing the customer’s
private information. Using the range proofs, the client can
convince the banks of some relations on the age, zip codes,
and GPS position without disclosing the actual information.
For instance, the client can prove that the customer’s age
is over the legal age and that the zip codes and the GPS
information are contained in specific ranges to validate the
location where the customer stays.

3) VERIFIABLE SHUFFLES
Bulletproofs+ for the arithmetic circuit can be employed
to reduce the proof size of applications beyond distributed
ledgers. For example, it can be applied to the verifiable
shuffle [3], [33]–[36] that takes a list of committed values
as input and outputs a permuted list along with the proof
of correctness of the permuted list. Although the verifiable
shuffle is an important stand-alone protocol, it is also a good
building block for many other applications, such as e-voting
protocols [33], [37], mix-net [38], privacy-preserving adver-
tisement delivery [39], and solvency proofs [40]. In terms of
the proof size, Bulletproofs have the most efficient scheme
that increases the proof size logarithmically in the size of
the input list. The shuffle can be implemented either by
the sorting circuit using O(n log2(n)) multiplications, where
n is the size of the input list [3], or by the permutation cir-
cuit and the multiexponentiation circuits in [36].1 Although
Bulletproofs+ reduces only constant term (e.g., 96 bytes for
the 128-bit security), for practically large n (e.g., n < 232),
the improvement of Bulletproofs+ makes a meaningful dif-
ference similar to the range proof case due to logarithmic
increasing speed of Bulletproofs’ proof size in n.

C. RELATED WORK
1) RANGE PROOFS
Brickell et al. [41] first proposed range proofs, and since
then, they have received great attention [42]–[49]. Lip-
maa [44] presented a range proof protocol that relies on
Lagrange’s four-square theorem (a.k.a., Bachet’s conjecture),
which states that any positive integer can be written as a sum

1One can use Bulletproofs to design the permutation argument and the
multiexponentiation argument in [36] to achieve the logarithmic proof size
of verifiable shuffles.

of four squares. Groth [50] improved Lipmaa’s suggestion by
exploiting Legendre’s three-square theorem, which states that
a positive integer α can be written as a sum of three squares if
and only if α is not of the form 4n1 (8n2 + 7) n1, n2 ∈ Z.
More recently, Couteau et al. [49] suggested a range proof
solution based on a weaker assumption than the strong RSA
assumption [51].

2) NIZK FOR ARITHMETIC CIRCUITS
In recent years, many improvements in NIZK for circuit satis-
fiability have been made [52]–[54]. SNARKs are arguments
of knowledge that have succinct proof and efficient verifiers.
Although SNARKs provide high performance that can meet
practical requirements, they inherently and inevitably require
a trusted setup to generate the structured reference string
(SRS). To address this problem, Groth et al. [55] and many
subsequent works [?], [56]–[58] proposed proof systems rely-
ing on the SRS, where SRS is efficiently updatable. Neverthe-
less, these proof systems with the updatable SRS still require
at least one trusted setup at the beginning of the proof system.

3) CONCURRENT WORK
There are three independent and concurrent works that
improve Bulletproofs [59]–[61]. Boneh, Fisch, Gabizon and
Williamson [59] proposed a simple range proof from a
polynomial commitment scheme. To prove 0 ≤ v < 2n

with the zero-knowledge property, the prover should transmit
2 · dlog2(n + 2)e + 2 elements in G and 5 elements in Zp.
This communication certainly costs less than Bulletproofs;
however, it still requires at least one more element than our
range proof. Moreover, since the construction is based on
a polynomial commitment scheme that needs to choose a
prime p larger than n, a prover can only claim the same inter-
val once a polynomial commitment scheme is determined.
In contrast, our range proof scheme supports an arbitrary n;
thus, there is no restriction for the prover.

Attema and Cramer [60] focused on reconciling Bul-
letproofs with the theory of 6-protocols. A prover needs
to prove quadratic equations for a range proof; however,
6-protocols are appropriate for proving arbitrary linear rela-
tions, and thus, Bulletproofs require reinvention with the
quadratic constraint, which may cause some technical dif-
ficulties. To resolve this issue, the authors employed an
arithmetic secret sharing-based technique that enables the
linearization of all nonlinear statements while preserving the
same communication reduction. More precisely, a communi-
cation cost for the range proof is 2 · dlog2(2n+ 3)e elements
in G and 5 elements in Zp; thus, Bulletproofs+ still remains
the transparent range proof with the smallest proof size.

Couteau, Klooß, Lin, and Reichle [61] proposed a new
range proof with transparent setup from bounded integer
commitments. One of the classical approaches for range
proofs is based on square decomposition and to merge it, they
suggest a method for transforming a commitment scheme
over a finite field to a commitment scheme that enables to
commit a bounded integer and to prove relations efficiently.
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As a result, they can propose several new instantiations of
range proof paradigms. More specifically, they suggest a
range proof scheme based on discrete logarithm problem, lat-
tice problem and standard class group assumptions. In lattice-
based range proofs, they can improve over the state of the art
in a batch setting when at least a few dozen range proofs are
required. Under the standard class group assumptions, they
can propose the first concrete efficient commitment scheme,
which does not require any trusted setup. Compared to Bul-
letproofs, they can also reduce the proof size about 15% (see
Table 1 of [61]) and it varies from about 40 bytes to 120 bytes
depending on the parameter. However, the proof size for our
scheme is always less than 96 bytes than Bulletproofs for any
parameter and our proof size is still less than that of [61]
in some parameter settings. Moreover, they do not provide
a scheme for arithmetic circuit, but Bulletproofs+ can prove
the arithmetic circuit.

D. ORGANIZATION
We provide definitions of assumptions, homomorphic
commitment schemes, and zero-knowledge arguments in
Section II. In Section III, we present a main building block
protocol, the zero-knowledge argument for the WIP without
a trusted setup. We propose short zero-knowledge arguments
for the range proof and the arbitrary arithmetic circuits in the
following sections, Section IV and Section V, respectively.
Finally, we provide the performance of the proposed proto-
cols for the specific parameters in Section VI.

II. PRELIMINARIES
We begin by defining some basic notations to be used when
defining the preliminary concepts in the following subsec-
tions. More specific notations that are useful for describing
and analyzing the proposed proof systems are provided in
Section II-C. For any algorithm A, y = A(x; r) denotes that
y is the output of A on input x with randomness r . When
using uniform randomness, we use a shortened notation
y ← A(x), meaning that randomness r is chosen at random

outsideA, and we set y = A(x; r). For any set S, x
$
←S denotes

uniform random sampling of x from S. Throughout the paper,
λ denotes the security parameter, and it is written in unary
form when it is used as the algorithm input. For a function
f : N → [0, 1], f is negligible if f (λ) = λ−ω(1) and f is
overwhelmingwhen f (λ) = 1−λ−ω(1). Here, negl(λ) denotes
a negligible function.

A. HOMOMORPHIC COMMITMENTS
A (noninteractive) commitment scheme consists of two algo-
rithms Gen and Com. Gen is called the key generation
algorithm that takes the security parameter and outputs the

commitment key ck. Themessage spaceMck, the randomness
spaceRck, and the commitment spaceCck are specified in ck.
The commitment algorithmCom combined with the commit-
ment key ck specifies a commitment functionComck : Mck×

Rck → Cck that takes m ∈ Mck and outputs a commitment
com ∈ Cck using randomness r ∈ Rck. To commit to a

message m ∈ Mck, the sender selects r
$
←R and computes

the commitment com = Comck(m; r). We define several
properties of the commitment scheme.
Definition 1 (Homomorphic Commitments): A homomor-

phic commitment scheme is a (noninteractive) commitment
scheme that has a homomorphic property such that

Com(m1; r1)+Cck Com(m2; r2)

= Com(m1 +Mck m2; r1 +Rck r2),

for all m1,m2 ∈ Mck and r1, r2 ∈ Rck, where+Cck ,+Mck and
+Rck define operations in Cck,Mck and Rck, respectively.
Definition 2 (Hiding Commitments): A commitment sch-

eme is hiding if for all nonuniform polynomial-time interac-
tive adversaries A the following probability is smaller than
or equal to negl(λ) for some negligible function negl(λ), as
shown at the bottom of the page, where the probability goes
over the randomness used in A and Gen and the choice of b
and r. We say the scheme is perfectly hiding if negl(λ) = 0.
Definition 3 (Binding Commitments): A commitment sch-

eme is binding if for all nonuniform polynomial-time interac-
tive adversaries A, the following probability is smaller than
or equal to negl(λ) for some negligible function negl(λ).

Pr
[

Com(m0; r0)=Com(m1, r1)
∧m0 6= m1

∣∣∣∣ ck← Gen(1λ);
(m0,m1, r0, r1)←A(ck)

]
where the probability exceeds the randomness used inA and
Gen. We say the commitment scheme is perfectly binding if
negl(λ) = 0.
Ageneralized Pedersen commitment scheme is extensively

used in this work. We explain here how the generalized
Pedersen commitment was implemented. Let Mck = Znp,
Rck = Zp and Cck = G, where ck = (G, p, g, g1, . . . , gn)
and g, gi

$
←G for i = 1, . . . , n. To commit to amessage vector

m = (m1, . . . ,mn) ∈ Znp, one computes Comck(m; r) :=

gr
∏n

i=1 g
mi
i , where r

$
←Zp. The generalized Pedersen com-

mitment scheme is perfectly hiding since g is a generator
of the cyclic group, and thus, the random blinding factor
gr is uniformly distributed over the cyclic group. If the dis-
crete logarithm assumption holds on G, then the Pedersen
commitment scheme is computationally binding [14], [15].
An important fact is that the generalized Pedersen commit-
ment is a homomorphic commitment, i.e., for all m,m′ ∈ Znp

∣∣∣∣∣12 − Pr

[
b′ = b

∣∣∣∣∣ ck← Gen(1λ); (m0,m1)← A(ck); b $
←{0, 1};

r
$
←Rck; com = Com(mb; r); b′

$
←A(com)

] ∣∣∣∣∣
42072 VOLUME 10, 2022



H. Chung et al.: Bulletproofs+: Shorter Proofs for Privacy-Enhanced Distributed Ledger

and r, r ′ ∈ Zp,

Comck(m; r) · Comck(m′; r ′) = Comck(m+m′; r + r ′)

holds.

B. ZERO-KNOWLEDGE ARGUMENTS OF KNOWLEDGE
We consider arguments consisting of three interactive proba-
bilistic polynomial-time algorithms (K,P,V) in the common
random string model. K is called the common reference
string generator, which takes the security parameter 1λ as
input and outputs the common reference string σ . In this
paper, the common reference string is a public key for the
generalized Pedersen commitment scheme, that is, uniformly
chosen group elements.2 P and V are called the prover and
the verifier, respectively. For the sake of simplicity, in this
paper, we do not explicitly describe K but assume that
the common reference string is given as common input to
both P and V . At the end of the interaction, the verifier V
accepts (equivalently outputs 1) or rejects (equivalently
outputs 0).

We prove that the proposed protocol, Bulletproofs+, is a
zero-knowledge argument of knowledge. Informally, the goal
of the prover in this protocol is to convince the verifier of
witness knowledge that guarantees some statement holds,
without disclosing the witness. Let R ⊂ {0, 1}∗ × {0, 1}∗ ×
{0, 1}∗ be a polynomial time verifiable ternary relation. Given
the common reference string σ , we call w a witness for
a statement x if (σ, x,w) ∈ R. We define a correspond-
ing reference string-dependent language Lσ as the set of
statements x that has a witness w such that (σ, x,w) ∈ R.
That is,

Lσ = { x | ∃w such that (σ, x,w) ∈ R }

and if σ = ∅, then this is the same as the standard notion of
NP languages.
Definition 4 (Argument of Knowledge): The triple

(K,P,V) is called an argument of knowledge for relation
R if it satisfies the completeness and witness-extended emu-
lation as defined below.
Definition 5 (Perfect Completeness): (K,P,V) has per-

fect completeness if for all nonuniform polynomial-time
interactive adversaries A,

Pr
[
〈P(σ, x,w),V(σ, x)〉 = 1
∨ (σ, x,w) /∈ R

∣∣∣∣ σ ← K(1λ);
(x,w)← A(σ )

]
=1.

Definition 6 (Computational Witness-Extended Emula-
tion): We say that (K,P,V) has witness-extended emulation
if for all deterministic polynomial provers P∗ if there exists
an expected polynomial time emulator E such that for all
nonuniform polynomial time interactive adversaries A there
exists a negligible function negl(λ) such that the gap between

2The public key (or commitment key) of the Pedersen commitment
scheme can be chosen as a random string. Therefore, we are in the common
random string model, and even in the plain model if we let the verifier choose
the random string.

the following two probabilities is smaller than negl(λ).

Pr
[
A(tr) = 1

∣∣∣ σ ← K(1λ); (x, s)← A(σ );
tr ← 〈P∗(σ, x, s),V(σ, x)〉

]
and

Pr

 A(tr) = 1 ∧
if tr is accepting,
then(σ, x,w) ∈ R

∣∣∣∣∣∣ σ ← K(1λ); (x, s)← A(σ );
(tr,w)← E〈P∗(σ,x,s),V(σ,x)〉(σ, x)

,
where E has access to the oracle 〈P∗(σ, x, s),V(σ, x)〉 that
permits rewinding to a specific round and rerunning with V
using fresh randomness.

In the definition of witness-extended emulation, the
value s can be regarded as the state of P∗, includ-
ing the randomness. Therefore, whenever P∗ can make
a convincing argument when in state s, E can extract
a witness, so we call an argument (K,P,V) satisfying
Definition 6 and Definition 5 an argument of knowledge
(of witness w).

C. NOTATION
Let p denote a prime of length λ. In our protocol, we use sev-
eral setsG,Zp,Z∗p,Gn,Znp and several binary operations over
them. LetG denote a group of orders p, Zp denote the ring of
integers modulo p, and Z∗p denote Zp\{0}. For a group F, Fn
denotes the n-dimensional product group, and hence, it also
denotes vector spaces of dimension n over F. Zn×mp denotes
the set of matrices with n rows and m columns over Zp.
An element in Cartesian product set F ∈ {Gn,Znp,Zn×mp }

is denoted by bold letters, i.e.,. g = (g1, . . . , gn) ∈ Gn,
a = (a1, . . . , an) ∈ Znp, and B ∈ Zn×mp . We often consider
a vector a in Znp as a row matrix in Z1×n

p , and its transpose
vector, which is the corresponding column vector, is denoted
by a>.
We define notations for several binary operators among

the above defined sets. For two vectors a, b ∈ Znp, the inner
product between a and b is defined as a · b> =

∑n
i=1 ai · bi ∈

Zp and denoted by 〈a, b〉. The componentwise multiplication
(a.k.a., the Hadamard product) between a and b is denoted
by a ◦ b, i.e., a ◦ b = (a1 · b1, . . . , an · bn) ∈ Znp. For
a ∈ Znp and g ∈ Gn, the multiexponentiation

∏n
i=1 g

ai
i ∈ G

is denoted by ga. For a scalar c ∈ Zp and a vector a ∈ Znp,
the scalar multiplication is denoted by c · a ∈ Znp, i.e., c · a =
(c · a1, . . . , c · an).
For an integer y ∈ Z∗p, we use two vector notations
−→y n and←−y n to denote (y, y2, . . . , yn) and (yn, yn−1, . . . , y1),
respectively. In addition, we use two constant vectors
(1, . . . , 1), (1, 2, . . . , 2n−1) ∈ Znp, denoted by 1n and 2n,
respectively. Then, the following equality holds.

−→y n
◦
←−y n
= yn+1 · 1n (9)

For a ternary relation R, we use the format
{(Public Input;Witness) : R} to denote the relation R using
specific public input and witness.
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III. ZERO-KNOWLEDGE WEIGHTED INNER-PRODUCT
ARGUMENT
Groth [14] proposed the zero-knowledge argument for the
weighted inner product (zk-WIP) and used it to build square-
root zero-knowledge arguments for linear algebra equations.
This paper proposes an improved zk-WIP argument and use
it to build short zero-knowledge arguments for range proofs
and arithmetic circuits.

For a constant vector c, the weighted inner product (WIP)
with respect to c is defined as

�c : Znp × Znp → Zp
(a, b) 7→ 〈a, (c ◦ b)〉.

The most interesting special case is that c = −→y n for an
integer y ∈ Z∗p, which is also mainly used in [14], since it
has useful properties. This paper designs arguments for range
proofs and arithmetic circuits based on the zk-WIP argument
with respect to −→y n. For simplicity, we use the notation �y
instead of �−→y n . Note that if y = 1, then �y is equivalent
to the inner product. Even after the map is defined with
y > 1, it can be utilized like the inner product by computing
a�y (b ◦←−y n) and one can verify that

a�y (b ◦←−y n) = yn+1 · 〈a, b〉 (10)

and this propoerty is used when the prover needs to perform
the inner product between a and b after fixing y > 1.
This paper proposes a zero-knowledge argument for the

WIP w.r.t. −→y n relation. In particular, group-based homo-
morphic commitment scheme is employed as a building
block so that the relation necessarily involves group ele-
ments. In addition, compressed representation is used in the
sense that the witness and the WIP result are committed
together into a group element.3 More precisely, we propose a
zero-knowledge proof system for the following relation:{

(g,h ∈ Gn, g, h,P ∈ G; a, b ∈ Znp, α ∈ Zp)
: P = gahbga�ybhα

}
The WIP w.r.t −→y n and its simplest case, inner product,

have an interesting property, which leads to logarithmic com-
munication cost when combined with homomorphic com-
mitment schemes. The WIP w.r.t −→y n can be replaced with
the sum of two WIPs with half-lengths. When n is an even
number, n = 2̂n, let a = (a1, a2), b = (b1, b2) ∈ Zn̂p × Zn̂p.
Then,

a�y b = a1 �y b1 + (ŷn · a2)�y b2 (11)

Thus, using the homomorphic property of the homomorphic
commitment scheme and (11), zk-WIP can be reduced w.r.t.
−→y n to two zk-WIPs w.r.t. −→y n̂. However, this reduction does
not lead to proof size diminution, and we need an additional
technique to batch two n̂-length arguments to an n̂-length
argument. To ensure this end, we impose an additional round
and use a random challenge given from the verifier so that the

3The witness and the inner-product result are separately committed
in [4], [14], but those are committed together in [3]. For short proof size,
we follow the representation of [3].

FIGURE 1. Zero Knowledge Argument for WIP relation.

proposed protocol can achieve logarithmic communication
cost in the length of vector n. More precisely, the prover of
the zk-WIP w.r.t. −→y n transmits 2 · dlog2(n)e + 2 elements in
G and 3 elements in Zp. The computational costs of both the
prover and the verifier are linear in n.

A. ZERO-KNOWLEDGE ARGUMENT FOR WIP
This section describes the zero-knowledge argument for WIP
w.r.t. −→y n, denoted by zk-WIP−→y n (x; y), where x is the input
of V and (x; y) is the input of P . In the proposed protocol,
the verifier starts with the public parameters including group
generators g, h ∈ Gn, g, h ∈ G and P = gahbgchα a
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commitment to vectors a, b and their weighted WIP c =
a �y b, where a b are witnesses. The prover takes as input
g,h, g, h,P and a, b, α.

For the sake of simplicity, assume that n is a power
of 2 and let n̂ = n/2. When n > 1, protocol
zk-WIP−→y n (g,h, g, h,P; a, b, α) is a reduction from length-
n argument to n̂-length argument. In the case of n > 1,

the prover begins by choosing random integers dL , dR
$
←Zp,

computes

cL = a1 �y b2 ∈ Zp
cR = (ŷn · a2)�y b1 ∈ Zp
L = g(y

−̂n
·a1)

2 hb21 g
cLhdL ∈ G

R = g(ŷ
n
·a2)

1 hb12 g
cRhdR ∈ G,

and sends L and R to the verifier. Next, the verifier chooses
and sends a random challenge e to the prover. Then, both the
prover and the verifier compute

ĝ = ge
−1

1 ◦ g
e·y−̂n

2 ∈ Gn̂

ĥ = he1 ◦ h
e−1
2 ∈ Gn̂

P̂ = Le
2
PRe

−2
∈ G,

and the prover additionally computes

â = a1 · e+ (a2 · ŷn) · e−1 ∈ Zn̂p,
b̂ = b1 · e−1 + b2 · e ∈ Zn̂p,
α̂ = dL · e2 + α + dR · e−2 ∈ Zp.

Last, the above n̂-length vectors â and b̂ have a relation with
cL , cR, and c as follows:

â�y b̂ = a1 �y b2e2 + a1 �y b1 + (yn/2 · a2)

�yb2 + ŷna2 �y b1e−2

= cL · e2 + c+ cR · e−2

Using the above relation, the following equality can be veri-
fied through a simple calculation.

P̂ = Le
2
PRe

−2
= ĝ̂aĥ̂bĝa�ŷbhα̂.

Thus, the above interaction between the prover and the veri-
fier shows that the argument for WIP relation with n-length
vectors can be reduced to the same argument with half-length
vectors. More precisely, the components shared by the prover
and the verifier at the end of interaction (̂g, ĥ, g, h, P̂; â, b̂, α̂)
is composed of the same zk-WIP argument with a half-
length n̂, which is the desired reduction from an argument
related to a and b ∈ Znp to an argument related to â and
b̂ ∈ Zn̂p. Here, the prover sends only two group elements
for each reduction, so that totally, it requires only logarithmic
communication cost in n.

When n = 1, it becomes a variant of the Schnorr protocol
such that logarithms of input bases fulfill a specific quadratic
relation, which yields both constant communication and com-
putation costs.

The full description of our zero-knowledge argument for
the WIP relation is provided in Fig.1. Theorem 1 is the secu-
rity statement for zk-WIP protocol and its proof is relegated
to Appendix.
Theorem 1: Let y be a constant in Z∗p. The zero-knowledge

argument for WIP is presented in Fig. 1 has perfect com-
pleteness, perfect honest verifier zero-knowledge and com-
putational witness-extended emulation.

IV. RANGE PROOFS
This section describes our zero-knowledge argument proto-
cols for single-range proof in Section IV-A and aggregate
range proof in Section IV-B.

A. SINGLE-RANGE PROOF PROTOCOL
Consider the following group-based range relation such
that witness is committed using the Pedersen commitment
scheme. {

(g,h ∈ Gn, g, h,V ∈ G; v, γ ∈ Zp)
: V = gvhγ ∧ v ∈ [0, 2n − 1]

}
Here, V is a commitment to the witness v that lies in an

interval [0, 2n − 1] for some predetermined parameter n. g
and h are vectors of group G generators, but their usage is
ambiguous in the above relation. In fact, these are parameters
of the generalized Pedersen commitment scheme. v can be
represented as an n-bit string aL , and it is committed using g
and h in our range proof protocol. Then, the goal of the range
protocol is to prove the knowledge of aL and an additional
vector aR satisfying

aR = aL − 1n ∧ aL ◦ aR = 0 ∧ 〈aL ,2n〉 = v, (12)

which implies that the prover knows a binary vector of length
n of witness v. Since each aL and aR has n components, (12)
consists of 2n + 1 equations. To handle multiple equations
at once in a sublinear manner in n, this paper follows the
technique dating back to Groth [14] such that it batches
equations by computing the inner product with −→y n for a
random challenge y given from the verifier.

Applying the batching technique, (12) becomes a product
relation between three values, the witness aL , aR and the
challenge y used in the batching technique. Bünz et al. [3]
presented a proof system for the relations in (12) based on
their inner-product argument. Their inner-product protocol
does not support the zero-knowledgeness property so that
the openings of the Pedersen commitments are revealed to
the verifier. Hence, the reduction process should introduce
exponentiation-level blinding factors to hide openings, which
is rather cumbersome to handle, so that it requires several
interactions and transmission of 5 elements in Zp and 2 group
elements in G.

zk-WIP protocol w.r.t. −→y n is a tailored protocol for prov-
ing a product relation between two hidden vectors aL and aR
and the challenge −→y n with zero-knowledge. Consequently,
an optimal reduction to the zk-WIP protocol can be obtained

VOLUME 10, 2022 42075



H. Chung et al.: Bulletproofs+: Shorter Proofs for Privacy-Enhanced Distributed Ledger

FIGURE 2. Range Proof for v ∈ [0,2n − 1].

in the sense that the prover transmits only a group element in
one move during the reduction phase.

Let us explain our reduction to the WIP protocol. The
prover begins by sending a commitment A = gaLhaRhα ∈ G
to vectors aL and aR with a random α, and the verifier returns
random challenges y, z ∈ Zp. Next, both the prover and the
verifier can compute Â as follows.

Ag−1
nzh2

n
◦
←−y n
+1nzV yn+1g〈1

n,−→y n
〉z−〈1n,2n〉yn+1z−〈1n,−→y n

〉z2

(13)

Here, all the exponents are combinations of the challenges
y and z, so that Â is publicly computable. Finally, both the
prover and the verifier run the WIP argument w.r.t −→y n on
input (g,h, g, h, Â; âL , âR, α̂), where

âL = aL − 1n · z ∈ Znp
âR = aR + 2n ◦←−y n

+ 1n · z ∈ Znp
α̂ = α + γ · yn+1 ∈ Zp.

One can easily check that the above defined âL , âR, and α̂ are
exponents with bases g, h, and h of Â, respectively. See the
proof of Theorem 2 for completeness.

Now, let us explain why the above reduction correctly
works. Let β be the exponent with the base g in A, which
is set to be 0 by the honest prover. Then, the WIP argument
guarantees that the exponent with the base g of Â, which is
defined as

β + vyn+1 + 〈1n,−→y n
〉z− 〈1n,2n〉yn+1z− 〈1n,−→y n

〉z2

(14)

by (13), is equal to âL �y âR. It can be written as

(aL − 1n · z)�y (aR + 2n ◦←−y n
+ 1n · z)

= aL �y aR + aL �y (2n ◦←−y n
+ 1n · z)

− (1n · z)�y aR − (1n · z)�y (2n ◦
←−y n
+ 1n · z)

= aL �y aR + yn+1 · 〈aL ,2n〉 + (aL − aR)�y (1n · z)

−〈1n,2n〉yn+1z− 〈1n,−→y n
〉z2 (15)

where the fourth equality holds due to (10). Then, since aL ,
aR, and v are committed to seeing the challenges y and z,
we expect that each coefficient of distinct monomials in (14)
is equal to the corresponding coefficient in (15). Therefore,
(12) should satisfy.

The full description of our range proof protocol is provided
in Figure 2. The prover sends only one group element A ∈ G
for this reduction to the WIP argument of length-n vectors.
In total, the prover in the aggregate range proof protocol
transmits 2·dlog2(n)e+3 elements inG and 3 elements inZp.
The computational cost of both the prover and the verifier is
linear in n.

Theorem 2 states the security for range proof protocol and
its proof is relegated to Appendix.
Theorem 2: The zero-knowledge argument for the range

proof presented in Figure 2 has perfect completeness, perfect
honest verifier zero-knowledge and computational witness
extended emulation.

B. AGGREGATING RANGE PROOFS
This paper shows that our range proof can be extended to
support aggregate range proof as in [3]. That is, when the
prover needs to perform m > 1 range proofs simultaneously,
the proof size increases only logarithmically inm, so that this
work can achieve the shortest proof size even in perform-
ing multiple range proofs. More precisely, the relation for
aggregating range proofs can be presented by generalizing a
single-range proof relation as follows.{

(g,h ∈ Gm·n, g, h ∈ G,V ∈ Gm
; v, γ ∈ Zmp )

: Vj = gvjhγj ∧ vj ∈ [0, 2n − 1] for j ∈ [1,m]

}
For j ∈ [1,m], let d j := (0, . . . , 0︸ ︷︷ ︸

(j−1)·n

,2n, 0, . . . , 0︸ ︷︷ ︸
(m−j)·n

). The prover

commits to aL ∈ {0, 1}m·n, which is the concatenation of all
of the bits for vj’s and satisfies 〈aL , d j〉 = vj for all j ∈ [1,m],
and aR := aL − 1mn. More precisely, the prover sends a
commitment A = gaLhaRhα ∈ G to vectors aL and aR with
a random α. The difference between a single-range proof
is that aL is the concatenation of all binary vectors of v′js;
thus, the length is mn. Then, the prover’s goal is to prove the
knowledge of aL and aR satisfying the following relations: for
all j ∈ [1,m],

aR = aL − 1n ∧ aL ◦ aR = 0 ∧ 〈aL , d j〉 = vj

Although the aggregate range proof requires more relations to
convince the verifier than the single-range proof, the batching
technique used in the single-range proof can be suitably
extended. For the challenge z given from the verifier, let d :=∑m

j=1 z
2j
· d j, and then m relations 〈aL , d j〉 = vj ∀j ∈ [1,m]

can be batched to a single relation 〈aL , d〉 =
∑m

j=1 z
2j
· vj.

Here, we use even powers of z since z is already reserved
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FIGURE 3. Aggregate Range Proof for v1, . . . , vm ∈ [0,2n − 1].

for convincing the other equations. All the other parts of the
protocol are essentially the same as the single-range proof
protocol.

The full description of our aggregate range proof protocol
is provided in Figure 3. The prover sends only one group
element A ∈ G for this reduction to the zk-WIP argument of
length-mn vectors. In total, the prover in the aggregate range
proof protocol transmits 2 · dlog2(m)+ log2(n)e+ 3 elements
in G and 3 elements in Zp. The computational cost of both
the prover and the verifier is linear in mn.

Theorem 3 covers the security statement for the proposed
aggregate range proof portocol and its proof is relegated to
Appendix.
Theorem 3: The zero-knowledge argument for the range

proof presented in Figure 3 has perfect completeness, perfect
honest verifier zero-knowledge and computational witness
extended emulation.

V. ZERO-KNOWLEDGE ARGUMENT FOR ARITHMETIC
CIRCUITS
As another application of the zk-WIP argument, we presents
a zero-knowledge proof system for arbitrary arithmetic
circuits. Bootle et al. [4] presented a conversion from an arbi-
trary arithmetic circuit with n multiplication gates into a cer-
tain relation containing a Hadamard product with some linear
constraints, which is formally described below. Bünz et al. [3]
slightly generalizes the relation to include committed values
as inputs to the arithmetic circuit so that the converted relation
contains the committed values as well. The following relation
is for zero-knowledge argument for arithmetic circuits, which
is exactly the same as that in Bulletproofs [3], and we also

restrictWV ∈ ZQ×mp to be of rank m, as in Bulletproofs.

 g1, g2,h1,h2 ∈ Gn,V ∈ Gm, g, h ∈ G,
WL ,WR,WO ∈ ZQ×np ,WV ∈ ZQ×mp ,

c ∈ ZQp ; aL , aR, aO ∈ Znp, v, γ ∈ Zmp


:Vj = gvjhγj∀j ∈ [1,m] ∧ aL ◦ aR = aO
∧WLa>L +WRa>R +WOa>O = WV v> + c>


As in our range proof protocol, our goal for the arithmetic

circuit proof is to reduce to the zk-WIP argument, and as a
result, only one element is sufficient for reducing zk-WIP in
terms of the prover. The whole description of our arithmetic
circuit proof is given in Fig. 4. For a concise description,
we introduce the notation used in Fig. 4. For an integer z ∈
Zp, z̃Q denotes a vector (z, z3, z5, . . . , z2Q−1) ∈ ZQp consisting
of odd powers of z for some predetermined Q. For matrices
W ∈ ZQ×np , T(y,z)

W denotes (y−1, y−2, . . . , y−n) ◦ (z̃QW ). That
is, when y, z are challenges given from the verifier, T(y,z)

W is a
publicly computable value.

First, the prover sends A = gaL1 gaO2 haR1 h
α , which is a com-

mitment to aL , aO, aR with a random α. Then, the prover’s
goal is to convince that aL , aO, aR and vj’s satisfy the follow-
ing relations.

Vj = gvjhγj∀j ∈ [1,m] ∧ aL ◦ aR = aO
∧WLa>L +WRa>R +WOa>O = WV v> + c>

Next, the verifier chooses y and z randomly and sends them
to the prover, and both the prover and the verifier compute Â
as follows.

Ag
T(y,z)
WR

1 h
T(y,z)
WL

1 h
y−n(T(y,z)

WO
−1n)

2 V z̃QWV gz̃
Q
·c>+T(y,z)

WR
�yT

(y,z)
WL (16)

and run the protocol for the zk-WIP w.r.t. −→y 2n on input
((g1, g2), (h1,h2), g, h, Â; âL , âR, α̂), where

âL = (aL + T(y,z)
WR

, aO) (17)

âR = (aR + T(y,z)
WL

, y−n(T(y,z)
WO
− 1n))

α̂ = α + z̃QWV γ
> (18)

One can easily check that the above defined âL , âR, and
α̂ are exponents with bases (g1, g2), (h1,h2), and h of Â,
respectively. The completeness of our suggestion is described
in Theorem 4.
Now, let us explain why the above reduction works cor-

rectly. Let β be the exponent with the base g in A, which is set
to be 0 by the honest prover. Similarly, let aP be the exponent
with base h2 inA, which is set to 0 by the honest prover. Then,
the WIP argument guarantees that the exponent with the base
g of Â, which is defined as

β + z̃QWV v> + z̃Q · c> + T(y,z)
WR
�y T(y,z)

WL
(19)

by (16), is equal to âL �y âR and so is equal to

(aL + T(y,z)
WR

, aO)�y (aR + T(y,z)
WL

, aP + y−n(T
(y,z)
WO
− 1n))

(20)
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FIGURE 4. Zero knowledge argument for arithmetic circuit.

by (17) and (18). aL , aR, and v are committed to first disclose
the challenges y and z, so that we expect that each coefficient
of distinct monomials in (19) is equal to the corresponding
coefficient in (20). This enables to convince the verifier of
several relations given in (12). For example, there are no y
only terms in (19), but aL �y aR + yn · aO �y aP − aO �y 1n

are y only terms in (20), so that one can obtain a relation

aL �y aR + yn · aO �y aP − aO �y 1n = 0,

which implies the desired relation aL ◦ aR = aO. We relegate
the detailed calculations for checking the soundness to the
proof of Theorem 4.

The full description of our arithmetic circuit proof proto-
col is provided in Fig. 4. The prover sends only one group
element A ∈ G for this reduction to the zk-WIP argument of
length-2n vectors. In total, the prover of the aggregate range
proof protocol transmits 2 · dlog2(n)e + 5 elements in G and
3 elements in Zp. The computational cost of the prover and
the verifier is linear in n.
Theorem 4 covers the security statement for our

zero-knowledge proof protocol for arithmetic circuits and its
proof is relegated to Appendix.
Theorem 4: The zero-knowledge argument presented in

Fig. 4 has perfect completeness, perfect honest veri-
fier zero-knowledge and computational witness extended
emulation.

VI. EVALUATION
Experimental Setup: Except where noted, our experiments
were conducted on a MacBook Pro (Retina, 13-inch,
Late 2013) with an Intel i5 CPU and 8 GB DDR4 memory.

For a fair comparison with optimized Bulletproofs imple-
mentation, our protocols are implemented in Rust using
the curve25519-dalek library for ECC operations [62] and
compared with the January 2020 git version of the Bullet-
proofs implementation by Valence et al. [11], which is, to our
knowledge, one of the most optimized Bulletproofs imple-
mentations. For more details, we use Fp = F2255−19 and point
arithmetic in affine Niels coordinates, and both implementa-
tions for Bulletproofs and Bulletproofs+ are expected to have
128-bit security [63].

A. PRACTICAL OPTIMIZATIONS
1) REDUCTION TO SINGLE MULTIEXPONENTIATION
Let g and h be the generators used in the final round of the
protocol and ei be the challenge from the i-th round. In the last
round, the verifier computes gr

′
·ehs

′
·e. To avoid computing ĝ

and ĥ in every round, we rewrite these final generators g,h
as a single multiexponentiation, using recursion unrolling as
in [3]. This substantially reduces the computational overhead
on the verifier side since a single multiexponentiation can be
done much faster than multiplying the results of individual
exponentiations.

g =
n∏
i=1

gsii ∈ G and h =
n∏
i=1

h
s′i
i ∈ G,

where s = (s1, . . . , sn), s′ = (s′1, . . . , s
′
n) ∈ Znp depend on

only the challenges (e1, . . . , elog2(n)). The scalars s1, . . . , sn
and s′1, . . . , s

′
n can be computed by the following simple

calculations:

si = (1/yi−1) ·
log2(n)∏
j=1

eb(i,j)j and s′i =
log2(n)∏
j=1

e−b(i,j)j

where

b(i, j) =

{
1 the j-th bit of i− 1 is 1
−1 otherwise

Then, the entire verification check in the zk-WIP argument
protocol given in Figure 1 reduces to a single multiexponen-
tiation as follows:

gr
′e·shs

′e·s′gr
′
�s′hδ

′

?
=

P · log2(n)∏
j=1

L
e2j
j R

e−2j
j

e2

· Ae · B

= Pe
2
·

log2(n)∏
j=1

L
e2·e2j
j R

e2·e−2j
j

 · Ae · B.
2) REUSE IN SCALARS
As an additional optimization, our implementation uses the
dynamic programming paradigm to reduce the number of
exponentiations in Fp that cover a large part of the computing
scalars. For example, consider an exponent of base g while
computing Â in our range proof protocol (see Figure 2).
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We inductively obtain yi by multiplying y by yi−1, and this
result is reused in computing the last term of the exponent
of base g. Consequently, we can obtain a resulting scalar for
the g only with n + 5 multiplications in Fp where we do not
count the exponentiations of base 2 as 2 � y. We apply
the same technique to the implementations of other argument
protocols.

3) BATCH VERIFICATION
The batch verification technique in [3] is applicable to
Bulletproofs+. Informally, batch verification collapses two
independent exponentiations ga ?

= 1 and gb ?
= 1 into a single

exponentiation ga·r+b ?
= 1 by picking a random value in Fp.

Similarly, in our WIP-based argument protocols, the verifier
needs to test whether Â is correctly computed and invoke
the WIP verifier with a reduced proof. Because the bases in
both computations are equivalent, we can utilize the batch
verification technique to reduce CPU times at the verifier as
in Bulletproofs.

B. EXPERIMENTAL RESULTS
We implement our protocols with the above optimizations,
and in what follows, we present the results. The experimental
results of the range arguments are summarized in Table 2
for each of our metrics. We use three metrics: 1) the size
of a proof in bytes, 2) the total CPU time at the prover in
milliseconds, and 3) the total CPU time at the verifier. For this
purpose, we use Rust’s benchmark tests that run our bench-
mark many times and take the average. When demonstrating
CPU times, we omit the total number of iterations made by
the test crate.

1) PROOF SIZE
As shown in the previous sections, Bulletproofs+ prover for
the range proof transmits 2 · dlog2(m) + log2(n)e + 6 field
or group elements, which are 3 elements smaller than that of
Bulletproofs. In general, the Bulletproofs+ prover for an arbi-
trary arithmetic circuit sends 2 · dlog2(n)e + 8 field or group
elements that are 5 elements smaller than that of Bulletproofs.
In our experimental parameter setting, Bulletproofs+ for the
range proof and arithmetic circuit proof always save 96 bytes
and 160 bytes, respectively, compared with Bulletproofs,
regardless of input size.

2) PROVER’s CPU TIME ON THE AGGREGATE RANGE PROOF
Table 2 and its graph on the prover’s time in Figure 5 show
that a Bulletproofs+ prover is slightly faster than that of Bul-
letproofs. When aggregating more proofs, the ratio between
speeds tends to increase in our experimentation. For instance,
in the case of a range argument for a single 32-bit secret,
our range argument protocol runs 9.7% faster than that of
Bulletproofs; additionally, in the case of 64× 32-bit secrets,
our protocol runs 26.8% faster than that of Bulletproofs.

Comparing our WIP prover with a prover in the inner
product argument of Bulletproofs, our WIP prover has to

FIGURE 5. CPU times for proving proofs.

perform more operations and exponentiations for blinding
factors to achieve zero-knowledgeness. These computational
overheads are insignificant compared to heavy multiexpo-
nentiations performed in the two provers. The most influen-
tial computation is performed during the process of reduc-
tion from the aggregate range proof to ingredient protocols
(WIP for ours and inner product for Bulletproofs). In fact,
the benefit of using WIP is a simpler process in the reduc-
tion than the approach used in Bulletproofs. More precisely,
Bulletproofs require more multiexponentiations in the reduc-
tion process, contrary to a single multiexponentiation in
Bulletproofs+.

Bulletproofs+ can gain computational cost for the
prover over Bulletproofs by reducing the number of multi-
exponentiations. Specifically, because WIP prover and an
IP prover in Bulletproofs both require to invoke a sin-
gle multi-exponentiation 2 log2(n) times, there is no dif-
ference in CPU-time for the provers. However, different
from our range argument protocol, the prover in Bullet-
proofs needs to compute S = gsLhsRhρ that requires
to run a single multi-exponentiation of size 2n + 1 two
times. Furthermore, the prover has to compute double expo-
nentiations two times. As a result, total invocations of
multi-exponentiations amounts to 2 log2(n)+2, in addition to
two double exponentiations. On the contrary, Bulletproofs+
performs a single multi-exponentiation of size n + 3 dur-
ing computing Â. Bulletproofs+ also needs to perform
a single multi-exponentiation to commit to secrets as A,
of size 2n + 1. Therefore, Bulletproofs+ performs a single
multi-exponentiation of smaller size among one of multi-
exponentiations, and Bulletproofs+ removes two double
exponentiations.

3) VERIFIER’s CPU TIME ON THE AGGREGATE RANGE PROOF
Figure 6 shows that our proposal is comparable to Bullet-
proofs in terms of the verifier’s computational cost. Both
of the verification costs in Bulletproofs and Bulletproofs+
are dominated by a single multiexponentiation. In fact,
Bulletproofs+ requires a multiexponentiation for comput-
ing Â during the reduction process. We note that Â is taken
as input to the WIP protocol so that it eventually becomes
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TABLE 2. Comparison summary of proof size and timing in aggregate range proofs with Bulletproofs.

FIGURE 6. CPU times for verifying proofs.

a component in the multiexponentiation performed in the
WIP argument protocol. Thus, the verifier can delay the
Â computation and extend the technique for reduction to sin-
gle multiexponentiation in Section VI-A. Finally, we obtain
a single multiexponentiation.

The difference on the size of the singlemulti-exponentiation
between Bulletproofs and Bulletproofs+ may cause a slight
difference between the verification speeds. In fact, a sim-
ilar technique of batching multiple multi-exponentiations
is already used in Bulletproofs to merge two multi-
exponentiations. As mentioned above, our implementation
extensively exploits batch verification as well as the sin-
gle multi-exponentiation technique. Thus although our WIP
argument ensures the zero-knowledge property, there is no
difference in verifier’s time from that of Bulletproofs. The
main factor to make our verifier slightly slower (precisely,
on average 3.3%) than of Bulletproofs is the size of exponents
for multiexponentiations.

VII. CONCLUSION
This paper describes a new short zero-knowledge argument
for range proofs and arithmetic circuits without a trusted
setup. These proof systems are one of the widely employed
proof systems in the blockchain and the proof size is one
of the major criteria to be contained in a block. We can
achieve the shortest proof size of the proof system categories
while preserving the proof cost and the verification cost.
Furthermore, we implement Bulletproofs+ and we can show

that the proving time and the verification time are comparable
to Bulletproofs.
Limitations and Future Work: This paper achieves the

smallest proof size in the proof system category without a
trusted setup. However, the computational cost for the verifier
is still O(n) where n is the circuit size, meaning that the
verifier also should execute a circuit as large as the prover’s
circuit. It causes some inefficiency problems for the verifier
depending on the applications such as deep learning and
succinct blockchain. Recently, there are a couple of papers
that can achieve O(log2 n) for the verifier. However, these
protocols are not transparent [56], [64], some cannot achieve
O(log2 n) proof size [65], or, some require multiexponentia-
tions of large size [6] that still causes inefficiency problem
when n is small. Hence, one can raise the following natural
and meangingful question:

Is there a way to achieve O(log2 n) at the same time as the
proof size and the verifier cost?

and if there is a protocol that can achieve these properties,
Bulletproofs-style proof system can be employed in the vari-
ous applications.
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