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Abstract: This paper deals with an integrated and interconnected stochastic queuing-inventory
system with a fresh item, a returned item, and a refurbished item. This system provides a multi-
type service facility to an arriving multi-class customer through a dedicated channel. It sells fresh
and refurbished items, buys used items from customers, refurbishes the used items for resale, and
provides a repair service for defective items. The assumption of purchasing a used item from the
customer and allowing them to buy a fresh item is a new idea in stochastic queuing-inventory
modeling. To do so, this system has four parallel queues to receive four classes of customers and five
dedicated servers to provide a multi-type service facility. Customers are classified according to the
type of service they require. Each class of arrival follows an independent Poisson process. The service
time of each dedicated server is assumed to be exponentially distributed and independent. This
system assumes an instantaneous ordering policy for the replenishment of a fresh item. In the long
run of this considered system, the joint probability distribution of the seven-dimensional stochastic
process, significant system performance measures, and the optimum total cost are to be derived
using the Neuts matrix geometric technique. The main objective of the system was to increase the
occurrence of all kinds of customers by providing a multi-type service facility in one place. Buying a
used item is unavoidable in an emerging society because it helps form a green society. Furthermore,
the numerical result shows that the assumption of a system that allows a customer to sell their used
item and purchase a new item will increase the number of customers approaching the system.

Keywords: multi-type service; parallel queues; resales; repair; refurbishment; instantaneous order-
ing policy

MSC: 60K25

1. Introduction

The use of refurbished (second-hand) products might sound strange to people all over
the world. Let us see why many people show their interest in purchasing a refurbished
product. Firstly, its price will be a considerable fact for people in an economically low
category. Secondly, some of them want to use a refurbished product for temporary use.
The purchase of a refurbished product from the second-hand market is shown in Figure 1.
The refurbishment process not only concentrates on business points of view, but also helps
to form a green society. For example, every refurbished laptop, printer, scanner, server, or
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desktop computer you buy is one less piece of equipment going to the toxic waste dump.
This is the main objective of discussing the refurbished products.

Generally, the second-hand markets are doing well with the sales of refurbished
products. One might ask a question: why can a retailer, wholesaler, or company not sell
the refurbished product? Yes, all of us can do it. Are the refurbished products available
only on the second-hand market? No, this sale process has been going on smoothly in
small businesses too. To conduct such business, the business owner must first be ready to
purchase a used product from a customer; however, the used product need not be defective.
For example, a person who is already using an old mobile phone. It is working well. They
want to buy the new model of mobile phone, but at the same time, they are not willing
to keep it. So, they sell their used mobile phone at some fixed price and buy the new one
by paying an adequate charge on the same system. The articles discussed earlier on the
refurbished products are based on the failed products, and at the same time, they must be
purchased in the same system as before (see [1]).

Figure 1. The use of a refurbished product in the second-hand market.

To improvise a small business, having only one type of service option is not very help-
ful, so we need a multi-type service facility. When observing inventory and supply chain
management, we understand that they are the foundations of any company’s operations.
As a result of technological advancements and the availability of process-driven software
systems, inventory management has experienced revolutionary changes. All functions are
interconnected and integrated with any business or organization, and they frequently over-
lap. The backbone of the business delivery function is comprised of crucial factors such as
supply chain management, logistics, and inventories. As a result, both marketing managers
and financial controllers place a high value on these functions (see [2]). For example, it can
be easily seen that from a motorcycle showroom that sells new motor vehicles, used motor
vehicles (refurbished), provides repair work on the defective motorcycle, and purchases a
used motorcycle from the customer all in one place. All these functions are integrated and
interconnected in that type of business. These factors impress us enough to propose this
stochastic modeling.



Mathematics 2022, 10, 1137 3 of 37

1.1. Motivation

The author was inspired to create this mathematical model by a real-life experience.
The author recently intended to buy a new Hewlett-Packard (HP) laptop by returning his
old one (which he had previously purchased) to a branded laptop showroom. The author
noticed something intriguing about the functioning of that exhibit room while there. This
showroom uses different types of dedicated servers for different types of queues. Actually,
the showroom provided service to the consumer by selling new laptops, receiving old
laptops and selling new ones, and also selling used laptops through the appropriate queues.
They also offered re-service of the repaired laptop at a separate service station with different
servers. One server was restoring an acquired old laptop on the inside of a showroom. The
author was inspired to make mathematical models of this showroom in the MQIS because
of how well it worked and how well it looked.

1.2. Purchasing Strategy

However, it is far from certain that every consumer in each queue will purchase the
thing they desire. Some clients enter the system and proceed through the service, but
at the point when the service is completed, they may elect not to purchase the product.
Impulse customers are those who buy the product on the spur of the moment. Although
they have no intention of purchasing a product from the shop, there is a potential that
they will do so if they are satisfied with the system’s service. When looking at the laptop
showroom, one can see that not every arriving consumer purchases a laptop owing to a
lack of funds, dissatisfaction with the service, product features, and so on. Despite the fact
that the suggested MQIS is designed for impulse customers, it will be a generalized model
for both customers who purchase a product compulsorily when the probability is 1, and
customers who may purchase with a probability value in the range of [0, 1).

1.3. Return Strategy

A customer returns their old stuff, which does not need to be purchased in the same
system. The system assumes that returned products always satisfy the terms and conditions
of the system. At the end of the return procedures, the customer can choose to sell the old
stuff and buy the new stuff, or leave the system with or without selling the old stuff, based
on the probability p1, p2, p3, where p1 + p2 + p3 = 1. The old product that the customer
returns is called a “returned product”. Further, the system assumes that the returned
product need not be defective.

1.4. Refurbishment Strategy

The returned products are refurbished to their original quality and resold to the market
at a markdown price as refurbished products.

1.5. Repair Strategy

Customers arrive at the system with their own defective products. The server identifies
the fault in the product and starts repair work on it. The system assumes that the server
can do repair work for any type of defectiveness that occurs in the product.

1.6. Contribution of the Model

The contribution of the paper is listed as follows:

1. This paper concentrates on multi-type service facilities provided by dedicated servers.
2. It analyses the sales of a new product or fresh product, purchases the old or used

product from the customer, conducts refurbishing work on the returned product, sells
the refurbished product, and repairs the defective product.

3. There are four classes of customers that arrive at the system and they are classified
according to their needs. To receive those customers, the system allocates three finite
queues and one infinite queue.
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4. As in the normal lifestyle, this paper assumes that a customer will purchase the
product (fresh or refurbished) if they are satisfied with the service with respect to the
Bernoulli schedule.

5. It assumes the instantaneous ordering principle for the replenishment process. The
Neuts [3] matrix geometric approach and the logarithmic reduction algorithm are
used to derive the stationary probability vector.

6. The numerical illustrations investigate the impact of each queue, server busy, or idle
period, and the cost analysis according to the parameter variation.

1.7. Novelty of the Model

A customer selling their old product and buying the new product from the system is
introduced in the stochastic queuing-inventory modeling. Many articles consider the return
of failed products; however, we assume that the returned product need not be defective. In
addition, we also encountered the sales service of fresh and refurbished products, defective
product repair work, and refurbished work on returned products through the multi-type
service facility.

Design of the Paper

This paper is organized as follows: Reviews of related work are presented in Section 1.8
and the research gap is given in Section 1.9. Section 2 explains the mathematical formulation
of the model. The process of the system states is explained in Section 3. Further, it
investigates the stability analysis of the model. Following that, Section 4 derives the
characteristic metrics of the model, and Section 5 interprets the numerical illustration.
Furthermore, in Section 6, a conclusion is presented.

1.8. Review of the Related Work

Queuing-inventory theory, one of the fields of operations research, can help businesses
make better judgments about how to construct more efficient and cost-effective workflow
systems. Since then, to the present, many authors have presented their discussions in the
queuing-inventory system (QIS). Very few authors started their analysis of QIS without
a service facility. In this connection, the readers can refer to the following papers to
know more details regarding the analysis of instantaneous service: Paul Manual et al. [4],
Sivakumar [5], Sivakumar [6], Jeganathan et al. [7], and Abdul Reiyas and Jeganathan [8].

This aside, many authors explored their QIS with positive service time or service
facilities; however, when observing the practical situation, an instantaneous service facility
is not the most suitable one because many supply chain manufacturers, traders, and
retailers provide their services to the customers with a positive service time. Not only
that, every customer requires a demonstration of the product, a warranty and guarantee
on the product, a price and offer on the product, and so on. These customer needs allow
us to consider positive service time in this paper. Actually, the work involving service
facilities was introduced by Melikov and Molchanov [9] and Sigman and Simchi -Levi [10]
in the QIS.

The QIS’s single-server service station is the familiar model where most of the re-
searchers developed their academic knowledge. Amirthakodi [11] studied feedback from
customers who required a feedback service after completion of the main service with a
positive service time in the QIS. Those who required feedback were able to enter an orbit
based on the Bernoulli schedule. Jeganathan et al. [12] investigated a single-server QIS with
a queue-dependent service rate that was expected to reduce customer waiting time. Ac-
cording to their model, retrial customers are not permitted to obtain their services directly
from the orbit. The orbital customer can obtain service through the waiting hall, and their
retrial procedure follows the classical retrial policy.

When performing the replenishment process, there are two different approaches to
make the order-up-to level: periodic review and continuous review. In such a way, to learn
more about periodic review replenishment policies the reader can refer [13,14]. This paper
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deals with a continuous review ordering policy. Krishnamoorthy et al. [15] discussed a QIS
in which they analyzed two control policies: (s, Q) and (s, S) ordering principles. Aside
from that, they assumed that the inventory provided to the customer at the end of service
completion was not necessary. According to the Bernoulli schedule, the customer has either
left the system with or without an item. The central assumption of this paper is that an
arriving customer is not permitted to enter the system if the current stock level is zero. The
reader can also refer [7] to know more about (s, Q) and (s, S) ordering principles.

Up to this point, a review of the literature works is performed on the single server
with a single commodity in a QIS. The readers can refer to the recent papers on a single
server in [16,17]. Nevertheless, the queuing-inventory literature has expanded with some
other extensions: (i) single commodity, multi-class customers, single server; (ii) single com-
modity, single-class customers, multi-server; (iii) multi-commodity, single-class customers,
single server; (iv) multi-commodity, single-class customers, multi-server. Vinitha et al. [18]
investigated a QIS with a cancellation of sold items. In addition, the considered system
allowed two classes of customers, i.e., ordinary and impulsed customers. Both classes of
customers approached the system to purchase the same product. The cancellation of items
is accepted when there is at most less than their maximum capacity. Fong-Fan Wang [19]
determined the approximation and optimization of multi-server QIS with two types of
customers. They are classified as high and low-priority customers whose arrivals occur
according to the MAP. They assumed that the low-priority customer had left the system
with a Bernoulli reneging probability if they became impatient.

Valentina et al. [20] considered the in-homogeneous customers in the queuing system
with a single server under the assumption of priority. Jeganathan and Abdul Reiyas [21]
discussed a two-parallel heterogeneous server QIS. The servers are exclusively dedicated
to high and low-priority customers, respectively. Among these assumptions, in this paper,
the dedicated server 1 and server 2 had offered that they could choose the modified and
delayed working vacation options, respectively, upon the interruption. Kingsly et al. [22]
provided the study about two server QIS. Even though the system has a dedicated server
for the high-priority queue and a flexible server that is able to deliver the service for both
queues. Jeganathan et al. [23] gave the compared discussion on the Markovian QIS with
server interruption. The distinguished results are given on the basis of two homogeneous
and two heterogeneous servers. In addition, the customers from a retrial group approached
the system using the classical and constant retrial policies.

Vishnevsky et al. [24] investigated the performance of a priority multi-server queuing
system with heterogeneous customers, whereas Klimenok et al. [25] worked on a multi-
server queuing system for the retrial queue in which they used a phase-type for the retrial
process if the number of customers in orbit is less than the threshold level. Recently,
Jeganathan et al. [26] explored the two multi-server service channels in the retrial QIS
with homogeneous customers. In this study, they assumed the interconnected arrival
would enter the system. This system provided product sales service to the customer
via one multi-server service channel. On the other hand, the products’ repair service is
performed by another multi-server service channel. Any arriving customer who bought a
fresh product and required additional service is sent to the second service station. Apart
from that, customers who only require repair services for the product can also approach
the second service station. Rajkumar et al. [27] looked into an infinite queue multi-server
and single-commodity QIS. In this work, the first passage and waiting time analysis are
derived analytically for an infinite queue. The reader can refer to the recent papers [28,29]
to know more details about the multi-server queuing-inventory system.

Many authors concentrate on single-commodity QIS, while only a few go on to inves-
tigate a two-commodity QIS. Sivakumar [5] investigated the two commodity inventory
sales with a single server QIS in this regard. In this study, arriving consumers are treated as
single-class customers, and both goods are presumed to be interchangeable. Serife Ozkar
and Umay Uzunoglu Kocer [30] assumed two classes of clients for the two commodity QIS
with a single-server service station in a recent paper. Customers in different classes (priority
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and ordinary) require distinct products from the system. The system then replenished
both commodities according to the individual ordering policy. The system’s service facility
is maintained by a single server. Binitha Benny et al. [31] discussed the two commodity
QIS with a single server service facility. This system took into account single-class arrivals
when purchasing the product. A customer who purchased a product is determined by a
certain probability.

In recent days, many customers have focused their attention on purchasing refurbished
products instead of purchasing the most expensive fresh products in the consumer market.
Zhang et al. [32] studied the refurbishment and quality recovery of returned defective
products in a closed-loop supply chain. Zhang et al. [33] determined the retailers’ and
suppliers’ equilibrium decisions on the new product and refurbished product by the divide-
and-conquer method. They also discussed how an arriving customer could choose the
product when faced with both new and refurbished products at the same time. Consumer
returns an unsatisfied product to the retailer with a full refund is considered in He et al. [34].
It is to be resold as a refurbished product to consumers. Tseng-Fung Ho et al. [35] analyzed
a problem involving re-manufacturing products in a three-echelon supply chain. At the
time of the screening test, some products were found to have failed. These failed products
are packed for the re-manufacturer.

Rani et al. [36] studied a refurbished deteriorating item with cannibalization of the
green supply chain. Cárdenas-Barrón et al. [37] studied a rework on imperfect quality
products with non-linear demand. Very recently, Saranya et al. [1] investigated an inventory
problem with a refurbished product. There are two types of customers who arrive in the
system. The first type of customers came to the system to return their failed product and
obtain a replacement with a new product. The second type of customers arrived to purchase
the refurbished product. Sinu Lal et al. [38] examined the multi-type inventory system. The
marked Markovian arrivals generated the different types of channels of finite size, which
are allocated according to their requirements. Jacob et al. [39] studied the inventory system
with one essential item and m optional items in a random environment. The service time of
essential and optional items is assumed to be phase-type and exponentially distributed,
respectively.

In the queuing literature, there is an interesting paper that is analyzed using multi-class
customers with multi-server service facilities. Van Harten and Sleptchenko [40] considered
a N type of clients whose service rate is assumed to be heterogeneous. Each server is
identical and non-dedicated. They are trained to provide service to all classes of customers.
Karumbathil Rasmi et al. [41] explored the heterogeneous QIS with heterogeneous inventory
access. This is a single-source inventory system; however, there is K class of customers to
purchase the single-source inventory. To accommodate each class of customer, the system
has K waiting spaces with dedicated heterogeneous servers. All classes of customer arrival
occur according to the marked MAP. Krishnamoorthy et al. [42] investigated the M/M/2
and M/M/3 QIS with homogeneous servers. This study has crucial assumptions such that
the arriving customers’ are not allowed when the inventory level is zero. In addition, at
the end of service completion, the inventory provided to the customer is not certain. This
idea is, of course, to explore a realistic situation in real life. It can be easily seen that not all
customers are always ready to purchase the product when they visit the QIS. though some
of them may buy it.

Some other interesting papers reported in the literature in a similar domain are [43–45].

1.9. Research Gap

There has been no paper published in the existing queuing-inventory literature with
an FP, buying the OP from the customer, performing some refurbishing work on it, and
selling it back to those who require such products along with a multi-type service facility.
This idea is still incomplete along with these three different levels of the same product. This
is because many customers are interested in purchasing used products, such as via online
shopping organizations that sell used mobile phones, laptop computers, furniture, and so
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on. They also offer the customer the opportunity to purchase a new product in exchange
for returning a previously purchased product. Some jewelry stores, car dealerships, bike
showrooms, and house sales companies, among others, offer sales services for new products,
used products, and purchasing old products. So, the concept of buying a new product by
selling the old product was not yet discussed in a stochastic QIS. This is also a familiar
existing real-life application of the queuing-inventory problem, which has not yet been
investigated.

1.10. Model Proposal

We suggest a novel model that investigates the selling of new items, second-hand items
(refurbished), and the buying of old products from customers and performs refurbish work
on them in order to convert them into refurbished items. The system creates specialized
queues for FP, RFP, and OP purchases from customers. Dedicated servers are in charge of
all of these diverse tasks. In addition to these tasks, the system also has a separate repair
service for people who need their items fixed. They can wait in a separate queue. Figure 2
depicts the graphical representation of the suggested model.

β5

β4
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p f2 β1

p f1 β1

Queue-1

12· · ·
α1

12· · ·P1

qr3 β2
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Returned products(RP)

Refurbished products(RFP)

Class-1
customer

Class-2
customer

Class-3
customer

Class-4
customer

Figure 2. Pictorial representation of the system.

2. The Mathematical Formulation of the Model

This paper considers a multi-type service facility corresponding to multi-class cus-
tomers with FP, RFP, and OP in an MQIS. In order to keep the products for sales and service
procedures, this system divides them into three kinds of storage rooms. Each storage space
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has a capacity of a maximum of P1, P2, and P3 products and is labeled as FP, RP, and RFP,
respectively. The four parallel queues, Queue-i, i ∈ S4

1, are of unlimited size, N1, N2, and
N3, respectively. The following actions are performed by the system under consideration:

1. Sales for both FP and RFP.
2. Purchase of OP from the customer.
3. Refurbishes the purchased OP to resell.
4. Provision of re-service to those who just require repair work on the defective product.

The assumption of purchasing a used item from the customer and allowing them to
buy a fresh item is a new idea in stochastic queuing-inventory modeling. TaC will play a
crucial role in the system for sales of FP, RFP, and the purchase of OP. Each of these three
services will be successful only if the customer accepts the TaC of purchasing the required
product. Before beginning to provide FP and RFP services to customers, the server will
explain to them what the TaC is and how it is used. A customer may decide whether or
not to acquire a product under the Bernoulli schedule after reading and comprehending
the TaC. As an example, if an OP does not fulfill the TaC of the system, a customer may
choose to return and purchase an FP, to only return and leave the system, or to leave the
system without returning, taking into consideration the probabilities whose sum is one;
however, there is no TaC for performing repair work, and Bernoulli choices are available for
receiving such work instead of TaC. With no need for negotiation, all of the RPs purchased
are fixed and rebuilt. The RPs purchased have only minor issues, which will be described
in detail in the system’s TOM, in order for the refurbishing service procedure to run as
smoothly as possible.

According to their requirements, the MQIS welcomes four types of customers, each
with their own set of requirements. Depending on their needs, for example, if they want
to buy an FP, return an OP, buy an RFP, and only need repair service, they are routed to
the appropriate queues, which are designated as Queue-i, i ∈ S4

1. The arrival patterns of
all four classes of customers are also classified as Class-i, i ∈ S4

1, respectively. A Poisson
distribution is used to describe the arrival of customers from each class independently.
When a customer belongs to a Class-i, his or her intensity rate is specified as αi, where
i ∈ S4

1 is the number of customers. As a result of the limited size of Queue-i where i ∈ S4
2,

an arriving customer from the Class-i, i ∈ S4
2 who finds that Queue-i where i ∈ S4

2 has
reached its maximum capacity is deemed to have lost his or her place in the queue. The
following is the system’s service description at this point: The system assigns a Server-i
where i ∈ S4

1 to each Queue-i where i ∈ S4
1 in order to provide better service to an arriving

Class-i with i ∈ S4
1 customers. Due to the fact that each server is a dedicated server, it is

expected that they are heterogeneous (i.e., not identical). The performance of each queue is
described as follows:

Performance of Queue-1: FPs are being purchased by customers that have arrived at this
queue. For this queue, the mean service completion time is defined as 1

β1
. At the end of the service

completion of each customer, they decide whether to purchase the product with probability p f1 or
leave the system without purchasing under the probability p f2(p f2 = 1− p f1) according to the
satisfaction of the customer.

Performance of Queue-2: A customer who wants to sell their used product (OP) to the system
goes to Queue-2 and meets Server-2. The average service completion time per customer is denoted
as 1

β2
. If a customer’s OP requires minor repair, Server-2 will purchase it from them. As an example,

Server-2 does not purchase the product since it requires extensive repair work. This is due to the
violation of TaC. Perhaps Server-2 agrees to purchase the OP from the customer, but Server-2 is
unable to do so because the customer can only choose to return their OP and move to Queue-1 to buy
an FP with probability qr1 , returns their OP and leaves the system with probability qr2 , or leaves the
system without returning their OP with probability qr3 , where qr1 + qr2 + qr3 = 1. If the allocated
storage space for RP’s has reached its maximum size P2, Server-2 will become idle, and Class-2
customers will be forced to wait in Queue-2 until there are less items than P2 available for purchase.

Performance of Queue-3: To sell the RFP, Server-3 has been assigned to this queue. Aside
from that, it is claimed that the RFPs are second-hand items. When a customer is placed in this
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queue, the average service time for that customer is given by the parameter 1
β3

. The server provides
all the necessary explanations and demonstrations of the product during the servicing procedure.
Customers who are happy either purchase the RFP with a probability of r1 or quit the system without
purchasing it with a compliment of r2 = 1− r1. Suppose there is no RFP in stock, the customer in
Queue-3 has to wait until the new RFP arrives.

Performance of Queue-4: Customers’ defective items are brought to the dedicated Server-4,
which is then assigned to repair or re-service them as necessary. The average service time is specified
as 1

β4
for these defective products. If there is no customer in the line at this point, Server-4 goes

inactive until the next customer arrives.
Furthermore, the process of reconditioning the things that it has purchased in the

past is to be executed. This type of service activity is carried out by Server-5. In order to
refurbish each OP, an average service time of 1

β5
is needed. Server-5 goes inactive until they

can find an RFP that is less than P3 in the storage space. Otherwise, they keep reformulating
the OP as RFP. There is no correlation between any of the mean service times and the
intensity rate of each server, which is defined as βi > 0 for each of the servers with i ∈ S5

1.
All the mean service times are independently exponentially distributed. In addition to that,
the replenishment procedure for the FP is to be carried out in accordance with the (0, P1)
re-ordering (replenishment) concept. Whenever the inventory level drops to zero, then P1
number of FP replenished immediately. There is an exponential distribution in the amount
of time that elapses between two successive reorders.

3. Main Results
3.1. Process of the States of the Stochastic Model

According to the assumptions described in Section 2, the process of a proposed model
is defined as

Jt = {(J1(t), J2(t), J3(t), J4(t), J5(t), J6(t), J7(t))}, t ≥ 0.

Since Jt, t ≥ 0 consists of a family of collection of random variables Ji(t), i ∈ S7
1, t ≥ 0

depending on any time t, Jt, t ≥ 0 is called a seven-dimensional stochastic process with the
discrete state space K. In this stochastic modeling, the sequence of possible events describes
that the probability of each future event depends only on the present event and not on the
past event, Jt, t ≥ 0 is said to be the Markov process. As Jt, t ≥ 0 has a continuous time
process, it is called a CTMC. This Markov chain holds the property that every state of K is
can be reached from every other state of itself. Thus, the process Jt, t ≥ 0 is also said to be
an irreducible CTMC.

3.2. Construction of Transition Matrices of the System

The seven-dimensional irreducible CTMC, Jt, t ≥ 0 has the infinitesimal generator
matrix,

B =


B0 Bc 0 0 0 · · ·
Ba Bb Bc 0 0 · · ·
0 Ba Bb Bc 0 · · ·
0 0 Ba Bb Bc · · ·
...

...
...

...
...

. . .

, (1)
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where

[Bc]γ0 =

1 2 3 . . . P1


1 A1 0 0 . . . 0
2 0 A1 0 . . . 0
3 0 0 A1 . . . 0
...

...
...

...
. . .

...
P1 0 0 0 . . . A1

[A1]γ1 =

0 1 2 . . . N1 − 1 N1



0 α1 Iγ2 0 0 . . . 0 0
1 A2 α1 Iγ2 0 . . . 0 0
2 0 A2 α1 Iγ2 . . . 0 0
...

...
...

. . . . . .
...

...

N1 − 1 0 0 0
. . . α1 Iγ2 0

N1 0 0 0 . . . A2 α1 Iγ2

[A2]γ2 =

0 1 2 3 . . . P2



0 0 qr1 β2 Iγ3 0 0 . . . 0
1 0 0 qr1 β2 Iγ3 0 . . . 0
2 0 0 0 qr1 β2 Iγ3 . . . 0
...

...
...

...
...

. . .
...

P2 − 1 0 0 0 0 . . . qr1 β2 Iγ3

P2 0 0 0 0 . . . 0

[Ba]γ0 =

1 2 3 . . . P1 − 1 P1



1 p f2 β1 Iγ1 0 0 . . . 0 p f1 β1 Iγ1

2 p f1 β1 Iγ1 p f2 β1 Iγ1 0 . . . 0 0
3 0 p f1 β1 Iγ1 p f2 β1 Iγ1 . . . 0 0
...

...
. . . . . .

...
...

...

P1 − 1 0 0
. . . . . . p f2 β1 Iγ1 0

P1 0 0 0
. . . p f1 β1 Iγ1 p f2 β1 Iγ1

For j1 = 0 and b.

[Bj1 ]γ0 =

1 2 3 . . . P1


1 D1 0 0 . . . 0
2 0 D2 0 . . . 0
3 0 0 D3 . . . 0
...

...
...

...
. . .

...
P1 0 0 0 . . . DP1

,
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For j2 ∈ SP1
1 .

[Dj2 ]γ1 =

0 1 2 . . . N1 − 1 N1



0 D3
j2

D1
j2

0 . . . 0 0
1 D2

j2
D4

j2
D1

j2
. . . 0 0

2 0 D2
j2

D4
j2

. . . 0 0
...

...
...

. . . . . . . . .
...

N1 − 1 0 0 0
. . . D4

j2
D1

j2
N1 0 0 0 . . . D2

j2
D5

j2

[D1
j2 ]γ2 =

0 1 2 . . . P2 − 1 P2



0 α2 Iγ3 0 0 . . . 0 0
1 0 α2 Iγ3 0 . . . 0 0
2 0 0 α2 Iγ3 . . . 0 0
...

...
...

...
. . .

...
...

P2 − 1 0 0 0 . . . α2 Iγ3 0
P2 0 0 0 . . . 0 α2 Iγ3

[D2
j2 ]γ2 =

0 1 2 . . . P2 − 1 P2



0 qr3 β2 Iγ3 qr2 β2 Iγ3 0 . . . 0 0
1 0 qr3 β2 Iγ3 qr2 β2 Iγ3 . . . 0 0

2 0 0 qr3 β2 Iγ3

. . . 0 0
...

...
...

...
. . . . . .

...
P2 − 1 0 0 0 . . . qr3 β2 Iγ3 qr2 β2 Iγ3

P2 0 0 0 . . . 0 0

For i = 3, 4 and 5.

[Di
j2 ]γ2 =

0 1 2 . . . P2 − 1 P2



0 Di1 0 0 . . . 0 0
1 D2b Di2 0 . . . 0 0
2 0 D2b Di2 . . . 0 0
...

...
...

. . . . . .
...

...

P2 − 1 0 0 0
. . . Di2 0

P2 0 0 0 . . . D2b Di3

[D2b]γ3 =

0 1 2 . . . N2 − 1 N2



0 D4 0 0 . . . 0 0
1 0 D4 0 . . . 0 0
2 0 0 D4 . . . 0 0
...

...
...

...
. . .

...
...

N2 − 1 0 0 0 . . . D4 0
N2 0 0 0 . . . 0 D4
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[D4]γ4 =

0 1 2 3 . . . P3



0 0 β5 Iγ5 0 0 . . . 0
1 0 0 β5 Iγ5 0 . . . 0
2 0 0 0 β5 Iγ5 . . . 0
...

...
...

...
...

. . .
...

P3 − 1 0 0 0 0 . . . β5 Iγ5

P3 0 0 0 0 . . . 0

For j = 1, 2 and 3.

[Dij]γ3 =

0 1 2 . . . N2 − 1 N2



0 Dij1 D3a 0 . . . 0 0
1 D3b Dij2 D3a . . . 0 0

2 0 D3b Dij2
. . . 0 0

...
...

...
. . . . . . . . .

...

N2 − 1 0 0 0
. . . Dij2 D3a

N2 0 0 0 . . . D3b Dij3

[D3a]γ4 =

0 1 2 . . . P3 − 1 P3



0 α3 Iγ5 0 0 . . . 0 0
1 0 α3 Iγ5 0 . . . 0 0
2 0 0 α3 Iγ5 . . . 0 0
...

...
...

...
. . .

...
...

P3 − 1 0 0 0 . . . α3 Iγ5 0
P3 0 0 0 . . . 0 α3 Iγ5

[D3b]γ4 =

0 1 2 . . . P3 − 1 P3



0 0 0 0 . . . 0 0
1 r1β3 Iγ5 r2β3 Iγ5 0 . . . 0 0
2 0 r1β3 Iγ5 r2β3 Iγ5 . . . 0 0
...

...
...

. . . . . .
...

...

P3 − 1 0 0 0
. . . r2β3 Iγ5 0

P3 0 0 0 . . . r1β3 Iγ5 r2β3 Iγ5

For k = 1, 2 and 3.

[Dijk]γ4 =

0 1 2 . . . P3



0 D1
ijk 0 0 . . . 0

1 0 D2
ijk 0 . . . 0

2 0 0 D2
ijk . . . 0

...
...

...
...

. . .
...

P3 0 0 0 . . . D3
ijk



Mathematics 2022, 10, 1137 13 of 37

For l = 1, 2 and 3.

[Dl
ijk]γ5 =

0 1 2 . . . N3 − 1 N3



0 dl1
ijk α4 0 . . . 0 0

1 β4 dl2
ijk α4 . . . 0 0

2 0 β4 dl2
ijk . . . 0 0

...
...

...
...

. . .
...

...
N3 − 1 0 0 0 . . . dl2

ijk α4

N3 0 0 0 . . . β4 dl3
ijk

For m = 1, 2 and 3.
dlm

ijk = −(α1 + δ̄i5α2 + δ̄k3α3 + δ̄m3α4 + δ̄j10β1 + δ̄i3δ̄j3β2 + δ̄l1δ̄k1β3 + δ̄m1β4 + δ̄l3δ̄j1β5).

3.3. Explanation of the Transition Rates of the System

The parameter αi, i ∈ S4
1, indicates that the transition of Class-i, i ∈ S4

1 customer enters
into the corresponding Queue-i, i ∈ S4

1, respectively. The transitions of αi, i ∈ S4
1 are defined

as follows:

• (j1, j2, j3, j4, j5, j6, j7)
α1−→ (j1 + 1, j2, j3, j4, j5, j6, j7), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈ SN1
0 , j4 ∈

SP2
0 , j5 ∈ SN2

0 , j6 ∈ SP3
0 , j7 ∈ SN3

0 .

• (j1, j2, j3, j4, j5, j6, j7)
α2−→ (j1, j2, j3 + 1, j4, j5, j6, j7), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈ SN1−1
0 , j4 ∈

SP2
0 , j5 ∈ SN2

0 , j6 ∈ SP3
0 , j7 ∈ SN3

0 .

• (j1, j2, j3, j4, j5, j6, j7)
α3−→ (j1, j2, j3, j4, j5 + 1, j6, j7), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈ SN1
0 , j4 ∈

SP2
0 , j5 ∈ SN2−1

0 , j6 ∈ SP3
0 , j7 ∈ SN3

0 .

• (j1, j2, j3, j4, j5, j6, j7)
α4−→ (j1, j2, j3, j4, j5, j6, j7 + 1), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈ SN1
0 , j4 ∈

SP2
0 , j5 ∈ SN2

0 , j6 ∈ SP3
0 , j7 ∈ SN3−1

0 .

The transition of a customer in Queue-1 leaves the system after their service completion
with an FP or without FP is defined as follows:

• (j1, j2, j3, j4, j5, j6, j7)
p f1

β1
−−−→ (j1 − 1, P1, j3, j4, j5, j6, j7), if j1 ∈ Z+ − {0}, j2 ∈ S1

1, j3 ∈
SN1

0 , j4 ∈ SP2
0 , j5 ∈ SN2

0 , j6 ∈ SP3
0 , j7 ∈ SN3

0 .

• (j1, j2, j3, j4, j5, j6, j7)
p f1

β1
−−−→ (j1− 1, j2− 1, j3, j4, j5, j6, j7), if j1 ∈ Z+−{0}, j2 ∈ SP1

2 , j3 ∈
SN1

0 , j4 ∈ SP2
0 , j5 ∈ SN2

0 , j6 ∈ SP3
0 , j7 ∈ SN3

0 .

• (j1, j2, j3, j4, j5, j6, j7)
p f2

β1
−−−→ (j1 − 1, j2, j3, j4, j5, j6, j7), if j1 ∈ Z+ − {0}, j2 ∈ SP1

1 , j3 ∈
SN1

0 , j4 ∈ SP2
0 , j5 ∈ SN2

0 , j6 ∈ SP3
0 , j7 ∈ SN3

0 .

The transition of Class-2 customer leaves from Queue-2 after their service completion
is calculated as follows:

• (j1, j2, j3, j4, j5, j6, j7)
qr1 β2−−−→ (j1 + 1, j2, j3 − 1, j4 + 1, j5, j6, j7), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈
SN1

1 , j4 ∈ SP2−1
0 , j5 ∈ SN2

0 , j6 ∈ SP3
0 , j7 ∈ SN3

0 .

• (j1, j2, j3, j4, j5, j6, j7)
qr2 β2−−−→ (j1, j2, j3 − 1, j4 + 1, j5, j6, j7), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈
SN1

1 , j4 ∈ SP2−1
0 , j5 ∈ SN2

0 , j6 ∈ SP3
0 , j7 ∈ SN3

0 .

• (j1, j2, j3, j4, j5, j6, j7)
qr3 β2−−−→ (j1, j2, j3 − 1, j4, j5, j6, j7), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈ SN1
1 , j4 ∈

SP2−1
0 , j5 ∈ SN2

0 , j6 ∈ SP3
0 , j7 ∈ SN3

0 .

The transition of Class-3 customer leaves from Queue-3 after their service completion
is given by

• (j1, j2, j3, j4, j5, j6, j7)
r1β3−−→ (j1, j2, j3, j4, j5 − 1, j6 − 1, j7), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈
SN1

1 , j4 ∈ SP2
0 , j5 ∈ SN2

1 , j6 ∈ SP3
1 , j7 ∈ SN3

0 .
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• (j1, j2, j3, j4, j5, j6, j7)
r2β3−−→ (j1, j2, j3, j4, j5 − 1, j6, j7), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈ SN1
1 , j4 ∈

SP2
0 , j5 ∈ SN2

1 , j6 ∈ SP3
1 , j7 ∈ SN3

0 .

The transition of Class-4 customer leaves from Queue-4 after their service completion
is given by

• (j1, j2, j3, j4, j5, j6, j7)
β4−→ (j1, j2, j3, j4, j5, j6, j7 − 1), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈ SN1
1 , j4 ∈

SP2
0 , j5 ∈ SN2

0 , j6 ∈ SP3
0 , j7 ∈ SN3

1 .

The transition of Server-5 refurbishes the RP as the RFP is defined as

• (j1, j2, j3, j4, j5, j6, j7)
β5−→ (j1, j2, j3, j4 − 1, j5, j6 + 1, j7), if j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈
SN1

1 , j4 ∈ SP2
1 , j5 ∈ SN2

0 , j6 ∈ SP3−1
0 , j7 ∈ SN3

0 .

Along with these transitions, the diagonal element of the diagonal block matrices in
the infinitesimal generator matrix is filled by the sum of all elements in the corresponding
row of the B with a minus sign in order to ensure that the row sum is equal to zero;
therefore, combining all the stated transitions in Section 3.2 and collecting them into their
corresponding block matrices, we obtain the infinitesimal generator matrix, B as in (1).

3.4. Stability Analysis of the Model
Calculation of Stability Condition

According to Neuts [3] the matrix geometric approach to resolve the seven-dimensional
Markov chain Jt, t ≥ 0, we need to compute the stability condition of a proposed system.
When observing the structure of infinitesimal generator matrix B, the block matrices Ba, Bb,
and Bc are remain unaltered from state j1 = 1 on wards. In such a state, we construct a
generator matrix, B = Ba + Bb + Bc, which is given by

B =


D̄j2 j′2 = j2, j2 ∈ SP1

1

F2 j′2 = j2, j2 ∈ SP1
2

F2 j′2 = P1, j2 = 1
0 Otherwise.

where D̄j2 = Dj2 + A1, j2 ∈ SP1
1 , and F2 = p f1 β1 Iγ1 are used to perform the stability

condition of the system. Before computing the stability condition, we require a steady-
state probability vector, y = (y(1), y(2), · · · , y(P1)) to the generator matrix, B. Thus the
computation of y needs the following Lemma:

Lemma 1. The steady-state probability vector, y to the generator matrix, B is given by

y(j2) = y(1)Γj2 , j2 ∈ SP1
1 , (2)

where,

Γj2 =


I, j2 = 1

(−1)P1−j2+1
P1
∏

j=j2
(F2D̄−1

j ), j2 ∈ SP1
2

and y(1) is determined by solving the equations

y(1)[D̄1 + (−1)P1−1
P1

∏
j=2

(F2D̄−1
j )F2] = 0, (3)

P1

∑
j2=1

y(j2)e = 1. (4)
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Proof. The steady-state probability vector y satisfies the following equations:

yB = 0, (5a)

ye = 1. (5b)

In Equation (5a), writing y and B explicitly and simplifying it, we obtain the P1 set of
system of homogeneous equations as follows:

y(j2)D̄j2 + y(j2+1)F2 = 0, j2 ∈ SP1−1
1 (6)

y(1)F2 + y(j2)D̄j2 = 0, j2 = P1. (7)

By solving the system of Equations (6) and (7) recursively from the backward substi-
tution method, we obtain all the steady-state probability vector y(j2), j2 ∈ SP1

2 , in terms of
initial steady-state probability vector, y(1) to the generator matrix, and B as in Equation (2).
Further, to compute y(1), we solve the below system of equations y(1)D̄1 + y(2)F2 = 0 by
applying the value of y(2) from (2) and subject to the normalizing condition as stated in (5b),
Equations (3) and (4) are obtained, respectively.

Lemma 2. The stability condition of the Markov process Jt, t ≥ 0 is given by

y(1)µ1 Iγ1e > y(1)A1e. (8)

Proof. The stability of a proposed system is to be verified by referring Neuts [3] standard
results of stability condition

yBae > yBce. (9)

Applying Lemma 1 in the inequality (9) and writing all y, Ba, Bc and e explicitly, and
simplifying it, the required stability condition stated in the inequality (8) is obtained.

3.5. Calculation of R-Matrix

After verifying the stability of Markov process Jt, t ≥ 0, the computation of rate
matrix R will have a significant attention to find a steady-state probability vector, Ω =
(Ω(0), Ω(1), . . .) to the infinitesimal generator matrix, B. The following lemma gives the
R-matrix.

Lemma 3. The rate matrix R of the seven-dimensional Markov process Jt, t ≥ 0 can be deter-
mined by

BaR2 + BbR + Bc = 0, (10)

where R is the minimal non-negative solution of the matrix quadratic equation defined by

R =



1 2 3 . . . P1

1 R11 R12 R13 . . . R1P1

2 R21 R22 R23 . . . R2P1

3 R31 R32 R33 . . . R3P1

...
...

...
... . . .

...
P1 RP11 RP12 RP13 . . . RP1P1

 (11)

Proof. Due to the block tridiagonal structure of the infinitesimal generator matrix, B, the
rate matrix R satisfies the matrix quadratic Equation (10). Initially, the unknown R-matrix
is assumed to be in (11). Indeed, the structure of the R-matrix is identified by observing
the number of non-zero rows exist in the Bc matrix. Since the Bc matrix has at-least one
non-zero entry in each row, all the rows of R-matrix are to be considered as non-zero rows.
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According to these assumptions, the unknown R-matrix is structured as in (11). Now,
expanding all the block matrices in Equation (10), we obtain the following set of non-linear
systems of homogeneous equations:
if i = j, and i, j ∈ SP1−1

1

RijD(j) + A1 +
P1

∑
k=1

RikRkj p f2 β1 Iγ1 +
P1

∑
k=1

RikRkj+1 p f1 β1 Iγ1 = 0, (12)

if i = j, and i, j ∈ SP1
P1

RijD(j) + A1 +
P1

∑
k=1

RikRk1 p f1 β1 Iγ1 +
P1

∑
k=1

RikRkj p f2 β1 Iγ1 = 0, (13)

if i 6= j, and i ∈ SP1
1

P1

∑
k=1

RikRkj p f2 β1 Iγ1 +
P1

∑
k=1

RikRkj+1 p f1 β1 Iγ1 = 0, j ∈ SP1−1
1 , (14)

if i 6= j, and i ∈ SP1−1
1

P1

∑
k=1

RikRk1 p f1 β1 Iγ1 +
P1

∑
k=1

RikRkj p f2 β1 Iγ1 = 0, j ∈ SP1
P1

. (15)

The obtained Equations (12)–(15) are solved by Gauss–Seidal iterative process in order
to obtain each Rij, i, j ∈ SP1

1 in the R-matrix.

Remark 1. The R-matrix can also be obtained using logarithmic reduction algorithm (LRA), which
is referred to by Latouche and Ramaswamy (see [46,47]):
Step (i): R1 ← −B−1

b Bc, R2 ← −B−1
b Ba, R3 = R2 and R4 = R1

Step (ii):

R5 = R1R2 + R2R1
R6 = R2

1
R1 ← (I − R5)

−1R6
R6 ← R2

2
R2 ← (I − R5)

−1R6
R3 ← R3 + R4R2
R4 ← R4R1

Continue Step (i) until ‖e− R3e‖∞ < ε.
Step (iii): R = −Bc(Bb + BcR3)

−1.

Limiting Probability Criterion

From the infinitesimal generator matrix B as in Equation (1), the seven-dimensional
Markov process Jt, t ≥ 0 with the state space K is regular. Hence, the limiting probability
criterion

Ω(j1,j2,j3,j4,j5,j6,j7) = lim
t→∞

Pr[J1(t) = j1, J2(t) = j2, J3(t) = j3, J4(t) = j4, J5(t) = j5, J6(t) = j6,

J7(t) = j7|J1(0), J2(0), J3(0), J4(0), J5(0), J6(0), J7(0)],

exists and it is never dependent on the initial state.
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Then Ω = (Ω(0), Ω(1), . . . , ) preserves

ΩB = 0 (16a)

and Ωe = 1. (16b)

The partition of Ω(j1) is

Ω(j1) = (Ω(j1,1), Ω(j1,2), . . . , Ω(j1,P1)), j1 ∈ Z+

Ω(j1,j2) = (Ω(j1,j2,0), Ω(j1,j2,1), . . . , Ω(j1,j2,N1)), j1 ∈ Z+; j2 ∈ SP1
1 .

Ω(j1,j2,j3) = (Ω(j1,j2,j3,0), Ω(j1,j2,j3,1), . . . , Ω(j1,j2,j3,P2)), j1 ∈ Z+; j2 ∈ SP1
1 ; j3 ∈ SN1

0 .

Ω(j1,j2,j3,j4) = (Ω(j1,j2,j3,j4,0), Ω(j1,j2,j3,j4,1), . . . , Ω(j1,j2,j3,j4,N2)), j1 ∈ Z+; j2 ∈ SP1
1 ;

j3 ∈ SN1
0 ; j4 ∈ SP2

0 .

Ω(j1,j2,j3,j4,j5) = (Ω(j1,j2,j3,j4,j5,0), Ω(j1,j2,j3,j4,j5,1), . . . , Ω(j1,j2,j3,j4,j5,P3)), j1 ∈ Z+; j2 ∈ SP1
1 ;

j3 ∈ SN1
0 ; j4 ∈ SP2

0 ; j5 ∈ SN2
0 .

Ω(j1,j2,j3,j4,j5,j6) = (Ω(j1,j2,j3,j4,j5,j6,0), Ω(j1,j2,j3,j4,j5,j6,1), . . . , Ω(j1,j2,j3,j4,j5,j6,N3)), j1 ∈ Z+;

j2 ∈ SP1
1 ; j3 ∈ SN1

0 ; j4 ∈ SP2
0 ; j5 ∈ SN2

0 ; j6 ∈ SP3
0 .

3.6. Calculation of Stationary Probability Vector

Theorem 1. If the seven-dimensional Markov process Jt, t ≥ 0 satisfies the stability condition
given in Lemma 2, then the steady-state probability vector Ω is given by

Ω(j1) = Ω(0)Rj1 , j1 ∈ Z+ (17)

where the matrix R satisfies Equation (10) and the initial steady-state probability vector Ω(0)

satisfies

Ω(0)(B0 + RBa) = 0 (18a)

and subject to the normalizing condition

Ω(0)(I − R)−1e = 1. (18b)

Proof. According to the Neuts [3] Matrix geometric approach, the steady-state probability
vector Ω of the seven-dimensional Markov process Jt, t ≥ 0 satisfies Equations (16a)
and (16b). By Equation (16a), we have

Ω(j1)B0 + Ω(j1+1)Ba = 0, j1 = 0 (19a)

Ω(j1)Bc + Ω(j1+1)Bb + Ω(j1+2)Ba = 0, j1 ∈ Z+. (19b)

When observing Equations (19b) and j1 ∈ Z+, the block matrices Ba, Bb, and Bc
remain unchanged from their original structure. Thus, the steady-state probability vectors,
Ω(j1), j1 ∈ Z+ is dependent only on the initial steady-state probability vector, Ω(0) and
R-matrix where R is the minimal non-negative solution of Equation (10) from Lemma 3;
therefore, Equation (17) is achieved. Then, applying the value of Ω(1) in Equation (19a), we
obtain Equation (18a). Further, substituting all the Ω(j1), j1 ∈ Z+ values that are obtained
from Equation (17) in Equation (16b), Equation (18b) is to be obtained. To compute the
value of Ω(0), we need the following lemma:

Lemma 4. The initial steady-state probability vector, Ω(0) is obtained by solving Equations (18a)
and (18b).
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Proof. From Equation (18a) and simplifying it, we obtain the set of non-linear following
equations:

P1

∑
j1=1

Ω(0,j1)[β1 Iγ1(Rj1k p2 + Rj1k+1 p1) + δkj1 Dj1 ] = 0, k ∈ SP1−1
1 (20a)

P1

∑
j1=1

Ω(0,j1)[β1 Iγ1(Rj11 p2 + Rj1P1 p1) + δP1 j1 DP1 ] = 0. (20b)

By solving the P1 set of Equations (20a) and (20b) using Gauss–Seidal iterative process
with subject to the normalizing condition as in (16b), we obtain the initial steady-state
probability vector Ω(0).

By Lemmas 3 and 4, all the steady-state probability vector Ω(j1), j1 ∈ Z+ of the seven-
dimensional stochastic process Jt, t ≥ 0 as in (17) is achieved.

4. Expected Performance Measures of the System (EPMS)
4.1. Computation of Expected Current Number of Products in the System

• The expected current number of fresh items in the system is defined as

EFP =
∞

∑
j1=0

P1

∑
j2=1

j2Ω(j1,j2)e.

• The expected current number of returned items in the system is defined as

ERP =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=1

j4Ω(j1,j2,j3,j4)e.

• The expected current number of refurbished items in the system is defined as

ERFP =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=0

N2

∑
j5=0

P3

∑
j6=1

N3

∑
j7=0

j6Ω(j1,j2,j3,j4,j5,j6,j7).

4.2. Computation of Expected Reorder Rate of Fresh Product

The expected reorder rate of fresh products can be defined as follows

ER =
∞

∑
j1=1

N1

∑
j3=0

P2

∑
j4=0

N2

∑
j5=0

P3

∑
j6=0

N3

∑
j7=0

p f1 β1Ω(j1,1,j3,j4,j5,j6,j7).

4.3. Computation of Expected Number of Customers in the Queues

• Expected number of customers in Queue-1 is defined as

ECQ1 =
∞

∑
j1=1

j1Ω(j1)e = Ω(0)R(I − R)−2e.

• Expected number of customers in Queue-2 is defined as

ECQ2 =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=1

j3Ω(j1,j2,j3)e.
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• Expected number of customers in Queue-3 is defined as

ECQ3 =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=0

N2

∑
j5=1

j5Ω(j1,j2,j3,j4,j5)e.

• Expected number of customers in Queue-4 is defined as

ECQ4 =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=0

N2

∑
j5=0

P3

∑
j6=0

N3

∑
j7=1

j7Ω(j1,j2,j3,j4,j5,j6,j7).

4.4. Computation of Expected Number of Lost Customers in the Queues

• Expected number of lost customers in Queue-1 is defined as

ELCQ1 =
∞

∑
j1=1

p f2 β1Ω(j1)e.

• Expected number of lost customers in Queue-2 is defined as

ELCQ2 =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=1

qr3 β2Ω(j1,j2,j3)e +
∞

∑
j1=0

P1

∑
j2=1

α2Ω(j1,j2,N1)e.

• Expected number of lost customers in Queue-3 is defined as

ELCQ3 =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=0

N2

∑
j5=1

r2β3Ω(j1,j2,j3,j4,j5)e +
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=0

α3Ω(j1,j2,j3,j4,N2)e.

• Expected number of lost customers in Queue-4 is defined as

ELCQ4 =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=0

N2

∑
j5=0

P3

∑
j6=0

α4Ω(j1,j2,j3,j4,j5,j6,N3).

4.5. Computation of Probability That the Servers in the System Are Busy

• Probability that Server-1 becomes busy is given by

PS1B =
∞

∑
j1=1

P1

∑
j2=1

Ω(j1,j2)e.

• Probability that Server-2 becomes busy is given by

PS2B =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=1

P2−1

∑
j4=0

Ω(j1,j2,j3,j4)e.

• Probability that Server-3 becomes busy is given by

PS3B =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=0

N2

∑
j5=1

P3

∑
j6=1

Ω(j1,j2,j3,j4,j5)e.

• Probability that Server-4 becomes busy is given by

PS4B =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=0

N2

∑
j5=0

P3

∑
j6=0

N3

∑
j7=1

Ω(j1,j2,j3,j4,j5 j6,j7).



Mathematics 2022, 10, 1137 20 of 37

• Probability that Server-5 becomes busy is given by

PS5B =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=1

N2

∑
j5=0

P3−1

∑
j6=0

N3

∑
j7=0

Ω(j1,j2,j3,j4,j5 j6,j7).

4.6. Computation of Miscellaneous Expected Measures of the System

• Expected rate at which the Class-1 customer who did not purchase an FP is defined as

ECNFP =
∞

∑
j1=1

P1

∑
j2=1

p f2 β1Ω(j1,j2)e.

• Expected rate at which the Class-2 customer who only sold an OP and does not go to
Queue-1 is defined as

ECOSRP =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=1

P2−1

∑
j4=0

qr2 β2Ω(j1,j2,j3)e.

• Expected rate at which the Class-2 customer who did not return the OP is defined as

ECNRP =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=1

P2−1

∑
j4=0

qr3 β2Ω(j1,j2,j3)e.

• Expected rate at which the Class-3 customer who purchases an RFP is defined as

EPRFP =
∞

∑
j1=0

P1

∑
j2=1

N1

∑
j3=0

P2

∑
j4=0

N2

∑
j5=1

P3

∑
j6=1

r1β3Ω(j1,j2,j3,j4,j5,j6)e.

4.7. Computation of Expected Total Cost Value

The total cost value (TCV) of the seven-dimensional stochastic process, Jt, t ≥ 0, is
defined as given below.

ETCV = HCFPEFP + HCRPERP + HCRFPERFP + SCFPER + WCQ1ECQ1 + WCQ2ECQ2

+WCQ3ECQ3 + WCQ4ECQ4 + LCQ1ELCQ1 + LCQ2ELCQ2 + LCQ3ELCQ3 +

LCQ4ELCQ4.

5. Numerical Interpretation of Parameter Analysis of the System

The considered seven-dimensional stochastic queuing-inventory problem is to be
investigated with a few numerical illustrations using the cost values and parameter values
of the system. This section provide insights to the reader about the proposed model and
its practical life application related to the society. Here, we conduct an investigation into
each queue, product, server, and customer, and, of course, the expected total cost of the
system. The discussion of each queue explains how the service provided by the server and
the respective probabilities influence the total cost of the system and significant system
performance measures. For the interpretation of numerical discussions, the parameter and
cost values of the Markov process, Jt, t ≥ 0 are to be assumed as follows: P1 = 3, P2 = 3,
P3 = 4, N1 = 3, N2 = 3, N3 = 3, α1 = 0.5, α2 = 0.02, α3 = 0.01, α4 = 0.8, β1 = 3.7, β2 = 2.5,
β3 = 2.7, β4 = 1.6, β5 = 1.9, p f1 = 0.8, p f2 = 0.2; qr1 = 0.7; qr2 = 0.2, qr3 = 0.1, r1 = 0.7,
r2 = 0.3, HCFP = 0.2, HCRP = 0.2, HCRFP = 0.2, SCFP = 10, WCQ1 = 5, WCQ2 = 5,
WCQ3 = 5, WCQ4 = 5, LCQ1 = 0.5, LCQ2 = 0.2, LCQ3 = 0.2, LCQ4 = 0.1.
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5.1. Interpretation and Remarks on Queues

Example 1. Using this example, one can see how the activity on Queue-1 and Server-1 is repre-
sented graphically. In Queue-1, the system accepts Class-1 customers who wish to purchase the
FP. Class-2 customers are also taken into consideration when they wish to purchase the FP after
returning their old product in Queue 2.

1. Figure 3 depicts the predicted number of customers lost in Queue-1 as a result of increasing
both the service rate, β1, and the probability that customers will be satisfied at the end of
service completion to purchase the FP, p f1 , with Server-1.

2. As the average service time of Server-1 decreases, the value of ELCQ1 rises as well. In general,
when the service completion time decreases, the number of lost customers or the total number of
customers in the system decreases logically as well. According to the premise that an entering
Class-1 customer is a member of the impulse customer category, the likelihood that they will
acquire the product is dependent on their level of satisfaction with the service offered to them.

3. As a result, each service completion has the option of purchasing or not purchasing the FP.
Because of the customer’s decision to oscillate, the value of ELCQ1 increases when the value
of β1 increases. It is interesting to note that when the p f1 is increased, (i.e., when the ELCQ1
is reduced), the situation is different. Indeed, the likelihood that a Class-1 consumer will be
satisfied suggests that the supply of fresh products will increase.

4. As predicted, an increase in the arrival rate always resulted in Server-1 remaining busy when
the rate was increased. In order for the server to be busy, there should be a large number
of customers in front of the server at any given time. On the other hand, because Server-
1 completes the operation as fast as possible, the likelihood of a server becoming available
increases. This is shown in Figure 4.

5. As opposed to this, Figure 5 depicts an expected rate at which a customer who does not
purchase an FP when the p f2 and the α1 are put together. It has been shown that when p f2
and α1 are elevated concurrently, they have a direct impact on ECNFP.

In order to be a successful business person, one must always improve their service facilities in
order to ensure that their customers are completely satisfied.
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Figure 3. Expected customers lost in Queue-1 on p f1
vs. β1.
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Figure 4. Probability that Server-1 is busy on α1 vs. β1.
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Figure 5. Expected rate at which the customer not purchasing an FP on p f1
vs. α1.

Example 2. Table 1 shows the complete in and out activities of Queue-2. In this example, we see the
influence of parameters α2 and β2 and the probabilities qr1 , qr2 , andqr3 on the ERP, ECQ1, ECOSRP,
ECNRP, and PS2F.

1. If the arrival rate, α2 increases (meaning that the number of Class-2 customers in Queue-2
has increased), the expected number of RP, average arrivals in Queue-1, and expected rate at
which a customer who sells only the OP and leaves the system without returning are increased.
The probability of Server-2 being free is decreased if α2 is increased, because all the other
components (ERP, ECQ1, ECOSRP, ECNRP) are increased when α2 increases.

2. The assumption defined for purchasing the old products from the customer causes the stated
changes. This is because when Server-2 is attending a customer in Queue-2, the TaC of the
old product is first checked and clearly explained to the customer. Finally, all the checking
formalities are over, the customer may agree to the TaC. If they agree to the sale of the old
product, then the old product is immediately purchased by Server-2. In this situation, the Class-
2 customer may decide whether to buy an FP or not. Suppose they want an FP, immediately
they go to Queue-1 with probability qr1 or else leave the system with qr2. If the Class-2
customer is not willing to sell their old product, they leave the system without returning the
old product with probability qr3. These are the reasons that the following changes happen:

• If the probability qr1 increases, then ECQ1 increases where as ECNRP, PS2F are de-
creased.
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• If the probability qr2 increases, then ECOSRP increases where as ECNRP, PS2F are
decreased.

• If the probability qr3 decreases, then ECNRP, PS2F are decreased.

3. The service rate of Server-2, β2 also causes the increase in the following measures ECQ1,
ECOSRP, ECNRP, PS2F. As the service rate of Server-2 increases, the probability of Server-2
being free is increased. When varying the probabilities in Table 1 qr1 , qr2 and qr3 , which is
selected by the customers’ own choice will have a great impact on the ERP, ECQ1, ECOSRP,
ECNRP, and PS2F as we predicted.

4. Furthermore, Figure 6 depicts that Server-5’s is busy when α2 vs. β2. The job of Server-5 is to
recondition the returned OP into an RFP to sell it. To do so, Server-5 needs enough RPs in the
storage place, or else Server-5 become free. When both parameters α2 and β2 are increased, the
number of RP increases; as such, PS5Bs length of the busy period will increase.

From this interpretation, the reader can conclude that the sales of new products when buying
the customers old products will be the new and best business approach to increase the sales of new
products.

Table 1. Interpretation of parameters on Queue-2.

α2 qr1 qr2 qr3 β2 ERP ECQ1 ECOSRP ECNRP PS2 F

0.02

0.4

0.3 0.3

2.5 0.963864 0.611457 0.458592 0.458592 0.388543

2.8 0.963943 0.684484 0.513363 0.513363 0.388854

3.1 0.964008 0.757510 0.568132 0.568132 0.389105

0.4 0.2

2.5 0.963059 0.733650 0.733650 0.366825 0.26635

2.8 0.963156 0.821505 0.821505 0.410752 0.266514

3.1 0.963234 0.909359 0.909359 0.454680 0.266646

0.5

0.3 0.2

2.5 0.966208 0.865863 0.519518 0.346345 0.307309

2.8 0.966324 0.969414 0.581649 0.387766 0.307561

3.1 0.966418 1.072964 0.643779 0.429186 0.307765

0.4 0.1

2.5 0.951715 0.995803 0.796642 0.199161 0.203358

2.8 0.951819 1.115138 0.892111 0.223028 0.203473

3.1 0.951903 1.234473 0.987578 0.246895 0.203566

0.05

0.4

0.3 0.3

2.5 0.982526 0.893242 0.669932 0.669932 0.106758

2.8 0.982736 1.000199 0.750149 0.750149 0.106965

3.1 0.982906 1.107155 0.830366 0.830366 0.107133

0.4 0.2

2.5 0.966112 0.935305 0.935305 0.467652 0.064695

2.8 0.966270 1.047433 1.047433 0.523716 0.064792

3.1 0.966398 1.159560 1.159560 0.579780 0.064871

0.5

0.3 0.2

2.5 0.971655 1.151891 0.691135 0.460756 0.078487

2.8 0.971866 1.289898 0.773939 0.515959 0.078645

3.1 0.972036 1.427903 0.856742 0.571161 0.078772

0.4 0.1

2.5 0.956308 1.195612 0.956490 0.239122 0.04351

2.8 0.956462 1.339005 1.071204 0.267801 0.043568

3.1 0.956587 1.482398 1.185918 0.296480 0.043614
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Table 1. Cont.

α2 qr1 qr2 qr3 β2 ERP ECQ1 ECOSRP ECNRP PS2 F

0.08

0.4

0.3 0.3

2.5 0.983992 0.941741 0.706306 0.706306 0.058259

2.8 0.984222 1.054541 0.790906 0.790906 0.058445

3.1 0.984409 1.167340 0.875505 0.875505 0.058596

0.4 0.2

2.5 0.973038 0.966402 0.966402 0.483201 0.033598

2.8 0.973210 1.082275 1.082275 0.541137 0.033683

3.1 0.973349 1.198146 1.198146 0.599073 0.033753

0.5

0.3 0.2

2.5 0.976472 1.197981 0.718789 0.479193 0.041615

2.8 0.976702 1.341544 0.804926 0.536618 0.041754

3.1 0.976888 1.485105 0.891063 0.594042 0.041868

0.4 0.1

2.5 0.966819 1.223582 0.978865 0.244716 0.021135

2.8 0.966989 1.370343 1.096275 0.274069 0.021183

3.1 0.967125 1.517105 1.213684 0.303421 0.021223

Example 3. This illustration provides the complete analysis of Class-3 customers in Queue-3 with
response to Server-3 and Server-5 according to result obtained in Table 2. To explore the actions that
occur when the Class-3 customer enters Queue-3 until they were about to leave it, the parameters
α3, β3, β5, and pr f1 are incorporated into Table 2, which shows the average number of Class-3
customers present and lost in Queue-3.

1. First, the arrival rate of Class-3 customers is always directly proportional to ECQ3 and ELCQ3
where is the service rate, which is always inversely proportional to ECQ3 and ELCQ3. This is
because the number of existing customers in Queue-3 is increased when α3 increases. Since
the size of Queue-3 is finite and current number of Class-3 customer increases, newly arrived
Class-3 customers are considered lost—this is why the arrival rate, α3, causes the increase in
the loss of Class-3 customers when it is increased.

2. Simultaneously, the service process of Server-3 will have a crucial role in controlling the loss
of Class-3 customers. As the average service time of Server-3 reduces, the number of present
and lost customers also reduced.

3. The contribution of Server-5 is a remarkable one to determine the ECQ3 and ELCQ3 because
Server-5 continuously performs the refurbished work on the RP if it is available. Suppose the
refurbished products are not available, the Class-3 customer has to wait in Queue-3 and at one
stage they will be lost. So, the mean service time of Server-3 causes the decrease in ECQ3 and
ELCQ3 when it is decreased—this means that the sales of RFP is increased.

4. Finally, the probability of a Class-3 customer buying the RFP or not also determines the ECQ3
and ELCQ3. This reflects the exact real-life application of a customer’s mindset. Generally, not
all customers want to purchase the RFP. So many customers will have an oscillation mindset
when they buy an RFP; therefore, when a Class-3 customer purchasing probability increases,
the loss of them is to be reduced.

5. Figure 7 explores the probability of Server-3 becoming busy when α3 and β3 are incorporated.
As the average service time reduces, PS3B also reduces because of the quick service completion,
whereas the increase in the number of customers in Queue-3 raises, and the server being busy
time is increased.
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Figure 6. Probability that Server-5 is busy on α2 vs. β2.
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Figure 7. Probability that Server-3 is busy on α3 vs. β3.

Table 2. Interpretation of parameters on Queue-3.

ECQ3 ELCQ3

β5 β3 pr f1 α3 = 0.1 α3 = 0.2 α3 = 0.3 α3 = 0.1 α3 = 0.2 α3 = 0.3

1

2.5

0.2 1.069820 1.245375 1.329015 1.572298 1.812185 1.944769

0.4 1.270535 1.389019 1.427365 1.360707 1.498965 1.577249

0.6 1.377906 1.443120 1.462050 0.977132 1.059310 1.118390

2.8

0.2 1.068205 1.243361 1.327096 1.756267 2.019233 2.162050

0.4 1.269631 1.388214 1.426629 1.519199 1.668268 1.750071

0.6 1.377481 1.442759 1.461722 1.089535 1.175675 1.235914

3.1

0.2 1.066895 1.241715 1.325517 1.940227 2.226255 2.379294

0.4 1.268897 1.387555 1.426024 1.677687 1.837563 1.922880

0.6 1.377135 1.442463 1.461452 1.201936 1.292037 1.353434
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Table 2. Cont.

ECQ3 ELCQ3

β5 β3 pr f1 α3 = 0.1 α3 = 0.2 α3 = 0.3 α3 = 0.1 α3 = 0.2 α3 = 0.3

1.2

2.5

0.2 1.068865 1.244698 1.328570 1.571344 1.811443 1.944249

0.4 1.269938 1.388746 1.427194 1.360228 1.498724 1.577086

0.6 1.377606 1.442992 1.461969 0.976958 1.059223 1.118327

2.8

0.2 1.067245 1.242680 1.326647 1.755200 2.018405 2.161472

0.4 1.269033 1.387939 1.426457 1.518666 1.668002 1.749892

0.6 1.377180 1.442629 1.461641 1.089343 1.175580 1.235846

3.1

0.2 1.065931 1.241029 1.325063 1.939046 2.225342 2.378659

0.4 1.268296 1.387278 1.425850 1.677099 1.837272 1.922685

0.6 1.376834 1.442333 1.461370 1.201726 1.291935 1.353362

1.4

2.5

0.2 1.068181 1.244214 1.328252 1.570661 1.810911 1.943876

0.4 1.269512 1.388550 1.427072 1.359886 1.498552 1.576970

0.6 1.377392 1.442900 1.461912 0.976834 1.059161 1.118282

2.8

0.2 1.066558 1.242191 1.326324 1.754435 2.017812 2.161058

0.4 1.268604 1.387741 1.426334 1.518285 1.667812 1.749763

0.6 1.376965 1.442537 1.461582 1.089206 1.175512 1.235798

3.1

0.2 1.065241 1.240538 1.324738 1.938199 2.224687 2.378203

0.4 1.267867 1.387079 1.425725 1.676679 1.837063 1.922545

0.6 1.376618 1.442240 1.461311 1.201576 1.291861 1.353310

Example 4. This example graphically investigates the activities of Queue-4.

1. Figure 8 shows the expected loss of Class-4 customers in Queue-4 when both α4 and β4 varied
together. As the results show, the reader can understand that both parameters influence ELCQ4
opposite to each other as predicted. In Figure 9, the size of Queue-4, N3 is incorporated with
α4 to obtain ELCQ4, whereas in Figure 10, N3 is connected to β4.

2. Since α4 causes the increase in customer arrivals in Queue-4, the overflow of Queue-4 leads
to the loss of them. On the other side, as β4 reduces the wait time of Class-4 customers in
Queue-4, the loss will be controlled and as N3 expands the size of Queue-4, a greater number
of Class-4 customers can be allowed in Queue-4; thus, the loss of Class-4 customers can be
reduced.

3. Figure 11 depicts the number of customers, ECQ4 in Queue-4 when α4 and β4 act together.
The measure ELCQ4 is increased if α4 is raised and is decreased if β4 is decreased due to the
influence of corresponding parameters.

4. The parameters α4, β4, and N3 are involved to discuss the probability of Server-4 becoming
busy, PS4B. In this analysis, α4 and N3 always keeps Server-4 busy when it is increased;
however, β4 always reduces the busy period of Server-4 when it is to be increased. This is
graphically shown in Figures 12–14.

5. Suppose there are a greater number of Class-4 customers waiting for repair service of their
product, Server-4 cannot take a rest because if Server-4 wants to take a rest, the Class-4
customers in Queue-4 will increase. This will also cause an overload of work for Server-4; this
is why Server-4 is always busy when both α4 and N3 are increased. On the contrary, as we
reduce the mean service time of Server-4, the number of Class-4 customers in Queue-4 also
decreased; thus, the probability of Server-4 being busy is low when β4 is high.
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Figure 8. Expected customer loss in Queue-4 on β4 vs. α4.
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Figure 9. Expected customer loss in Queue-4 on α4 vs. N3.
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Figure 10. Expected customer loss in Queue-4 on β4 vs. N3.
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Figure 11. Expected customer loss in Queue-4 on α4 vs. β4.
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Figure 12. Probability that Server-4 is busy on α4 vs. β4.
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Figure 13. Probability that Server-4 is busy on α4 vs. N3.
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Figure 14. Probability that Server-4 is busy on β4 vs. N3.

5.2. Interpretation of Expected Total Cost Value of the System

Example 5. For the purposes of this example, the expected total cost of the considered seven-
dimensional stochastic process is to be explored, along with α1, α2, α3, α4, β1, β2, β3, β4, and β5 as
shown in Table 3.

1. Of course, when dealing with this type of business in the real world, we all experience some
degree of ambiguity regarding the typical total cost.

2. This example will be extremely beneficial to all businesses in order to eliminate such ambiguity;
however, despite the fact that the system consists of five heterogeneous servers, the average
service time of each server is inversely related to predicted total cost (i.e., for each service rate of
β1 and βi, where i ∈ S5

3 grows, the expected total cost reduces) but for β2 it increases because
Server-2 performs a purchasing job—this will cause an increase in total cost.

3. As predicted, when we observe the mean arrival rate of all Class-i customers, where i ∈ S4
1,

the projected total cost is directly proportional to the number of αi customers, where i ∈ S4
1.

4. Furthermore, the cost value analysis provides the predicted rise in the expected total cost value,
which is presented in Table 4. Many readers will be inspired by this example to conduct further
investigation into this type of topic in the future. Providing a satisfactory service to all types
of consumers under one QIS with a variety of dedicated servers is a difficult undertaking. The
total cost incurred by our study, on the other hand, will provide valuable information to many
readers and business people.

5. This is the most significant and necessary conversation in this proposed paradigm, and it
should not be skipped.
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Table 3. Interpretation of parameters on ETCV .

α1 0.4

α2 0.02 0.04

α3 0.01 0.03 0.01 0.03

α4
0.7 0.9 0.7 0.9 0.7 0.9 0.7 0.9

β1 β2 β3 β4 β5

3.5

2.3

2.4

1.5
1.8 14.3814 14.4014 14.6691 14.7118 13.7803 13.7960 14.7620 14.7867

2 14.3742 14.3939 14.6546 14.6938 13.7749 13.7903 14.7531 14.7771

1.8 1.8 14.3813 14.4013 14.6673 14.7099 13.7803 13.7960 14.7611 14.7859

2 14.3741 14.3938 14.6527 14.6920 13.7749 13.7902 14.7522 14.7762

2.7

1.5 1.8 14.3724 14.3924 14.6621 14.7047 13.7715 13.7872 14.7535 14.7782

2 14.3652 14.3849 14.6476 14.6867 13.7661 13.7815 14.7447 14.7686

1.8
1.8 14.3723 14.3923 14.6602 14.7028 13.7715 13.7872 14.7527 14.7774

2 14.3651 14.3848 14.6457 14.6849 13.7661 13.7814 14.7438 14.7677

2.5

2.4

1.5
1.8 14.3844 14.4044 14.6683 14.7110 13.7833 13.7990 14.7626 14.7873

2 14.3772 14.3969 14.6538 14.6930 13.7779 13.7933 14.7537 14.7777

1.8
1.8 14.3843 14.4043 14.6664 14.7091 13.7832 13.7990 14.7617 14.7865

2 14.3771 14.3968 14.6519 14.6911 13.7779 13.7932 14.7528 14.7768

2.7

1.5
1.8 14.3754 14.3953 14.6613 14.7039 13.7745 13.7902 14.7541 14.7788

2 14.3682 14.3878 14.6468 14.6859 13.7691 13.7844 14.7453 14.7692

1.8
1.8 14.3753 14.3952 14.6594 14.7020 13.7744 13.7902 14.7533 14.7780

2 14.3681 14.3877 14.6449 14.6840 13.7691 13.7844 14.7444 14.7683

3.5

2.3

2.4

1.5
1.8 14.3650 14.3849 14.6503 14.6929 13.7638 13.7796 14.7419 14.7666

2 14.3578 14.3774 14.6358 14.6750 13.7584 13.7738 14.7330 14.7570

1.8
1.8 14.3649 14.3848 14.6484 14.6911 13.7638 13.7795 14.7410 14.7657

2 14.3576 14.3773 14.6339 14.6731 13.7584 13.7738 14.7321 14.7561

2.7

1.5
1.8 14.3560 14.3759 14.6432 14.6858 13.7550 13.7708 14.7334 14.7581

2 14.3488 14.3684 14.6287 14.6679 13.7496 13.7650 14.7245 14.7485

1.8
1.8 14.3558 14.3758 14.6413 14.6839 13.7550 13.7707 14.7325 14.7572

2 14.3486 14.3683 14.6268 14.6660 13.7496 13.7650 14.7236 14.7476

2.5

2.4

1.5
1.8 14.3679 14.3879 14.6494 14.6921 13.7668 13.7825 14.7425 14.7672

2 14.3607 14.3804 14.6349 14.6741 13.7614 13.7768 14.7336 14.7576

1.8
1.8 14.3678 14.3878 14.6475 14.6902 13.7668 13.7825 14.7416 14.7663

2 14.3606 14.3803 14.6330 14.6722 13.7614 13.7768 14.7327 14.7567

2.7

1.5
1.8 14.3589 14.3789 14.6424 14.6850 13.7580 13.7737 14.7340 14.7587

2 14.3517 14.3714 14.6279 14.6670 13.7526 13.7680 14.7251 14.7491

1.8
1.8 14.3588 14.3788 14.6405 14.6831 13.7580 13.7737 14.7331 14.7578

2 14.3516 14.3713 14.6260 14.6652 13.7526 13.7679 14.7242 14.7482
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Table 3. Cont.

α1 0.6

α2 0.02 0.04

α3 0.01 0.03 0.01 0.03

α4
0.7 0.9 0.7 0.9 0.7 0.9 0.7 0.9

β1 β2 β3 β4 β5

3.5

2.3

2.4

1.5
1.8 15.4725 15.4925 15.7625 15.8051 14.8714 14.8871 15.8565 15.8812

2 15.4653 15.4850 15.7479 15.7871 14.8660 14.8813 15.8476 15.8716

1.8
1.8 15.4724 15.4924 15.7606 15.8032 14.8713 14.8871 15.8556 15.8804

2 15.4652 15.4848 15.7460 15.7853 14.8659 14.8813 15.8467 15.8707

2.7

1.5
1.8 15.4635 15.4834 15.7554 15.7980 14.8626 14.8783 15.8480 15.8727

2 15.4563 15.4759 15.7409 15.7800 14.8572 14.8725 15.8391 15.8631

1.8
1.8 15.4634 15.4833 15.7535 15.7961 14.8625 14.8783 15.8471 15.8719

2 15.4562 15.4758 15.7390 15.7782 14.8571 14.8725 15.8382 15.8622

2.5

2.4

1.5
1.8 15.4755 15.4954 15.7616 15.8043 14.8743 14.8901 15.8571 15.8818

2 15.4683 15.4879 15.7471 15.7863 14.8690 14.8843 15.8482 15.8722

1.8
1.8 15.4753 15.4953 15.7597 15.8024 14.8743 14.8900 15.8562 15.8810

2 15.4681 15.4878 15.7452 15.7844 14.8689 14.8843 15.8473 15.8713

2.7

1.5
1.8 15.4664 15.4864 15.7546 15.7972 14.8655 14.8813 15.8486 15.8733

2 15.4592 15.4789 15.7401 15.7792 14.8602 14.8755 15.8397 15.8637

1.8
1.8 15.4663 15.4863 15.7527 15.7953 14.8655 14.8812 15.8477 15.8725

2 15.4591 15.4788 15.7382 15.7773 14.8601 14.8755 15.8389 15.8628

3.5

2.3

2.4

1.5
1.8 15.3930 15.4130 15.6799 15.7226 14.7919 14.8076 15.7724 15.7971

2 15.3858 15.4055 15.6654 15.7046 14.7865 14.8019 15.7635 15.7875

1.8
1.8 15.3929 15.4129 15.6780 15.7207 14.7918 14.8076 15.7715 15.7963

2 15.3857 15.4054 15.6635 15.7027 14.7864 14.8018 15.7626 15.7866

2.7

1.5
1.8 15.3840 15.4040 15.6729 15.7155 14.7831 14.7988 15.7639 15.7886

2 15.3768 15.3964 15.6584 15.6975 14.7777 14.7930 15.7550 15.7790

1.8
1.8 15.3839 15.4038 15.6710 15.7136 14.7830 14.7988 15.7630 15.7877

2 15.3767 15.3963 15.6565 15.6956 14.7776 14.7930 15.7541 15.7781

2.5

2.4

1.5
1.8 15.3960 15.4160 15.6791 15.7218 14.7949 14.8106 15.7730 15.7977

2 15.3888 15.4085 15.6646 15.7038 14.7895 14.8048 15.7641 15.7881

1.8
1.8 15.3959 15.4159 15.6772 15.7199 14.7948 14.8106 15.7721 15.7969

2 15.3887 15.4083 15.6627 15.7019 14.7894 14.8048 15.7632 15.7872

2.7

1.5
1.8 15.3870 15.4069 15.6721 15.7146 14.7861 14.8018 15.7645 15.7892

2 15.3798 15.3994 15.6576 15.6967 14.7807 14.7960 15.7556 15.7796

1.8
1.8 15.3869 15.4068 15.6702 15.7128 14.7860 14.8017 15.7636 15.7883

2 15.3797 15.3993 15.6557 15.6948 14.7806 14.7960 15.7547 15.7787
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Table 4. Interpretation of cost values on ETCV .

HCFP 0.2 0.4

HCRP 0.2 0.3 0.2 0.3

HCRFP
0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3

WCQ1 WCQ2 WCQ3 WCQ4 SCFP

5

4

5

5
5 12.942 13.138 13.037 13.233 12.942 13.138 13.037 13.233

10 13.828 14.025 13.923 14.120 13.828 14.025 13.923 14.120

7
5 13.528 13.725 13.623 13.820 13.528 13.725 13.623 13.820

10 14.415 14.612 14.510 14.707 14.415 14.612 14.510 14.707

6

5
5 13.894 14.090 13.989 14.185 13.894 14.090 13.989 14.185

10 14.780 14.977 14.875 15.072 14.780 14.977 14.875 15.072

7
5 14.481 14.677 14.576 14.772 14.481 14.677 14.576 14.772

10 15.367 15.564 15.462 15.659 15.367 15.564 15.462 15.659

6

5

5
5 14.965 15.161 15.060 15.256 14.965 15.161 15.060 15.256

10 15.852 16.048 15.947 16.143 15.852 16.048 15.947 16.143

7
5 15.552 15.748 15.647 15.843 15.552 15.748 15.647 15.843

10 16.438 16.635 16.533 16.730 16.438 16.635 16.533 16.730

6

5
5 15.917 16.114 16.012 16.209 15.917 16.114 16.012 16.209

10 16.804 17.000 16.899 17.095 16.804 17.000 16.899 17.095

7
5 16.504 16.701 16.599 16.796 16.504 16.701 16.599 16.796

10 17.391 17.587 17.486 17.682 17.391 17.587 17.486 17.682

7

4

5

5
5 13.280 13.477 13.375 13.572 13.280 13.477 13.375 13.572

10 14.167 14.363 14.262 14.458 14.167 14.363 14.262 14.458

7
5 13.867 14.063 13.962 14.159 13.867 14.063 13.962 14.159

10 14.754 14.950 14.849 15.045 14.754 14.950 14.849 15.045

6

5
5 14.232 14.429 14.327 14.524 14.232 14.429 14.327 14.524

10 15.119 15.315 15.214 15.410 15.119 15.315 15.214 15.410

7
5 14.819 15.016 14.914 15.111 14.819 15.016 14.914 15.111

10 15.706 15.902 15.801 15.997 15.706 15.902 15.801 15.997

6

5

5
5 15.303 15.500 15.398 15.595 15.303 15.500 15.398 15.595

10 16.190 16.387 16.285 16.482 16.190 16.387 16.285 16.482

7
5 15.890 16.087 15.985 16.182 15.890 16.087 15.985 16.182

10 16.777 16.974 16.872 17.069 16.777 16.974 16.872 17.069

6

5
5 16.256 16.452 16.351 16.547 16.256 16.452 16.351 16.547

10 17.142 17.339 17.237 17.434 17.142 17.339 17.237 17.434

7
5 16.842 17.039 16.938 17.134 16.843 17.039 16.938 17.134

10 17.729 17.926 17.824 18.021 17.729 17.926 17.824 18.021
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Table 4. Cont.

HCFP 0.2 0.4

HCRP 0.2 0.3 0.2 0.3

HCRFP
0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3

LCQ1 LCQ2 LCQ3 LCQ4 SCFP

0.5

0.2

0.2

0.1
5 13.953 14.150 14.048 14.245 13.953 14.150 14.048 14.245

10 14.840 15.036 14.935 15.131 14.840 15.036 14.935 15.131

0.3
5 13.971 14.167 14.066 14.262 13.971 14.167 14.066 14.262

10 14.858 15.054 14.953 15.149 14.858 15.054 14.953 15.149

0.4

0.1
5 14.032 14.228 14.127 14.323 14.032 14.228 14.127 14.323

10 14.918 15.115 15.013 15.210 14.918 15.115 15.013 15.210

0.3
5 14.049 14.246 14.144 14.341 14.049 14.246 14.144 14.341

10 14.936 15.133 15.031 15.228 14.936 15.133 15.031 15.228

0.4

0.2

0.1
5 13.986 14.183 14.081 14.278 13.986 14.183 14.081 14.278

10 14.873 15.069 14.968 15.164 14.873 15.069 14.968 15.164

0.3
5 14.004 14.200 14.099 14.295 14.004 14.200 14.099 14.295

10 14.890 15.087 14.985 15.182 14.890 15.087 14.985 15.182

0.4

0.1
5 14.065 14.261 14.160 14.356 14.065 14.261 14.160 14.356

10 14.951 15.148 15.046 15.243 14.951 15.148 15.046 15.243

0.3
5 14.082 14.279 14.177 14.374 14.082 14.279 14.177 14.374

10 14.969 15.166 15.064 15.261 14.969 15.166 15.064 15.261

0.4

0.2

0.2

0.1
5 14.163 14.360 14.258 14.455 14.163 14.360 14.258 14.455

10 15.050 15.246 15.145 15.341 15.050 15.246 15.145 15.341

0.3
5 14.181 14.377 14.276 14.472 14.181 14.377 14.276 14.472

10 15.068 15.264 15.163 15.359 15.068 15.264 15.163 15.359

0.4

0.1
5 14.242 14.438 14.337 14.533 14.242 14.438 14.337 14.533

10 15.128 15.325 15.223 15.420 15.128 15.325 15.223 15.420

0.3
5 14.259 14.456 14.354 14.551 14.259 14.456 14.354 14.551

10 15.146 15.343 15.241 15.438 15.146 15.343 15.241 15.438

0.7

0.2

0.1
5 14.196 14.393 14.291 14.488 14.196 14.393 14.291 14.488

10 15.083 15.279 15.178 15.374 15.083 15.279 15.178 15.374

0.3
5 14.214 14.410 14.309 14.505 14.214 14.410 14.309 14.505

10 15.100 15.297 15.195 15.392 15.100 15.297 15.195 15.392

0.4

0.1
5 14.275 14.471 14.370 14.566 14.275 14.471 14.370 14.566

10 15.161 15.358 15.256 15.453 15.161 15.358 15.256 15.453

0.3
5 14.292 14.489 14.387 14.584 14.292 14.489 14.387 14.584

10 15.179 15.376 15.274 15.471 15.179 15.376 15.274 15.471

6. Conclusions

Markovian queuing environments can be arranged using a model created using the
research presented in this paper. According to information gleaned from the queuing
inventory literature, there are currently no publications examining the combination of FP,
RFP, and RP with multi-type servers and queues. This work is an attempt to fill a void in
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the inventory literature that has been identified. Four classes of customers are welcomed to
use the inventory system,

1. To purchase an FP.
2. To sell their OP and buy a new FP.
3. To buy used things (second-hand shops are commonplace in many countries).
4. Require a repair service of their defective product.

These customers benefit from the proposed MQIS, which provides a multi-type service
facility to them. In addition, each of the three items included in the system must be acquired
based on the customer’s satisfaction with the product’s features and total cost of ownership.
These customer-focused services are only offered by a limited number of companies. The
multi-type service facility provided by the system is considered a customer-oriented service.

• Assuming a customer-oriented service model, this system’s performance is in line
with real-world inventory businesses.

• The notion is theoretically described as a seven-dimensional stochastic process and its
full analysis is carried out by the NMAM.

• Using LRA, the minimal non-negative solution of the matrix quadratic equation is
found for the proposed MQIS.

• The system’s performance metrics can be calculated when the stationary probability
vector has been computed.

• The discussed model comes in under budget. From the detailed interpretation of
the numerical discussion provided for each queue, one can observe that the overall
expected inflow of a customer in the system (the sum of the expected number of
customers in each queue) is raised.

6.1. Insights and Limitations

As a result, the reader can gain new insights into the FP and RFP service processes
under the assumption of probability.

1. In this MQIS, the probability qr1 is expected to play an important role. In addition to
increasing the number of customers in Queue-1 and Queue-3, it also raises the amount
of RPs and RFPs.

2. The probability qr3 must be smaller than qr1 and qr2 because it represents the loss of
customers in Queue-2.

3. Despite the fact that customers have been lost in all of Queue-i, where i = 1, 3, 4, the
loss of customers in Queue-2 will have a significant impact on the system’s overall
costs and profits.

4. Customer dissatisfaction cannot be prevented, but it can be managed through the use
of real-world examples. This study shows that the probability p f2 , qr3 , and r2 should
always be kept at reduced values while also never going to zero. In the event that
they are considered to be zero, it conflicts with reality.

5. According to the proposed model, these probabilities could be reduced by readers or
business people. In the meantime, they will need a creative strategy or design to meet
the needs of all kinds of customers. These days, just a handful of businesses, such
as online retailers Amazon and Flipkart, make an attempt to appeal to customers of
various socioeconomic backgrounds. So, if a customer can have all of their needs met
in a single place, they are less likely to look elsewhere.

6. The purchase of a new product when returning the old is increasing because every
month there is new software and upgrades are introduced in many mobile phones,
laptops, fridges, air-conditioning companies, etc. These upgrades stimulate the cus-
tomer to buy a new product. Even though their previously purchased product will
not expire soon, they are interested in buying the new one if a company will give such
an opportunity (the sale of a new product when buying the customer’s old product).

7. This model explores a circular economy that will bring business opportunities to the
business people.
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6.2. Future Directions

A busy-period analysis of each server and waiting time distribution of each queue
work is under process. Discussion of this topic in a Markovian arrival process setting
may be possible later on. The purchasing option will be given to a customer to choose FP
or RFP. The repair work on the defective product will be performed using a phase-type
distribution.
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Abbreviations

QIS Queuing-Inventory System
FP Fresh Product
OP Old Product
NP New Product
RFP Refurbished Product
RP Returned Product
MQIS Markovian Queuing-Inventory System
TaC Terms and Conditions
TOM Technical Operation Manual
CTMC Continuous Time Markov Chain
LRA Logarithmic Reduction Algorithm
TCV Total Cost Value
NMAM Neuts Matrix Analytic Method
Notations
Z+ The set of all non-negative integers
Sm

l {l, l + 1, l + 2, · · · , m}, l, m ∈ Z+

0 Zero matrix of an appropriate order
I Identity matrix of an appropriate order
Ir Identity matrix of order r
e Column matrix containing all ones of an appropriate order

δij

{
1, if j = i,
0, otherwise

δ̄ij 1− δij
J1(t) Number of customer in Queue-1 at any time
J2(t) Number of available FP at any time
J3(t) Number of customer in Queue-2 at any time
J4(t) Number of RP exists at any time
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J5(t) Number of customer in Queue-3 at any time
J6(t) Number of available RFP at any time
J7(t) Number of customer in Queue-4 at any time
K {(j1, j2, j3, j4, j5, j5, j7) : j1 ∈ Z+, j2 ∈ SP1

1 , j3 ∈ SN1
0 , j4 ∈ SP2

0 , j5 ∈ SN2
0 ,

j6 ∈ SP3
0 , j7 ∈ SN3

0 }
γ0 P1(N1 + 1)(P2 + 1)(N2 + 1)(P3 + 1)(N3 + 1)
γ1 (N1 + 1)(P2 + 1)(N2 + 1)(P3 + 1)(N3 + 1)
γ2 (P2 + 1)(N2 + 1)(P3 + 1)(N3 + 1)
γ3 (N2 + 1)(P3 + 1)(N3 + 1)
γ4 (P3 + 1)(N3 + 1)
γ5 (N3 + 1)
HCFP Holding cost of per FP per unit time
HCRP Holding cost of per RP per unit time
HCRFP Holding cost of per RFP per unit time
SCFP Set up cost of per order of FP per unit time
WCQ1 Waiting cost of per customer in Queue-1 per unit time
WCQ2 Waiting cost of per customer in Queue-2 per unit time
WCQ3 Waiting cost of per customer in Queue-3 per unit time
WCQ4 Waiting cost of per customer in Queue-4 per unit time
LCQ1 Lost cost of per customer in Queue-1 per unit time
LCQ2 Lost cost of per customer in Queue-2 per unit time
LCQ3 Lost cost of per customer in Queue-3 per unit time
LCQ4 Lost cost of per customer in Queue-4 per unit time
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