
����������
�������

Citation: Lee, J.; Park, Y. A Simple

and Efficient Tree-Based Algorithm

for the Distributed Trigger Counting

Problem. Electronics 2022, 11, 1127.

https://doi.org/10.3390/electronics

11071127

Academic Editor: George Angelos

Papadopoulos

Received: 24 January 2022

Accepted: 20 March 2022

Published: 2 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Simple and Efficient Tree-Based Algorithm for the
Distributed Trigger Counting Problem
Jaeheung Lee 1 and Yongsu Park 2,*

1 Department of Computer and Information Security, Daejeon University, Daejeon 34520, Korea; leejh@dju.kr
2 Department of Computer Science, Hanyang University, Seoul 04763, Korea
* Correspondence: yongsu@hanyang.ac.kr; Tel.: +82-2-2220-2382

Abstract: The distributed trigger counting (DTC) problem is defined as raising an alarm and notifying
a user when the total number of received triggers reaches a predefined value w in a distributed system
of n nodes. DTC algorithms can be used for environmental surveillance with sensor networks and
global snapshots. In this paper, we propose a simple and efficient algorithm for the DTC problem. The
proposed algorithm is based on a tree structure of degree

√
n and height 2. The proposed algorithm

operates in three phases depending on the remaining number of triggers. We prove the correctness
of the proposed algorithm: the probability of not notifying a user even though the total number of
received triggers reaches w is 0. Experimental results show that the proposed algorithm has lower
message complexity than the best previous algorithms: CoinRand and TreeFill. MaxRcv (the maximum
number of received messages per node) of the proposed algorithm is also smaller than CoinRand and
TreeFill when the number of nodes is not very large.

Keywords: distributed trigger counting; distributed system; distributed monitoring; global snapshot

1. Introduction

Consider a large-scale networked system in which the participating nodes are counting
external triggers. The distributed trigger counting (DTC) problem is defined as raising an
alarm and notifying a user when the total number of received triggers reaches a predefined
value w in a distributed system of n nodes [1–4]. We assume that no statistical data on
the triggers (e.g., the sequence of nodes receiving the triggers and the number of triggers
received by each node) are given to the system ahead of time. Only the case where the
number of triggers is significantly greater than the number of nodes, i.e., w� n, is taken
into account. Otherwise, the DTC problem can be solved with O(n) messages [2,5].

DTC algorithms can be utilized for distributed monitoring [6–8] and global snap-
shots [9–12]. Monitoring is essential to manage distributed networks such as sensor net-
works [13]. Sensor networks monitor environmental or physical status such as traffic
volume, wild animal behavior, troop movement, and atmospheric conditions. For example,
in traffic management, an alarm can be raised when the number of vehicles on the road
surpasses a certain threshold. When observing wild animal behavior, an alarm can be raised
when the number of a specific species in a specific area surpasses a certain threshold. For a
data network, you can also monitor the amount of traffic or the number of remote logins to
detect DDoS (distributed denial-of-service) attacks. To declare that a global snapshot of a
distributed system is valid, all messages in transit must be recorded. Garg et al. [14] proved
that the DTC problem can be used to solve the problem of deciding whether all messages
in transit have been received.

Message complexity and MaxRcv are major performance metrics for DTC algo-
rithms [2]. Message complexity indicates the total number of messages sent and received
by all nodes, and MaxRcv means the maximum number of received messages per node.
While message complexity evaluates the performance of the overall algorithm, MaxRcv
represents the overload of a specific node due to the algorithm.

Electronics 2022, 11, 1127. https://doi.org/10.3390/electronics11071127 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071127
https://doi.org/10.3390/electronics11071127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1692-3128
https://orcid.org/0000-0002-7354-4434
https://doi.org/10.3390/electronics11071127
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071127?type=check_update&version=1

Electronics 2022, 11, 1127 2 of 13

In this paper, we propose a simple and efficient algorithm for the DTC problem. The
proposed algorithm is based on a tree structure of degree

√
n and height 2. The proposed

algorithm operates in three phases depending on the remaining number of triggers. We
prove the correctness of the proposed algorithm; namely, we prove that the probability of
not notifying a user when the total number of triggers received from a distributed system
reaches a predefined value w is 0. Experimental results show that the proposed algorithm
has lower message complexity than CoinRand [2] and TreeFill [3]. MaxRcv of the proposed
algorithm is also smaller than CoinRand and TreeFill when the number of nodes is not
very large.

The rest of the paper is organized as follows. In Section 2, we summarize the related
works on DTC algorithms. The proposed algorithm is described in Section 3 and the failure
probability of the proposed algorithm is analyzed in Section 4. In Section 5, the experimental
results are discussed. Finally, we conclude this paper in Section 6.

2. Related Works

For global snapshots, DTC algorithms can be utilized as a primitive operation [14]. By
employing an efficient DTC algorithm, the message complexity for storing global snapshots can
be significantly lowered when compared to existing global snapshot algorithms [7,13,15–17].
The message complexity of recording channel states in existing global snapshot algorithms
is typically O(n2) [12]. By using an efficient DTC algorithm, the cost of recording channel
states can be reduced to O(n log(w/n)) [14].

Garg et al. proposed three DTC algorithms: one grid-based, one tree-based, and one
centralized algorithm. They also proved that the lower bound of message complexity for
generic DTC algorithms is O(n log(w/n)) [14]. The centralized algorithm shows an optimal
message complexity, but the MaxRcv of it is not bounded.

Chakaravarthy et al. proposed an almost optimal DTC algorithm called LayeredRand [1].
The message complexity of LayeredRand is O(n log n log w) with high probability, and
its MaxRcv is O(log n log w). Chakaravarthy et al. also proposed two DTC algorithms,
CoinRand and RingRand, which can be regarded as improvements of LayeredRand [2]. The
message complexity of CoinRand is O(n(log w + log n)) with high probability, and its
MaxRcv is O(log w + log n). It is based on a network topology similar to a binary tree. By
using a randomized approach in the message aggregation process, CoinRand outperforms
LayeredRand. The message complexity of RingRand is O(n log n log w), and its MaxRcv is
O(log n log w) with high probability.

Kim et al. proposed TreeFill, an optimal DTC algorithm [3]. The message complexity
and MaxRcv of TreeFill are O(n log(w/n)) and O(log(w/n)), respectively. TreeFill is also
based on a tree-like network topology.

Emek and Korman proposed two DTC algorithms called CompTreeRand and CompTreeDet
with more general assumptions about node-to-node communication [18]. The algorithms
are built on a tree network with nodes which are only able to communicate with their imme-
diate neighbors. The message complexity of CompTreeRand is O(n log w(log log n)2); how-
ever, MaxRcv of CompTreeRand is not investigated. The message complexity and MaxRcv of
CompTreeDet are, respectively, O(n(log w log n)2) and O((log w log n)2).

For global snapshots, Kshemkalyani suggested a hypercube-based algorithm [12]. The
message complexity of the hypercube-based algorithm is O(n log n), which is lower than
the optimal message complexity for DTC problems of O(n log(w/n)). The hypercube-based
algorithm, on the other hand, has a message size of O(n), whereas DTC algorithms have a
message size of O(1).

Tsai used the general grid interconnection network, which is an extension of the
hypercube-based network to prove the lower bound of message complexity for global snap-
shot algorithms [19].

Chang et al. proposed a DTC algorithm without any assumption about the network
topology [5]. The algorithm they propose primarily focuses on sensor networks whose
network topology is unknown ahead of time. In the worst case scenario, their algorithm

Electronics 2022, 11, 1127 3 of 13

solves the DTC problem using x(ndlog w−n
n2−n / log n

n−1e + n2 − 1) messages, where x is
double the number of edges in the network.

Recently, Kim et al. proposed DDR-coin, an efficient probabilistic DTC algorithm [4]. It
is a Monte Carlo algorithm in the sense that the system may fail to raise the alarm when it
receives w triggers. Compared with the previous work (CoinRand, RingRand and TreeFill),
it shows a smaller message complexity and MaxRcv. However, for a small n, DDR-coin
shows larger a message complexity and MaxRcv. Furthermore, it has a limitation in that a
mathematical analysis of message complexity and MacRcv is incomplete.

Table 1 compares major performance metrics for DTC algorithms.

Table 1. Comparison of major performance metrics for DTC algorithms.

Algorithm Message Complexity MaxRcv Exact or Probabilistic

Centralized [14] O(n log(w/n)) - Exact
Tree-based [14] O(n log n log(w/n)) O(log n log(w/n)) Exact
LayeredRand [1] O(n log n log w) O(log n log w) Exact
CompTreeRand [18] O(n log w(log log n)2) - Probabilistic
CompTreeDet [18] O(n(log w log n)2) O((log w log n)2) Exact
CoinRand [2] O(n(log w + log n)) O(log w + log n) Exact
RingRand [2] O(n log n log w) O(log n log w) Probabilistic
TreeFill [3] O(n log(w/n)) O(log(w/n)) Exact
DDR-coin [4] O(n logn(w/n)) O(logn(w/n)) Probabilistic

3. Proposed Algorithm

In this section, we present a simple and efficient tree-based algorithm for the dis-
tributed trigger counting problem. It is an exact algorithm in that it has no false positives
and no false negatives. To make the problem easier to understand, we assume all nodes
are fully linked and that there are no message losses, no node failures, and no external
attackers. Events are triggered by arbitrary distribution on the nodes in the system. We
want to detect when w or more triggers occur in the system and raise an alarm.

The proposed algorithm works as follows. For ease of explanation, we assume the
number of nodes n = k2 for some positive integer k. The n nodes are arranged in three
layers: layer 0, 1, and 2. Layer 0 consists of a single node, and layer 1 consists of k nodes.
As in CoinRand, all the n nodes are arranged in layer 2. Among the n nodes, one node is
arranged in layer 0 and other k nodes are arranged in layer 1. The (k + 1) nodes which play
dual roles in the proposed algorithm are selected in a round-robin fashion. We assume that
all nodes in the system know the layering information.

Figure 1 shows the hierarchical structure of the proposed algorithm when k = 4. In
the first round, node 0 is assigned to layer 0 and nodes 1, 2, 3, and 4 are assigned to layer 1
as in Figure 1. In the second round, node 5 is assigned to layer 0 and nodes 6, 7, 8, and 9 are
assigned to layer 1.

Figure 1. The hierarchical structure of the proposed algorithm when k = 4.

Electronics 2022, 11, 1127 4 of 13

The algorithm works in three phases depending on the number of triggers that has
not yet been detected, ŵ (≤w). The first phase is when ŵ ≥ 2n, the second phase is when
2k ≤ ŵ < 2n, and the third phase is when ŵ < 2k.

3.1. The First Phase (ŵ ≥ 2n)

In the first phase, the proposed algorithm works on a round basis. At the start of each
round, the system must know how many triggers have not yet been detected. The system
counts it by keeping a counter for each node that stores the number of triggers the node
has received in each round. A variable ŵ is used to store the initial value for each round.
We set ŵ = w in the first round because all the w triggers have not yet been detected.

Hereafter, we describe the behavior of specific rounds. Each node calculates a leaf
node threshold value τlea f = bŵ/2nc. Each node also keeps a counter variable C(x) to
indicate the number of triggers received by the node x in each round. Each time the node x
receives a trigger from external sources, it increments C(x) by 1. When the counter variable
C(x) reaches the leaf node threshold τlea f , the node x decreases C(x) by τlea f and chooses a
node y uniformly assigned to layer 1 at random and sends a coin message to y. Each node
assigned to layer 1 maintains another counter variable D(y) to indicate the number of coin
messages received by the node y in each round. Upon receiving a coin message, the node y
increments D(y) by 1. When the counter variable D(y) reaches the internal node threshold
τinternal = bk/2c, the node y decreases D(y) by τinternal and sends a coin message to the
root node assigned to layer 0. Finally, when the number of coin messages that the root
node receives reaches k, the root node computes the total number of triggers received by
all the nodes in this round and updates ŵ. It is possible via a simple broadcast and upcast
procedure in a pre-determined binary tree as in CoinRand. The aggregation notification is
broadcast to all the nodes in a recursive top–down fashion. Similarly, aggregation values
are computed from the leaf nodes to the root node in a recursive bottom–up fashion. After
that, the root node updates ŵ and broadcasts it to all the nodes, again recursively. Upon
receiving the updated ŵ, all the nodes update τlea f values for the next round. If the newly
computed ŵ is less than 2n, the algorithm enters the second phase. Algorithm 1 shows the
first phase of the proposed algorithm.

3.2. The Second Phase (2k ≤ ŵ < 2n)

The proposed algorithm also works on a round basis in the second phase. A variable ŵ
is also used to store the initial value for each round. Whenever every node receives a trigger
from external sources, it chooses a node y uniformly assigned to layer 1 at random and
sends a coin message to y (i.e., τlea f = 1). Recall that each node assigned to layer 1 maintains
a counter variable D(y) to indicate the number of coin messages received by the node y in
the current round. Upon receiving a coin message, the node y increments D(y) by 1. When
the counter variable D(y) reaches another internal node threshold τinternal′ = bŵ/2kc, the
node y decreases D(y) by τinternal′ and sends a coin message to the root node assigned to
layer 0. Finally, when the number of coin messages that the root node receives reaches k, the
root node computes the total number of triggers received by all the nodes in this round and
updates ŵ. If the newly computed ŵ is less than 2k, the algorithm enters the third phase.
Algorithm 2 shows the second phase of the proposed algorithm.

Electronics 2022, 11, 1127 5 of 13

Algorithm 1: The first phase of the proposed algorithm
1: When ith round begins:
2: if i = 1 then
3: ŵ← w
4: end if
5: if ŵ < 2n then
6: Go to the second phase
7: end if
8: τlea f ← bŵ/2nc
9: τinternal ← bk/2c

10: C(x)← 0 for all node x
11: D(y)← 0 for all node y
12:

13: When the node x receives a trigger:
14: C(x)← C(x) + 1
15: if C(x) = τlea f then
16: C(x)← C(x)− τlea f
17: Choose a node y assigned to layer 1 uniformly at random
18: Send a coin message to y
19: end if
20:

21: When the node y assigned to layer 1 receives a coin message:
22: D(y)← D(y) + 1
23: if D(y) = τinternal then
24: D(y)← D(y)− τinternal
25: Send a coin message to the root node assigned to layer 0
26: end if
27:

28: When the root node z receives a coin message:
29: D(z)← D(z) + 1
30: if D(z) = k then
31: Compute the total number of triggers received by all the nodes in this round

and updates ŵ (via a simple broadcast and upcast procedure)
32: Go to the next round (i← i + 1)
33: end if

Electronics 2022, 11, 1127 6 of 13

Algorithm 2: The second phase of the proposed algorithm
1: When ith round begins:
2: if ŵ < 2k then
3: Go to the third phase
4: end if
5: τinternal′ ← bŵ/2kc
6: D(y)← 0 for all node y
7:

8: When the node x receives a trigger:
9: Choose a node y assigned to layer 1 uniformly at random

10: Send a coin message to y
11:

12: When the node y assigned to layer 1 receives a coin message:
13: D(y)← D(y) + 1
14: if D(y) = τinternal′ then
15: D(y)← D(y)− τinternal′

16: Send a coin message to the root node assigned to layer 0
17: end if
18:

19: When the root node z receives a coin message:
20: D(z)← D(z) + 1
21: if D(z) = k then
22: Compute the total number of triggers received by all the nodes in this round

and updates ŵ (via a simple broadcast and upcast procedure)
23: Go to the next round (i← i + 1)
24: end if

3.3. The Third Phase (ŵ < 2k)

In the third phase, all the nodes in the system send the received trigger information
directly to the root node, and the root node updates ŵ accordingly. When the newly updated
ŵ becomes zero, the root node raises an alarm and finishes the algorithm. Algorithm 3
shows the third phase of the proposed algorithm.

Algorithm 3: The third phase of the proposed algorithm
1: When the node x receives a trigger:
2: Send a coin message to the root node assigned to layer 0
3:

4: When the root node z receives a coin message:
5: ŵ← ŵ− 1
6: if ŵ = 0 then
7: Raise an alarm and finish the algorithm
8: end if

4. Analysis

Theorems 1 and 2 show that in the first phase of the proposed algorithm, the probability
of not notifying a user even though the total number of received triggers is greater than or
equal to w is 0.

Theorem 1. In the first phase of the proposed algorithm (where ŵ ≥ 2n), each node sends a coin
message to a node uniformly chosen at random among the k nodes assigned to layer 1 whenever
it receives τlea f = bŵ/2nc triggers from external sources. In this case, regardless of the trigger
distribution in each round, at least n coin messages are always sent to the nodes assigned to layer 1
before a total of ŵ triggers occur.

Electronics 2022, 11, 1127 7 of 13

Proof. Let us calculate the maximum number of triggers that can occur when n coin
messages are sent to the nodes assigned to layer 1. The maximum number of triggers
that each node can receive without generating a coin message is τlea f − 1 = bŵ/2nc − 1.
Therefore, the maximum number of triggers that can occur when n coin messages are sent
is less than ŵ according to Equation (1):

bŵ/2nc × n + (bŵ/2nc − 1)× n < ŵ (1)

Theorem 2. In the first phase of the proposed algorithm (where ŵ ≥ 2n), each k node assigned to
layer 1 sends a coin message to the root node assigned to layer 0 whenever it receives τinternal =
bk/2c coin messages. In this case, regardless of the trigger distribution in each round, at least k coin
messages are always sent to the root node assigned to layer 0 before a total of ŵ triggers occur.

Proof. According to the Theorem 1, k nodes assigned to layer 1 always receive at least n
coin messages before a total of ŵ triggers occur. Let us calculate the maximum number
of coin messages received by the nodes assigned to layer 1 when k coin messages are
sent to the root node. The maximum number of coin messages that each node assigned
to layer 1 can receive without generating a coin message is bk/2c − 1. Therefore, when k
coin messages are sent to the root node, the maximum number of coin messages sent to the
nodes assigned to layer 1 is less than n according to Equation (2):

bk/2c × k + (bk/2c − 1)× k < k2 = n (2)

Theorem 3 shows that in the second phase of the proposed algorithm, the probability
of not notifying a user even though the total number of received triggers is greater than or
equal to w is 0.

Theorem 3. In the second phase of the proposed algorithm (where 2k ≤ ŵ < 2n), each node sends a
coin message to a node uniformly chosen at random among the k nodes assigned to layer 1 whenever
it receives a trigger from external sources. In addition, each k node assigned to layer 1 sends a coin
message to the root node assigned to layer 0 whenever it receives τinternal′ = bŵ/2kc coin messages.
In this case, regardless of the trigger distribution in each round, at least k coin messages are always
sent to the root node assigned to layer 0 before a total of ŵ triggers occur.

Proof. Since each node sends a coin message to a node assigned to layer 1 whenever it
receives a trigger, when a total of ŵ triggers occur, the k nodes assigned to layer 1 also
receive ŵ coin messages. Let us calculate the maximum number of coin messages received
by the nodes assigned to layer 1 when k coin messages are sent to the root node. The
maximum number of coin messages that each node assigned to layer 1 can receive without
generating a coin message is bŵ/2kc − 1. Therefore, when k coin messages are sent to the
root node, the maximum number of coin messages sent to the nodes assigned to layer 1 is
less than ŵ according to Equation (3):

bŵ/2kc × k + (bŵ/2kc − 1)× k < ŵ (3)

From Theorems 1–3, we can obtain the following result.

Theorem 4. In the proposed algorithm, the probability of not notifying a user even though the total
number of received triggers is greater than or equal to w is 0.

Electronics 2022, 11, 1127 8 of 13

5. Experimental Results

In this section, we compare the simulation results of the proposed algorithm with
those of previous works. Among the previous exact DTC algorithms, CoinRand [2] and
TreeFill [3], which show the best performance in terms of message complexity and MaxRcv
are chosen for comparison. The source code for the simulation is available online [20]. The
simulation code is written in Python. It is assumed that triggers are received uniformly at
random among all the nodes in the system. Table 2 shows the parameters for the simulation.
For each number of triggers and nodes, the simulation is repeated 10 times and the average
is used for comparison.

Table 2. The parameters for the simulation.

Parameter Symbol Values

The number of nodes n 16(24), 64(26), 256(28), 1024(210), 4096(212)
The number of triggers to be detected w 10,000(104), 100,000(105), 1,000,000(106)

Figure 2 shows the message complexity of CoinRand, TreeFill, and the proposed al-
gorithm. As shown in the figure, the proposed algorithm has more efficient message
complexity than CoinRand and TreeFill, except when w = 10,000 and n = 1024, 4096. Since
the DTC problem can be easily solved when the number of triggers is not significantly
larger than the number of nodes, the parameters w = 10,000 and n = 1024, 4096 need
not be taken seriously. When the number of triggers is 1,000,000(106) and the number
of nodes is 16(24), 64(26), 256(28), 1024(210), and 4096(212), the message complexity of
CoinRand is 2.04 times, 2.16 times, 1.98 times, 1.85 times, and 1.60 times larger than that
of the proposed algorithm. Furthermore, the message complexity of TreeFill is 1.43 times,
1.67 times, 1.56 times, 1.54 times, and 1.48 times larger than that of the proposed algorithm.

Figure 3 shows MaxRcv of CoinRand, TreeFill, and the proposed algorithm. As shown
in the figure, the proposed algorithm has more efficient MaxRcv than CoinRand and TreeFill
when the number of nodes is 16, 64, and 256. When the number of nodes is 4096, CoinRand
is more efficient than the proposed algorithm. This is because, as the number of nodes
increases, the degree of the root node and the nodes assigned to layer 1 increases as well
(by
√

n), which increases the MaxRcv of the proposed algorithm. When the number of
triggers is 1,000,000(106) and the number of nodes is 16(24), 64(26), 256(28), 1024(210),
and 4096(212), MaxRcv of CoinRand is 1.97 times, 1.88 times, 1.68 times, 1.21 times, and
0.71 times larger than that of the proposed algorithm. Furthermore, MaxRcv of TreeFill is
1.44 times, 1.77 times, 2.17 times, 2.62 times, and 2.69 times larger than that of the proposed
algorithm.

Figure 4 shows the number of rounds of CoinRand, TreeFill, and the proposed algorithm.
The number of rounds of the proposed algorithm is significantly smaller than that of
CoinRand, regardless of the number of nodes and triggers. When the number of triggers is
1,000,000(106) and the number of nodes is 16(24), 64(26), 256(28), 1024(210), and 4096(212),
the number of rounds of CoinRand is 1.83 times, 1.93 times, 1.83 times, 1.77 times, and
1.74 times larger than that of the proposed algorithm. However, the number of rounds
of the proposed algorithm is significantly larger than that of TreeFill, regardless of the
number of nodes and triggers. When the number of triggers is 1,000,000(106) and the
number of nodes is 16(24), 64(26), 256(28), 1024(210), and 4096(212), the number of rounds
of TreeFill is 0.73 times, 0.74 times, 0.63 times, 0.59 times, and 0.54 times larger than that of
the proposed algorithm.

Electronics 2022, 11, 1127 9 of 13

(a) w = 10,000

(b) w = 100,000

(c) w = 1,000,000

Figure 2. Comparison of message complexity between CoinRand, TreeFill, and the proposed algorithm
when the number of nodes is 16, 64, 256, 1024, and 4096.

Electronics 2022, 11, 1127 10 of 13

(a) w = 10,000

(b) w = 100,000

(c) w = 1,000,000

Figure 3. Comparison of MaxRcv between CoinRand, TreeFill, and the proposed algorithm when the
number of nodes is 16, 64, 256, 1024, and 4096.

Electronics 2022, 11, 1127 11 of 13

(a) w = 10,000

(b) w = 100,000

(c) w = 1,000,000

Figure 4. Comparison of the number of rounds between CoinRand, TreeFill, and the proposed algo-
rithm when the number of nodes is 16, 64, 256, 1024, and 4096.

6. Conclusions

In this paper, we proposed a simple and efficient algorithm for the DTC problem. The
proposed algorithm is based on a tree structure of degree

√
n and height 2. This algorithm

operates in three phases depending on the remaining number of triggers. We proved that

Electronics 2022, 11, 1127 12 of 13

the probability of not notifying a user when the total number of triggers received from a
distributed system reaches a predefined value w is 0. Experimental results show that the
proposed algorithm has lower message complexity than CoinRand and TreeFill. The MaxRcv
of the proposed algorithm is also smaller than CoinRand and TreeFill when the number of
nodes is not very large.

As future work, we plan to evaluate the performance of the proposed algorithm
through various additional analyses and experiments. We also plan to improve the proposed
algorithm by increasing the height of the tree and reducing the node degree. By reducing
the node degree, we expect to mitigate a rapid increase in MaxRcv as the number of
nodes increases.

Author Contributions: Conceptualization, J.L.; methodology, J.L.; validation, J.L. and Y.P.; investiga-
tion, J.L.; writing—original draft preparation, J.L.; writing—review and editing, J.L. and Y.P.; funding
acquisition, Y.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT), grant number 2020R1F1A1048443. This research was
also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. NRF-2017R1C1B5076925).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chakaravarthy, V.T.; Choudhury, A.R.; Sabharwal, Y.; Garg, V. An Efficient Decentralized Algorithm for the Distributed Trigger

Counting Problem. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6522, pp. 53–64.
2. Chakaravarthy, V.T.; Choudhury, A.R.; Sabharwal, Y. Improved algorithms for the distributed trigger counting problem. In

Proceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium, Anchorage, AK, USA, 16–20 May 2011;
pp. 515–523.

3. Kim, S.; Lee, J.; Park, Y.; Cho, Y. An optimal distributed trigger counting algorithm for large-scale networked systems. Simulation
2013, 89, 846–859. [CrossRef]

4. Kim, S.; Park, Y. DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm. Sensors 2020, 20, 6446. [CrossRef]
5. Chang, C.C.; Tsai, J. Distributed trigger counting algorithms for arbitrary network topology. Wirel. Commun. Mob. Comput. 2016,

16, 2463–2476. [CrossRef]
6. Hsin, C.; Liu, M. A distributed monitoring mechanism for wireless sensor networks. In Proceedings of the 1st ACM Workshop on

Wireless Security (WiSE ’02), Atlanta, GA, USA, 28 September 2002; Association for Computing Machinery: New York, NY, USA,
2002; pp. 57–66. [CrossRef]

7. Changlei, L.; Guohong, C. Distributed monitoring and aggregation in wireless sensor networks. In Proceedings of the INFOCOM,
2010 Proceedings IEEE, San Diego, CA, USA, 14–19 March 2010; pp. 1–9.

8. Kshemkalyani, A.D.; Raynal, M.; Singhal, M. An introduction to snapshot algorithms in distributed computing. Distrib. Syst. Eng.
1995, 2, 224–233. [CrossRef]

9. Chandy, K.M.; Lamport, L. Distributed snapshots: Determining global states of distributed systems. ACM Trans. Comput. Syst.
1985, 3, 63–75. [CrossRef]

10. Lai, T.H.; Yang, T.H. On distributed snapshots. Inf. Process. Lett. 1987, 25, 153–158. [CrossRef]
11. Mattern, F. Efficient algorithms for distributed snapshots and global virtual time approximation. J. Parallel Distrib. Comput. 1993,

18, 423–434. [CrossRef]
12. Kshemkalyani, A.D. Fast and message-efficient global snapshot algorithms for large-scale distributed systems. IEEE Trans. Parallel

Distrib. Syst. 2010, 21, 1281–1289. [CrossRef]
13. Chitnis, L.; Dobra, A.; Ranka, S. Aggregation methods for large-scale sensor networks. ACM Trans. Sens. Netw. 2008, 4, 1–36.

[CrossRef]
14. Garg, R.; Garg, V.K.; Sabharwal, Y. Efficient algorithms for global snapshots in large distributed systems. IEEE Trans. Parallel

Distrib. Syst. 2010, 21, 620–630. [CrossRef]
15. Massie, M.L.; Chun, B.N.; Culler, D.E. The ganglia distributed monitoring system: Design, implementation, and experience.

Parallel Comput. 2004, 30, 817–840. [CrossRef]
16. Park, K.; Pai, V.S. CoMon: A mostly-scalable monitoring system for PlanetLab. ACM SIGOPS Oper. Syst. Rev. 2006, 40, 65–74.

[CrossRef]
17. Wensheng, Z.; Guohong, C. DCTC: Dynamic convoy tree-based collaboration for target tracking in sensor networks. IEEE Trans.

Wirel. Commun. 2004, 3, 1689–1701. [CrossRef]

http://dx.doi.org/10.1177/0037549713485499
http://dx.doi.org/10.3390/s20226446
http://dx.doi.org/10.1002/wcm.2698
http://dx.doi.org/10.1145/570681.570688
http://dx.doi.org/10.1088/0967-1846/2/4/005
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1016/0020-0190(87)90125-6
http://dx.doi.org/10.1006/jpdc.1993.1075
http://dx.doi.org/10.1109/TPDS.2010.24
http://dx.doi.org/10.1145/1340771.1340775
http://dx.doi.org/10.1109/TPDS.2009.108
http://dx.doi.org/10.1016/j.parco.2004.04.001
http://dx.doi.org/10.1145/1113361.1113374
http://dx.doi.org/10.1109/TWC.2004.833443

Electronics 2022, 11, 1127 13 of 13

18. Emek, Y.; Korman, A. Efficient threshold detection in a distributed environment: Extended abstract. In Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’10, Zurich, Switzerland, 25–28 July 2010;
ACM: New York, NY, USA, 2010; pp. 183–191.

19. Tsai, J. Flexible symmetrical global-snapshot algorithms for large-scale distributed systems. IEEE Trans. Parallel Distrib. Syst. 2013,
24, 493–505. [CrossRef]

20. Distributed Trigger Counting. 2021. Available online: https://github.com/leejh257/DTC-2021 (accessed on 5 January 2022).

http://dx.doi.org/10.1109/TPDS.2012.139
https://github.com/leejh257/DTC-2021

	Introduction
	Related Works
	Proposed Algorithm
	The First Phase (2n)
	The Second Phase (2k < 2n)
	The Third Phase (< 2k)

	Analysis
	Experimental Results
	Conclusions
	References

