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1. Introduction

In 1965, the theory of fuzzy sets was introduced by Zadeh [1]. Many authors generalized this
theory in different directions for different purposes and still, it’s playing a very important role in current
research. By using this theory, Kramosil et al. [2] introduced the concept of a fuzzy metric space (FM-
space) which performs the probabilistic metric space approach to the fuzzy setting and they proved
that every metric induces an FM. In the sense of Kramosil et al. [2], Grabiec [3] proved two fixed
point theorems (FP-theorems), that is, “Banach and Edelstein contraction theorems for self-mappings
on complete and compact FM-spaces, respectively”. Later on, the modified form of the FM-space
was given by George and Vermani [4]. Gregory and Sapena [5] established some FP-theorems on
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FM-spaces. After that, Rodriguez-Lopez and Romaguera [6] gave the idea of a Hausdorff metric
on a given FM-space by using the concept of George and Veeramani [4] on the nonempty compact
subsets. In 2011, Kiany et al. [7] established some FP and end point theorems by using set-valued
fuzzy-contractive on complete FM-spaces. Recently, Shamas et al. [8, 9] established some unique
FP-theorems on complete FM-spaces with integral and differential types of applications. Some more
related results in the context of metric spaces and FM-spaces, can be found in (e.g., see [11–22] and
the references are therein).

In 2007, Huang and Zhang [23] introduced the notion of a cone metric space which modifies
the concept of metric spaces by using the Banach space instead of real numbers as a range set
and proved some FP-theorems for nonlinear contractive type mappings with the normality of cone
condition. Du [24] presented a note on cone metric fixed point theory and its equivalence. Later on,
Cakalli et al. [25] presented the concept that any topological vector space valued cone metric space is
metrizable and proved some results in topological vector space valued cone metric spaces. In 2013,
Liu et al. [26] presented the new concept of a cone metric space (CM-space) over Banach algebras
by the replacement of Banach algebra instead of Banach space and proved some FP-theorems by
using generalized Lipschitz mappings with weaker and natural conditions of the generalized Lipschitz
constant of spectral radius. In 2016, Yan et al. [27] proved the result on partially order CM-spaces over
Banach algebras for FP and CFP.

The notion of a fuzzy cone metric space (FCM-space) was introduced by Oner et al. [28]. They
proved some basic properties and a “fuzzy cone Banach contraction theorem” which is stated as: “A
self-mapping on a complete FCM-space in which fuzzy cone contractive sequences are Cauchy has a
unique FP”. Later on, Oner et al. [29] defined a closed ball and pre-compact in an FCM-space, and
established a Baire’s theorem on a complete FCM-space. In 2017, Rehman and Li [30] extended
and improved a “fuzzy cone Banach contraction theorem” and proved some generalized FP-theorems
in complete FCM-spaces without the assumption of “fuzzy cone contractive sequences are Cauchy”.
After that, Jabeen et al. [31] proved some CFP-theorems on FCM-spaces with an application. Chen et
al. [32], Priyobarta et al. [33] and Talha et al. [34, 35] proved some FP and coupled FP-results in the
context of FCM-spaces with different types of applications.

In this paper, we present the new concept of an FM-space over a Banach algebraA and prove some
basic topological properties and a Hausdorff metric on the said space. In previous literature, a mapping
FM is represented by M : U×U×(0,∞)→ [0, 1] where U is a non-empty set. Oner et al. [28] replaced
(0,∞) by cone condition and defined a mapping FCM as: Mc : U × U × int(P) → [0, 1], where P is
a cone of a real Banach space E. Now, in this paper, we use a Banach algebra A instead of (0,∞) in
an FM-space and present the new concept of an FM-space over a Banach algebraA, this FM mapping
over a Banach algebra A can be written as: MA : U × U × A → [0, 1]. By using this new concept,
we present some basic properties and a FP-theorem for self-mappings on a G-complete FM-space over
the Banach algebra A. This new concept will play a very important role in the fixed point theory.
Moreover, we present a supportive integral type application to validate our work. By using this new
concept, one can prove some more topological properties and fixed point results in FM-space over a
Banach algebraA with different types of applications.
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2. Preliminaries

In this section, we shall present the basic helpful concepts related to our main results.
LetA represent a real Banach space in which the operation of multiplication is defined by;

(i) u(vw) = (uv)w,

(ii) (u + v)w = uw + vw and u(v + w) = uv + vw,

(iii) β(uv) = (βu)v = u(βv),

(iv) ‖uv‖ ≤ ‖u‖‖v‖.

for all u, v,w ∈ A.
Let e∗ ∈ A be the unit multiplicative identity of A such that ve∗ = e∗v = v, for all v ∈ A and an

element v ∈ A is said to be invertible if there is z ∈ A such that vz = zv = e. The inverse of v is denoted
by v−1. For more details, we refer the readers to [36].

Proposition 2.1. [36] Let A be a Banach algebra with the identity element e∗ and v ∈ A. If the
spectral radius %(v) < 1, that is,

%(v) = lim
k→+∞

‖vk‖
1
k = inf

k≥1
‖vk‖

1
k < 1,

then (e∗ − v) is invertible. Therefore, we have

(e∗ − v)−1 =

+∞∑
j=0

v j.

Lemma 2.2. [37] Let u, v be any two vectors in a Banach algebraA. If they commute with each other,
then the following hold:

(i) %(uv) ≤ %(u)%(v);

(ii) %(u + v) ≤ %(u) + %(v);

(iii) |%(u) − %(v)| ≤ %(u − v).

Lemma 2.3. [37] Let z be any vector in a Banach algebraA. If %(z) ∈ (0, 1), then we have

%((e∗ − z)−1) ≤ (1 − %(z))−1.

Definition 2.4. [38] A binary operation ∗ : [0, 1] × [0, 1]→ [0, 1] is called a continuous t-norm, if

(i) ∗ is commutative, associative and is continuous,

(ii) for all α1, β1, α2, β2 ∈ [0, 1], 1 ∗ α1 = α1, α1 ∗ β1 ≤ α2 ∗ β2, whenever α1 ≤ α2 and β1 ≤ β2.

The following are the basic three conditions of continuous t-norm (see [38]):

(i) The minimum t-norm is: α1 ∗ β1 = min{α1, β1}.

(ii) The product t-norm is: α1 ∗ β1 = α1β1.
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(iii) The Lukasiewicz t-norm is: α1 ∗ β1 = max{0, α1 + β1 − 1}.

Definition 2.5. [4] A 3-tuple (U,M, ∗) is said to be an FM-space if U is an arbitrary set, ∗ is a
continuous t-norm and M is a fuzzy set on U2 × (0,∞), satisfying the conditions:

(F-1) M(ζ1, ζ2, t) > 0 and M(ζ1, ζ2, t) = 1 if and only if ζ1 = ζ2,

(F-2) M(ζ1, ζ2, t) = M(ζ2, ζ1, t),

(F-3) M(ζ1, ζ2, t) ∗ M(ζ2, ζ3, s) ≤ M(ζ1, ζ3, t + s),

(F-4) M(ζ1, ζ2, .) : (0,∞)→ [0, 1] is continuous,

for all ζ1, ζ2, ζ3 ∈ U and t, s > 0.

Definition 2.6. [4] Let (U,M, ∗) be an FM-space, let ζ ∈ U and (ζk) be a sequence in U. Then

(i) (ζk) is said to converge to ζ if for any t > 0 and ρ ∈ (0, 1), there is k1 ∈ N such that M(ζk, ζ, t) >
1 − ρ, for all k ≥ k1. We can write this lim

k→∞
ζk = ζ.

(ii) (ζk) is said to be a Cauchy sequence if for any t > 0 and ρ ∈ (0, 1), there is k1 ∈ N such that
M(ζk, ζm, t) > 1 − ρ, for all k,m ≥ k1.

(iii) (U,M, ∗) is complete if every Cauchy sequence is convergent in U.

Note: In the sense of Gregori et al. [5], a sequence (ζk) in an FM-space is said to be G-Cauchy
if lim

k→∞
M(ζk, ζk+l, t) = 1 for t > 0 and an FM-space (U,M, ∗) is called G-complete if every G-Cauchy

sequence is convergent.

Definition 2.7. [6] Let (U,M, ∗) be an FM-space. M is said to be continuous on U2 × (0,∞), if

lim
k→∞

M(ζk, vk, tk) = M(ζ1, v1, t),

whenever if (ζk, vk, tk) ∈ U2 × (0,∞)→ (ζ1, v1, t) ∈ U2 × (0,∞), we have

lim
k→∞

M(ζ1, v1, tk) = M(ζ1, v1, t), where lim
k→∞

ζk = ζ1 and lim
k→∞

vk = v1.

Remark 2.8. [4] Let (U,M, ∗) be an FM-space. T = {B ⊂ U : ζ1 ∈ B, if and only if there are t >
0 and ρ ∈ (0, 1) such that B(ζ1, ρ, t) ⊂ B} is a topology on U.

As a further study in this paper, we introduce the new concept of an FM-space over a Banach algebra
A. We present some topological properties and a fuzzy Banach contraction theorem over the Banach
algebraA. Moreover, a supportive application of integral is given at the end to validate our work.

3. Main results

Our first definition is as follows:

Definition 3.1. A 4-tuple (U,MA,A, ∗) is called an FM-space over A if U is an arbitrary set, A is a
Banach algebra, ∗ is a continuous t-norm and MA is a fuzzy set on U ×U ×A, satisfying the following
conditions:
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(FB-1) MA(ζ1, ζ2, t) > 0, and MA(ζ1, ζ2, t) = 1 if and only if ζ1 = ζ2;

(FB-2) MA(ζ1, ζ2, t) = MA(ζ2, ζ1, t);

(FB-3) MA(ζ1, ζ2, t) ∗ MA(ζ2, ζ3, s) ≤ MA(ζ1, ζ3, t + s);

(FB-4) MA(ζ1, ζ2, .) : A −→ [0, 1] is continuous

for all ζ1, ζ2, ζ3 ∈ U and s, t ∈ A. Then the 4-tuple (U,MA,A, ∗) is said to be an FM-space overA.

Example 3.2. Let U = R and ∗ be a continuous t-norm, which is defined by a ∗ b = ab, for all
a, b ∈ [0, 1] and MA : U × U ×A → [0, 1] be defined by

MA(ζ1, ζ2, t) =
(
e‖ζ1−ζ2‖t−1)−1

,

for all ζ1, ζ2 ∈ U and t ∈ A, MA is an FM-space overA.
Proof.

(FB-1) For all ζ1, ζ2 ∈ U and t ∈ A, MA(ζ1, ζ2, t) > 0, where ζ1 , ζ2. Assume that ζ2 = ζ1. Then
‖ζ1 − ζ2‖ = 0 and hence we get (

e‖ζ1−ζ2‖t−1)−1
= 1.

So MA(ζ1, ζ2, t) = 1. Conversely, suppose that MA(ζ1, ζ2, t) = 1. Then
(
e‖ζ1−ζ2‖t−1

)−1
= 1, and so

e‖ζ1−ζ2‖t−1
= e0. Due to the same base, we compare the power on both sides and multiplying by

t, we have that ‖ζ1 − ζ2‖t−1t = 0, and so ‖ζ1‖ = ‖ζ2‖. Hence, it is proved that MA(ζ1, ζ2, t) = 1 if
and only if ζ1 = ζ2.

(FB-2) If ‖ζ1 − ζ2‖ = ‖ζ2 − ζ1‖, for all ζ1, ζ2 ∈ U and t ∈ A, then(
e‖ζ1−ζ2‖t−1)−1

=
(
e‖ζ2−ζ1‖t−1)−1

.

This implies that
MA(ζ1, ζ2, t) = MA(ζ2, ζ1, t).

(FB-3) We will prove that MA(ζ1, ζ2, s + t) ≥ MA(ζ1, ζ3, s) ∗ MA(ζ3, ζ2, t), for all ζ1, ζ2, ζ3 ∈ U and
s, t ∈ A. Since

‖ζ1 − ζ2‖ ≤ ‖ζ1 − ζ3‖
(
s−1(s + t)

)
+ ‖ζ3 − ζ2‖

(
t−1(s + t)

)
,

‖ζ1 − ζ2‖(s + t)−1 ≤ ‖ζ1 − ζ3‖s−1 + ‖ζ3 − ζ2‖t−1.

Thus we have

e‖ζ1−ζ2‖(s+t)−1
≤ e‖ζ1−ζ3‖s−1

e‖ζ3−ζ2‖t−1
.

Since eζ is an increasing function for 0 < ζ ∈ U, we have(
e‖ζ1−ζ2‖(s+t)−1)−1

≥
(
e‖ζ1−ζ3‖s−1)−1

∗
(
e‖ζ3−ζ2‖t−1)−1

.

Hence, it is proved that MA(ζ1, ζ2, s + t) ≥ MA(ζ2, ζ3, s) ∗ MA(ζ3, ζ2, t).
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(FB-4) Let us take a sequence (tk) inA such that tk → t ∈ A. That is, lim
k
‖tk − t‖ = 0.

Without loss of the generality, fix ζ1, ζ2 ∈ U. Since the function eζ1 is continuous on R, we have

e‖ζ1−ζ2‖t−1
k → e‖ζ1−ζ2‖t−1

, as tk → t,

with respect to the usual metric. Therefore, MA(ζ1, ζ2, .) : A → [0, 1] is continuous.

Hence, it is proved that the four-tuple (U,MA,A, ∗) is an FM-space overA.

Proposition 3.3. Let (U1,MA1 ,A, ∗) and (U2,MA2 ,A, ∗) be two FM-spaces over A. For
(ζ1, ζ2), (v1, v2) ∈ U1 × U2 and t ∈ A such that

MA((ζ1, ζ2), (v1, v2), t) = MA1(ζ1, v1, t) ∗ MA2(ζ2, u2, t),

MA is an FM-space overA on U1 × U2.

Proof.

(FB-1) Since MA1(ζ1, v1, t) > 0 and MA2(ζ2, v2, t) > 0,

MA1(ζ1, v1, t) ∗ MA2(ζ2, v2, t) > 0 for t ∈ A.

Therefore, we have that

MA((ζ1, ζ2), (v1, v2), t) > 0 for t ∈ A.

Further, we suppose that for t ∈ A, (ζ1, v1, t) = (ζ2, v2, t). This implies that ζ1 = v1 and ζ2 = v2,
for t ∈ A. Hence, we get

MA1(ζ1, v1, t) = 1 and MA2(ζ2, v2, t) = 1.

It follows that,
MA((ζ1, ζ2), (v1, v2), t) = 1.

Conversely, suppose that MA((ζ1, ζ2), (v1, v2), t) = 1, for t ∈ A. Then

MA1(ζ1, v1, t) ∗ MA2(ζ2, v2, t) = 1.

So
0 < MA1(ζ1, v1, t) ≤ 1 and 0 < MA2(ζ2, v2, t) ≤ 1.

It follows that
MA1(ζ1, v1, t) = 1 and MA2(ζ2, v2, t) = 1.

Thus, we get that ζ1 = ζ2 and v1 = v2. Therefore, (ζ1, ζ2, t) = (v1, v2, t) for t ∈ A.

(FB-2) We will prove that MA((ζ1, ζ2), (v1, v2), t) = MA((v1, v2), (ζ1, ζ2), t), for t ∈ A. Now, we observe
that

MA1(ζ1, v1, t) = MA1(v1, ζ1, t) and MA2(ζ2, v2, t) = MA2(v2, ζ2, t).

It follows that for all (ζ1, ζ2), (v1, v2) ∈ U1 × U2 and t ∈ A,

MA((ζ1, ζ2), (v1, v2), t) = MA((v1, v2), (ζ1, ζ2), t).

AIMS Mathematics Volume 7, Issue 5, 9493–9507.
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(FB-3) Since (U1,MA1 ,A, ∗) and (U2,MA2 ,A, ∗) are FM-spaces overA, we have that

MA1(ζ1, v1, t + s) ≥ MA1(ζ1,w1, t) ∗ MA1(w1, v1, s),

and
MA2(ζ2, v2, t + s) ≥ MA2(ζ2,w2, t) ∗ MA2(w2, v2, s),

for all (ζ1, ζ2), (v1, v2), (w1,w2) ∈ U1 × U2 and for s, t ∈ A. Therefore, we have

MA((ζ1, ζ2), (v1, v2), t + s) = MA1(ζ1, v1, t + s) ∗ MA2(ζ2, v2, t + s)
≥ MA1(v1,w1, t) ∗ MA1(w1, v1, s) ∗ MA2(ζ2,w2, t) ∗ MA2(w2, v2, s)
= MA1(ζ1,w1, t) ∗ MA2(ζ2,w2, t) ∗ MA1(w1, v1, s) ∗ MA2(w2, v2, s)
= MA((ζ1, ζ2), (w1,w2), t) ∗ MA((w1,w2), (v1, v2), s).

(FB-4) Note that MA1(ζ1, v1, t) and MA2(ζ2, v2, t) are continuous with resprct to t ∈ A and ∗ is also
continuous. Therefore, it follows that

MA((ζ1, ζ2), (v1, v2), t) = MA1(ζ1, v1, t) ∗ MA2(ζ2, v2, t)

is also continuous at t ∈ A.

Definition 3.4. Let (U,MA,A, ∗) be an FM-space over A. For every t > 0, in A, the open ball
B(ζ0, ρ, t) with center at ζ0 ∈ U and radius ρ ∈ (0, 1) is given as

B(ζ0, ρ, t) = {ζ ∈ U : MA(ζ0, ζ, t) > 1 − ρ}.

Definition 3.5. A subset V of (U,MA,A, ∗) is said be open if for any given point v ∈ V , there are
ρ ∈ (0, 1) and t ∈ A such that

B(v, ρ, t) ⊆ V.

Theorem 3.6. Every open ball in (U,MA,A, ∗) is an open set.

Proof. Suppose that B(ζ0, ρ, t) is an open ball in a (U,MA,A, ∗). Then ζ ∈ B(ζ0, ζ, t) implies that
MA(ζ0, ζ, t) > 1 − ρ. Let us take t∗ ∈ (0, t) inA such that

MA(ζ0, ζ, t∗) > 1 − ρ.

Let r∗ = MA(ζ0, ζ, t∗) > 1 − ρ ⇒ ρ∗ > 1 − ρ. Then we can choose a point s ∈ (0, 1) such that

ρ∗ > 1 − s > 1 − ρ.

Now, for given ρ∗ and s such that ρ∗ > 1 − s, we take another point ρ′ ∈ (0, 1) such that ρ∗ ∗ ρ′ ≥ 1 − s.
Now, by considering the ball B(ζ, 1 − ρ′, t − t∗), we claim that

B(ζ, 1 − ρ′, t − t∗) ⊂ B(ζ0, ρ, t).

Again, we choose a point ζ1 ∈ B(ζ, 1 − ρ′, t − t∗) such that MA(ζ, ζ1, t − t∗) > ρ′. Then we have

MA(ζ0, ζ1, t) ≥ MA(ζ0, ζ, t∗) ∗ MA(ζ, ζ1, t − t∗) ≥ ρ∗ ∗ ρ′ ≥ 1 − s > 1 − ρ.

Therefore, we get that ζ1 ∈ B(ζ0, ρ, t) and hence

B(ζ, 1 − ρ′, t − t∗) ⊂ B(ζ0, ρ, t).

Thus, the proof is completed.
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Theorem 3.7. Let (U,MA,A, ∗) be an FM-space overA. If we define

TA = {A ⊂ U : ζ1 ∈ A if and only if there exist ρ ∈ (0, 1) and t ∈ A such that B(ζ1, ρ, t) ⊂ A},

then TA is a topology on U.

Proof.

i) If ζ1 ∈ ∅, then ∅ = B(ζ1, ρ, t) ⊆ ∅. Hence, ∅ ∈ TA. So for any ζ1 ∈ U, 0 < ρ < 1 and t ∈ A such
that B(ζ1, ρ, t) ⊆ U, we have U ∈ TA.

ii) Let Ak ∈ TA for every k ∈ I and ζ1 ∈
⋃

k∈I ⊂ Ak. Then there exists k0 ∈ I such that ζ1 ∈ Ak0 . So
there exist t ∈ A and ρ ∈ (0, 1) such that B(ζ1, ρ, t) ⊂ Ak0 . Since Ak0 ⊂

⋃
k∈I , B(ζ1, ρ, t) ⊂

⋃
k∈I Ak.

Thus,
⋃

k∈I Ak ∈ TA.

iii) Suppose that A, B ∈ TA and ζ1 ∈ A ∩ B. Then, ζ1 ∈ A and ζ1 ∈ B and so there are t1, t2 ∈ A

and 0 < ρ1, ρ2 < 1 such that B(ζ1, ρ1, t1) ⊂ A and B(ζ1, ρ2, t2) ⊂ B. By choosing t ∈ A such that
t < (t1, t2) and taking ρ = min{ρ1, ρ2}, we have

B(ζ1, ρ, t) ⊂ B(ζ1, ρ1, t1) ∩ B(ζ1, ρ2, t2) ⊂ A ∩ B.

Thus, A ∩ B ∈ TA. Hence, it is proved that TA is a topology on U.

Theorem 3.8. Every FM-space overA is Hausdorff.

Proof. Let ζ1, ζ2 be any two distinct points of U. Then from the definition of an FM over A, 0 <

MA(ζ1, ζ2, t) < 1 for t ∈ A. We can say that MA(ζ1, ζ2, t) = ρ for some ρ ∈ (0, 1). For each ρ0 ∈ (ρ, 1)
there exists ρ1 ∈ (0, 1) such that ρ1 ∗ ρ1 > ρ0. Now, we consider the sets B(ζ1, 1 − ρ1, t/2) and
B(ζ2, 1 − ρ1, t/2). Then we have

B

(
ζ1, 1 − ρ1,

t
2

)
∩ B

(
ζ2, 1 − ρ1,

t
2

)
= ∅,

for t ∈ A. Suppose that

B

(
ζ1, 1 − ρ1,

t
2

)
∩ B

(
ζ2, 1 − ρ1,

t
2

)
, ∅,

for t ∈ A. Then there exists y ∈ B
(
u1, 1 − ρ1,

t
2

)
∩B

(
ζ2, 1 − ρ1,

t
2

)
. Therefore, we have MA(ζ1, y, t/2) >

1 − (1 − ρ1) = ρ1 and MA(ζ2, y, t/2) > 1 − (1 − ρ1) = ρ1 for t ∈ A. From Definition 3.1 (fmB3),

ρ = MA(ζ1, ζ2, t) ≥ MA
(
ζ1, 1 − ρ1,

t
2

)
∩ MA

(
ζ2, 1 − ρ1,

t
2

)
, ∅,

for t ∈ A. Then ρ1 ∗ ρ1 < ρ, which implies that ρ < ρ0 < ρ. This is a contradiction.
Thus B

(
ζ1, 1 − ρ1,

t
2

)
∩ B

(
ζ2, 1 − ρ1,

t
2

)
= ∅ for t ∈ A.

Definition 3.9. Let (U,MA,A, ∗) be an FM-space over A. A subset B of U is called F-bounded over
A if there are t ∈ A and ρ ∈ (0, 1), such that MA(ζ1, ζ2, t) > 1 − ρ for all ζ1, ζ2 ∈ B.

Theorem 3.10. Let (U,MA,A, ∗) be an FM-space overA. Then every compact set in U is closed and
F-bounded overA.
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Proof. Let B be a compact subset of U, t ∈ A and ρ ∈ (0, 1). Since {B(ζ, ρ, t) : ζ ∈ B} is an open cover
of B, there are ζ1, ζ2, ..., ζ j ∈ B such that

B ⊂ ∪ j
k=1B(ζ j, ρ, t) for t ∈ A.

For any ζ, v ∈ B, there exist 1 ≤ k, l ≤ j such that ζ ∈ B(ζk, ρ, t) and v ∈ B(ζk, ρ, t). Then we can write

MA(ζ, ζk, t) > 1 − ρ and MA(ζ, ζl, t) > 1 − ρ,

for t ∈ A. Let us take γ = min{MA(ζk, ζl, t) : 1 ≤ k, l ≤ j}. Then we have

MA(ζ, v, 3t) ≥ MA(ζ, ζk, t) ∗ MA(ζk, ζl, t) ∗ MA(ζl, v, t)
≥ (1 − ρ) ∗ γ ∗ (1 − ρ).

Let t∗ = 3t and choose a point ρ∗ ∈ (0, 1) such that (1 − ρ) ∗ γ ∗ (1 − ρ) > 1 − ρ∗. Then, for any
ζ, v ∈ B, we have that MA(ζ, v, t∗) > 1 − ρ∗, and hence B is F-bounded over A. On the other hand,
from Theorem 3.8, every FM-space over a Banach algebra A is Hausdorff and every compact subset
of a Hausdorff space is closed, that is, B is closed.

Definition 3.11. Let (U,MA,A, ∗) be an FM-space over A and (ζk) be a sequence in U. Then, (ζk)
is said to converge to a point ζ ∈ U, if for any t ∈ A and ρ ∈ (0, 1), there is k0 ∈ N such that
MA(ζk, ζ, t) > 1 − ρ, for all k ≥ k0. We can write this as,

lim
k→∞

ζk = ζ or ζk → ζ, as k → ∞.

Theorem 3.12. Let (U,MA,A, ∗) be an FM-space over A. Then a sequence (ζk) in U converges to a
point ζ ∈ U if and only if MA(ζk, ζ, t)→ 1, as k → ∞, for each t ∈ A.

Proof. Assume that a sequence (ζk) converges to a point ζ ∈ U. Then for each t ∈ A and ρ ∈ (0, 1),
there is k0 ∈ N such that MA(ζk, ζ, t) > 1 − ρ, for all k ≥ k0. Hence,

MA(ζk, ζ, t)→ 1, as k → ∞.

Conversely, suppose that MA(ζk, ζ, t) → 1 as k → ∞. Then, for each t ∈ A and ρ ∈ (0, 1), there is
k0 ∈ N such that ρ > 1 − MA(ζk, ζ, t), for all k ≥ k0, which implies that MA(ζk, ζ, t) > 1 − ρ. Hence,
ζk → ζ ∈ U as k → ∞.

Definition 3.13. Let (U,MA,A, ∗) be an FM-space overA and (ζk) be a sequence in U. Then

(1) (ζk) is said to be a Cauchy sequence if for any t ∈ A and ρ ∈ (0, 1), there is k0 ∈ N such that
MA(ζk, ζm, t) > 1 − ρ, for all k,m ≥ k0;

(2) (U,MA,A, ∗) is complete if every Cauchy sequence is convergent in U.

Definition 3.14. A sequence (ζk) in (U,MA,A, ∗) is called GA-Cauchy sequence if
lim
k→∞

MA(ζk, ζk+l, t) = 1, for all k,m ≥ k0 and t ∈ A. (U,MA,A, ∗) is GA-complete if every
GA-Cauchy sequence is convergent in U.
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Lemma 3.15. Let (U,MA,A, ∗) be an FM-space over A. Then MA(ζ1, ζ2, .) : A → [0, 1] is non-
decreasing for all ζ1, ζ2 ∈ U.

Proof. On the contrary, suppose that MA(ζ1, ζ2, t) > MA(ζ1, ζ2, s), for s, t ∈ A with s > t. Then

MA(ζ1, ζ2, t) ∗ MA(ζ2, ζ2, s − t) ≤ MA(ζ1, ζ2, s) < MA(ζ1, ζ2, t) for s, t ∈ A.

By Definition 3.1 (2), i.e., MA(ζ2, ζ2, s − t) = 1, we get that

MA(ζ1, ζ2, t) < MA(ζ1, ζ2, s) < MA(ζ1, ζ2, t) for s, t ∈ A,

which is a contradiction.

Theorem 3.16. Let (U,MA,A, ∗) be a GA-complete FM-space overA. Let a mapping T : U → U be
a mapping satisfying

MA(Tζ,Tv, αt) ≥ MA(ζ, v, t), (3.1)

for all ζ, v ∈ U, α ∈ (0, 1) and t ∈ A. Then T has a unique fixe point (FP).

Proof. Fix ζ0 ∈ U and construct an iterative sequence in U such that ζk+1 = Tζk with k ≥ 0, for t ∈ A.
Then, by (3.1), for t ∈ A,

MA(ζk, ζk+1, αt) = MA(Tζk−1,Tζk, αt) ≥ MA(ζk−1, ζk, t).

Then we get

MA(ζk, ζk+1, t) ≥ MA
(
ζk−1, ζk,

t
α

)
for t ∈ A. (3.2)

Similarly,

MA (ζk−1, ζk, t) = MA
(
ζk−1, ζk, α

( t
α

))
= MA

(
Tζk−2,Tζk−1, α

( t
α

))
≥ MA

(
ζk−2, ζk−1,

t
α

)
for t ∈ A.

This implies that

MA
(
ζk−1, ζk,

t
α

)
≥ MA

(
ζk−2, ζk−1,

t
α2

)
for t ∈ A. (3.3)

Now, from (3.2), (3.3), and by induction, for t ∈ A, we have

MA(ζk, ζk+1, t) ≥ MA
(
ζk−1, ζk,

t
α

)
≥ MA

(
ζk−2, ζk−1,

t
α2

)
≥ · · · ≥ MA

(
ζ0, ζ1,

t
αk

)
→ 1, as k → ∞.

Hence we get that
lim
k→∞

MA(ζk, ζk+1, t) = 1 for t ∈ A. (3.4)
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Now, for any positive integer ` and for t ∈ A, from (3.4), we have

MA(ζk, ζk+`, t) ≥ MA
(
ζk, ζk+1,

t
`

)
∗ MA

(
ζk+1, ζk+2,

t
`

)
∗ · · · ∗ MA

(
ζk+`−1, ζk+`,

t
`

)
≥ MA

(
ζ0, ζ1,

t
`αk

)
∗ MA

(
ζ0, ζ1,

t
`αk+1

)
∗ · · · ∗ MA

(
ζ0, ζ1,

t
`αk+`−1

)
→ 1 ∗ 1 ∗ · · · ∗ 1 = 1, as k → ∞.

Hence it is proved that (ζk) is a GA-Cauchy sequence. Since (U,MA,A, ∗) is GA-complete, there is
z ∈ U such that

lim
k→∞

MA(ζk, z, t) = 1 for t ∈ A. (3.5)

Now, from (3.1), (3.2) and (3.5), we have for all t ∈ A,

MA(z,Tz, t) ≥ MA
(
z, ζk+1,

t
2

)
∗ MA

(
Tζk,Tz,

t
2

)
≥ MA

(
z, ζk+1,

t
2

)
∗ MA

(
ζk, z,

t
2α

)
→ 1 ∗ 1∗ = 1, as k → ∞.

Hence we get that MA(z,Tz, t) = 1, i.e., Tz = z.
For uniqueness, assume that w is another FP of the mapping T in U. Then, from (3.1) and (3.2), we

have for all t ∈ A,

1 ≥ MA(z,w, t) = MA(Tz,Tw, t) ≥ MA
(
z,w,

t
α

)
= MA

(
Tz,Tw,

t
α

)
≥ MA

(
z,w,

t
α2

)
≥ · · · ≥ MA

(
z,w,

t
αk

)
→ 1, as k → ∞.

Hence MA(z,w, t) = 1 ⇒ z = w.

4. Application

This section deals with an application of a nonlinear integral equation (NIE) to support our work.
Let U = C([0, ρ],R) be the space of R-valued continuous functions on [0, ρ], where 0 < ρ ∈ R. The
NIE is

ζ(κ) =

∫ κ

0
P(κ, s, ζ(s))ds, for all ζ ∈ U, (4.1)

where κ, s ∈ [0, ρ] and P : [0, ρ] × [0, ρ] × R→ R. The induced metric m : U × U → R is defined by

m(ζ, ν) = sup
κ∈[0,ρ]

|ζ(κ) − ν(κ)| = ‖ζ − ν‖, where ζ, ν ∈ C([0, ρ],R) = U.

The binary operation ∗ is defined as δ ∗ % = δ% for all δ, % ∈ [0, ρ]. An FM overA MA : U ×U ×A →
[0, 1] is defined by

MA(ζ, ν, t) =
(
e‖ζ−ν‖t

−1)−1
, (4.2)

for all ζ, ν ∈ U and t ∈ A. Then easily it can be verified that (U,MA,A, ∗) is a complete FM space
over a Banach algebraA.
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Theorem 4.1. Assume that there exist Aζ , Aν ∈ U such that

Aζ(κ) =

∫ κ

0
P(κ, s, ζ(s))ds and Aν(κ) =

∫ κ

0
P(κ, s, ν(s))ds, (4.3)

where κ ∈ [0, ρ]. If there is β ∈ (0, 1) such that

‖Aζ − Aν) ≤ β‖ζ − ν‖, (4.4)

for all ζ, ν ∈ U. Then the NIE (4.1) has a unique solution in U.

Proof. We define an integral operator T : U → U by

T (ζ) = Aζ + ~, T (ν) = Aν + ~,

for all ζ, ν, ~ ∈ U. Now, from (4.2) and (4.4), for t ∈ A, we have

MA(Tζ,Tν, αt) =
(
e‖Tζ−Tν‖(αt)−1)−1

=
(
e‖Aζ−Aν‖α−1t−1)−1

≥
(
eβ‖ζ−ν‖α

−1t−1)−1

=
(
e‖ζ−ν‖βα

−1t−1)−1

≥
(
e‖ζ−ν‖t

−1)−1
, where βα−1 ≤ 1 and α, β ∈ (0, 1)

= MA(ζ, ν, t).

This implies that
MA(Tζ,Tν, αt) ≥ MA(ζ, ν, t),

for all ζ, ν ∈ U and t ∈ A. This means that the inequality (3.1) of Theorem 3.16 is satisfied. Thus, the
integral operator T satisfies all the conditions of Theorem 3.16 and T has a unique FP, i.e., (4.1) has a
unique solution in U.

5. Conclusions

In this paper, we discussed a new concept of an FM-space over a Banach algebra A, i.e., four-
tuple (U,MA,A, ∗). We proved some basic properties and a Hausdorff metric in the FM-space over
A. We proved a “Banach contraction principle for fixed point” on the FM-space over A. Moreover,
we presented an application of a nonlinear integral equation. One can use this concept to present some
more properties, FP and CFP theorems for different contractive type mappings in FM-space over A
with different types of integral operators.
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