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Abstract. In this paper, a generalized variational inequality and fixed points problem is pre-
sented. An iterative algorithm is introduced for finding a solution of the generalized varia-
tional inequalities and fixed point of two uniformly Lipschitzian asymptotically quasi-pseudo-
contractive operators under a nonlinear transformation. Strong convergence of the suggested
algorithm is demonstrated.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ , respec-
tively. Let C be a nonempty closed convex subset of H . For the given two nonlinear
operators F : C →H and ψ : C →C , recall that the generalized variational inequal-
ity (GVI ) aims to find an element x† ∈ C such that

〈Fx†,ψ(x)−ψ(x†)〉 � 0, ∀x ∈ C . (1.1)

The solution set of Equation (1.1) is denoted by GVI(F ,ψ ,C ) .
If ψ ≡ I (identity operator), then GVI (1.1) can be reduced to find an element

x† ∈ C such that

〈Fx†,x− x†〉 � 0, ∀x ∈ C . (1.2)

The solution set of Equation (1.2) is denoted by VI(F ,C ) .
Stampacchia ([3]) introduced variational inequalities which provide a useful tool

for researching a large variety of interesting problems arising in elasticity, optimization,
network analysis, physics, economics, finance, water resources, structural analysis and
medical images ([4]–[8]). For solving variational inequality, projection methods are
very popular. For some related work, please refer to References ([1], [2], [9]–[13]).

In particular, very recently, a general class, in which the involved operators are
quasi-pseudocontractive operators, was considered by Yao et al. ([15]), and the follow-
ing iteration was introduced.
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ALGORITHM 1.1. Let S ,T are two quasi-pseudocontractive operators and φ
is a L -Lipschitzian operator. Let A : C → H is a α -inverse strongly ψ -monotone
operator. Let x1 ∈ C be arbitrary. Assume {xn} has been constructed. Compute

un = Pro jC[αnνφ(xn)+ (1−αn)(ψ(xn)− ςnA xn)],
yn = (1−σn)un + σn (T ((1− δn) I + δnT ))un,

zn = (1− ζn)yn + ζn (S ((1−ηn) I + ηnS ))yn,

ψ(xn+1) = θnψ(xn)+ (1−θn)zn, n � 1.

(1.3)

In this paper, motivited and inspired by Yao et al. ([15]), we consider the following
generalized variational inequalities and fixed points problems for finding an element x̂
such that

x̂ ∈ GVI(F ,ψ ,C ) and ψ(x̂) ∈ Fix(S )
⋂

Fix(T ), (1.4)

where S and T are two uniformly L -Lipschitzian asymptotically quasi-pseudocontractive
operators.

In this paper, a unified framework for generalized variational inequality problems
is given. We will extend the above results to the class of uniformly Lipschitzian asymp-
totically quasi-pseudocontractive operators. Based on the algorithm 3.1, we construct
an iterative algorithm and demonstrate its strong convergence.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖ , respectively.
Let C be a nonempty closed convex subset of H . We use Fix(T ) to denote the set
of fixed points of T , that is, Fix(T ) = {u|u = T u,u ∈ C }.

DEFINITION 2.1. An operator F : C −→ H is called to be
(1) δ -strongly monotone if 〈F z†−F z‡,z†−z‡〉� δ‖z†−z‡‖2 for some constant

δ > 0 and all z†,z‡ ∈ C ;
(2) α -inverse strongly monotone if 〈F z† −F z‡,z† − z‡〉 � α‖F z† −F z‡‖2 for

some constant α > 0 and all z†,z‡ ∈ C ;
(3) δ -strongly ψ -monotone if 〈F z†−F z‡,ψ(z†)−ψ(z‡)〉� δ‖ψ(z†)−ψ(z‡)‖2

for some constant δ > 0 and all z†,z‡ ∈ C ;
(4) α -inverse strongly ψ -monotone if 〈F z† −F z‡,ψ(z†)−ψ(z‡)〉 � α‖F z† −

F z‡‖2 for some constant α > 0 and all z†,z‡ ∈ C ;

DEFINITION 2.2. A monotone operator R : H ⇒ 2H is maximal monotone if
the graph of R is a maximal monotone set.

DEFINITION 2.3. An operator T : C −→ C is called to be
(i) L -Lipschitzian if there exists L > 0 such that ‖T z† −T z‡‖ � L‖z† − z‡‖ for

all z†,z‡ ∈ C ;
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(ii) uniformly L -Lipschitzian if there exists L > 0 such that ‖T nz† −T nz‡‖ �
L‖z†− z‡‖ for all z†,z‡ ∈ C and all n � 1;

(iii) (L,ψ)-Lipschitzian if there exists L > 0 such that ‖T z†−T z‡‖� L‖ψ(z†)−
ψ(z‡)‖ for all z†,z‡ ∈ C , where ψ : C −→ C is a nonlinear operator. In particular, if
L = 1, the operator T is said to be ψ -nonexpensive.

DEFINITION 2.4. An operator T : C −→ C is said to be asymptotically quasi-
pseudocontractive if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such
that

‖T nx− z†‖2 � (2kn−1)‖x− z†‖2 +‖T nx− x‖2

for all x ∈C , z† ∈ Fix(T ) and for all n � 1.

The weak and strong convergence problems of the iterative algorithms for such a
class of mappings have been studied by a large number of authors (see, e.g., [16]–[25]).

In general, the convergence of fixed point algorithms requires some extra smooth-
ness properties of the mapping T such as demi-closedness.

DEFINITION 2.5. An operator T is said to be demiclosed if, for any sequence
{xn} which weakly converges to x� , and T xn −→ w , then T (x�) = w .

Recall that the (nearest point or metric) projection from H onto C , denoted
Pro jC , assigns to each x ∈ H , the unique point Pro jC x ∈ C with the property

‖x−Pro jC x‖ = in f{‖x− z‖ : z ∈ C }.

The metric projection Pro jC of H onto C is characterized by

〈x−Pro jC x,z−Pro jC x〉 � 0 (2.1)

for all x ∈ H ,z ∈ C . Recall that the metric projection Pro jC : H → C is firmly
nonexpansive, that is,

〈x − y,Pro jC x−Pro jC y〉 � ‖Pro jC x−Pro jC y‖2

or ‖Pro jC x−Pro jC y‖2 � ‖x− y‖2−‖(I−Pro jC )x− (I−Pro jC )y‖2
(2.2)

for all x,y ∈ H .
For all x,y ∈ H , the following conclusions hold:

‖tx+(1− t)y‖2 = t‖x‖2 +(1− t)‖y‖2− t(1− t)‖x− y‖2, t ∈ [0,1],

‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2

and

‖x+ y‖2 � ‖x‖2 +2〈y,x+ y〉.
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LEMMA 2.6. ([27]) Let T : C → C be an L-Lipschitzian operator with L � 1 .
Then

Fix(((1− δ )I + δT )T ) = Fix(T ((1− δ )I + δT )) = Fix(T ),

where δ ∈ (0, 1
L ) .

LEMMA 2.7. ([14]) If T : C → C be a uniformly L-Lipschitzian asymptotically
pseudo-contractive operator with L > 1 and coefficient kn . If 0 < η < ζ < 1√

k2
n+L2+k2

n

for all n � 1 , then we have

‖(1−η) xηT n((1− ζ )I + ζT n)x− x�‖2

� [1+2(kn−1)η +2(kn−1)(2kn−1)ζη ]‖x− x�‖2

+ η(η − ζ )‖T n((1− ζ )I + ζT n)x− x‖2

(2.3)

for all x ∈ C and x� ∈ Fix(T ) .

REMARK 2.8. It is readily seen that, in Lemma 2.7, if the operator is uniformly
L-Lipschitzian asymptotically quasi-pseudocontractive, the conclusion still holds.

LEMMA 2.9. ([26]) Assume that {αn} is a sequence of nonnegative real numbers
such that

αn+1 � (1− γn)αn + δn, n ∈ N,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that
(1) ∑∞

n=1 γn = ∞;
(2) limsupn→∞

δn
γn

� 0 or ∑∞
n=1 |δn| < ∞.

Then limn→∞ αn = 0.

LEMMA 2.10. Let {ϖn} be a sequence of real numbers. Assume there exists at
least a subsequence {ϖnk} of {ϖn} such that ϖnk � ϖnk+1 for all k � 0 . For every
n � N0 , define an integer sequence {τ(n)} as

τ(n) = max{l � n : ϖl � ϖl+1}.

Then, τ(n) → ∞ as n → ∞ and for all n � N0 , we have max{ϖτ(n),ϖn} � ϖτ(n)+1 .

3. Main results

In this section, we first show the following crucial Lemma.

LEMMA 3.1. Let H be a Hilbert space and C (�= /0)⊂H be a closed convex set.
Let T : C → C be uniformly L-Lipschitzian asymptotically quasi-pseudocontractive
with L > 1 , coefficient kn < K and Fix(T ) �= /0 . Then Fix(T ) is a nonempty closed
convex set.
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Proof. First, we prove that Fix(T ) is convex.
Assume 0 < η < ζ � 1√

K2+L2+K2
for all n � 1. Since kn < K ,

1√
K2 +L2 +K2

<
1√

k2
n +L2 + k2

n

.

Then

ζL < ζ (
√

K2 +L2 +K2) � 1. (3.1)

Let
Tn = (1−η)I + ηT n((1− ζ )I + ζT n).

Assume x∗1,x
∗
2 ∈ Fix(T ) . It is obvious that Fix(T )⊆ Fix(Tn) . So x∗1,x

∗
2 ∈ Fix(T ) ⊆

Fix(Tn) . Let x∗t = tx∗1 + (1− t)x∗2 , where t ∈ (0,1) . According to Definition 2.7,
Lemma 2.10 and Remark 2.11, we have

‖Tnx
∗
t − x∗t ‖2

= ‖t(x∗1−Tnx
∗
t )+ (1− t)(x∗2−Tnx

∗
t )‖2

= t‖x∗1−Tnx
∗
t ‖2 +(1− t)‖x∗2−Tnx

∗
t ‖2

− t(1− t)‖x∗1− x∗2‖2

� t[1+2(kn−1)η +2(kn−1)(2kn−1)ζη ]‖x∗1− x∗t ‖2

+(1− t)[1+2(kn−1)η +2(kn−1)(2kn−1)ζη ]‖x∗2− x∗t ‖2

− t(1− t)‖x∗1− x∗2‖2

� t(1− t)2[1+2(kn−1)+2(kn−1)(2kn−1)]‖x∗1− x∗2‖2

+ t2(1− t)[1+2(kn−1)+2(kn−1)(2kn−1)]‖x∗1− x∗2‖2

− t(1− t)‖x∗1− x∗2‖2

= 4t(1− t)(kn−1)2‖x∗1− x∗2‖2 → 0

(3.2)

which implies limn→∞ Tnx∗t = x∗t . It follows that

lim
n→∞

T n((1− ζ )I + ζT n)x∗t = x∗t .

Since T is uniformly L -Lipschitzian, we obtain

‖T nx∗t − x∗t ‖
� ‖T nx∗t −T n((1− ζ )I + ζT n)x∗t ‖

+‖x∗t −T n((1− ζ )I + ζT n)x∗t ‖
� ζL‖T nx∗t − x∗t ‖

+‖x∗t −T n((1− ζ )I + ζT n)x∗t ‖.

(3.3)

By (3.1), we have

‖T nx∗t − x∗t ‖ � 1
1− ζL

‖x∗t −T n((1− ζ )I + ζT n)x∗t ‖→ 0 (3.4)
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which implies limn→∞ T nx∗t = x∗t . Let T̂ x∗t = limn→∞ T nx∗t , we obtain T̂ x∗t = x∗t .
Then,

‖T x∗t − x∗t ‖ = ‖T T̂ x∗t − T̂ x∗t ‖
= ‖T T̂ x∗t −T n+1x∗t +T n+1x∗t − T̂ x∗t ‖
� L‖T̂ x∗t −T nx∗t ‖+‖T n+1x∗t − T̂ x∗t ‖
→ 0.

(3.5)

So T x∗t = x∗t . Therefore, Fix(T ) is convex.
For all {xn} ⊂ Fix(T ) with xn → x∗ , we have

‖xn−T x∗‖ � L‖xn − x∗‖

and hence x∗ = T x∗ . That is to say x∗ ∈ Fix(T ) . Therefore, Fix(T ) is closed. This
completes the proof. �

Next, we first present some properties for α -inverse strongly ψ -monotone opera-
tor, δ -strongly ψ -monotone operators and (L,ψ)-Lipschitzian operator. For our main
theorem, these properties will be useful.

PROPERTY 3.2. Assume that F : C → H is an α -inverse strongly ψ -monotone
operator and γ > 0 is a constant. Then,

‖ψ(x)−γFx−(ψ(y)−γFy)‖2 � ‖ψ(x)−ψ(y)‖2+γ(γ−2α)‖Fx−Fy‖2, ∀x,y∈C .

Proof. By a direct calculation, we have

‖ψ(x) − γFx)− (ψ(y)− γFy))‖2

= ‖ψ(x)−ψ(y)‖2 + γ2‖Fx−Fy‖2−2γ〈ψ(x)−ψ(y),Fx−Fy〉
� ‖ψ(x)−ψ(y)‖2 + γ2‖Fx−Fy‖2−2αγ‖Fx−Fy‖2

= ‖ψ(x)−ψ(y)‖2 + γ(γ −2α)‖Fx−Fy‖2.

(3.6)

The proof is complete. �

PROPERTY 3.3. Assume that F : C −→ H is δ -strongly ψ -monotone and
(L,ψ)-Lipschitzian operator. Let ψ : C −→ C be a ς -strongly monotone operator
and R(ψ) = C . Then the generalized variational inequality GVI (1.1) has a unique
solution.

Proof. By the ς -strongly monotonicity of ψ , we get

‖ψ(x)−ψ(y)‖� ς‖x− y‖ (3.7)

which implies that ψ is injective. Owing to R(ψ) = C , ψ is bijective.
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Let Ψ =Pro jC (I −γFψ−1) , where 0< γ < 2δ/L2 . In vurtue of F : C −→ H
be a (L,ψ)-Lipschitzian δ -strongly ψ -monotone operator, we deduce

‖ Ψ(ψ(x))−Ψ(ψ(y))‖2

= ‖Pro jC (ψ(x)− γFx))−Pro jC (ψ(y)− γFy)‖2

� ‖ψ(x)− γFx− (ψ(y)− γFy)‖2

= ‖ψ(x)−ψ(y)‖2 + γ2‖Fx−Fy‖2−2γ〈ψ(x)−ψ(y),Fx−Fy〉
� ‖ψ(x)−ψ(y)‖2 + γ2L2‖ψ(x)−ψ(y)‖2−2γδ‖ψ(x)−ψ(y)‖2

= (1− γ(2δ − γL2))‖ψ(x)−ψ(y)‖2.

(3.8)

In view of R(ψ) = C , Ψ is a contraction on C . Hence there exists a unique fixed
point x̂∈C satisfying Pro jC (ψ(x̂)−γF x̂) = ψ(x̂) . Equivalently, there exists a unique
x̂ ∈ C solving GVI (1.1). �

In the following paper, we present an algorithm and prove its strong convergence.
A list of assumptions on the underlying spaces and involved operators are provided
below.

(R1) H is a real Hilbert space and C (�= /0) ⊂ H be a nonempty closed convex
subset;

(R2) ψ : C → C is a δ -strongly monotone and weakly continuous operator such
that its rang R(ψ) = C and φ : C → H is an L -Lipschitzian operator;

(R3) T : C →C is a uniformly L1 -Lipschitzian asymptotically quasi-pseudocon-
tractive operator with L1 > 1 and coefficient kn ;

(R4) S : C →C is a uniformly L2 -Lipschitzian asymptotically quasi-pseudocon-
tractive operator with L2 > 1 and coefficient ln ;

(R5) F : C → H is an α -inverse strongly ψ -monotone operator;
(R6) Ω = GVI(F ,ψ ,C )

⋂
ψ−1(Fix(S )

⋂
Fix(T )) �= /0 .

Next we present the following iterative algorithm to find x̂ ∈ Ω .

ALGORITHM 3.4. Choose an arbitrary initial value x1 ∈ C . Assume {xn} has
been constructed. Compute

un = PC[αnνφ(xn)+ (1−αn)(ψ(xn)−βnFxn)],
yn = (1−σn)un + σn (T n ((1− δn)I + δnT

n))un,

zn = (1− ζn)yn + ζn (S n ((1−ηn)I + ηnS
n))yn,

ψ(xn+1) = θnψ(xn)+ (1−θn)zn, n � 1,

(3.9)

where ν > 0 is a constant, {αn} , {σn} , {δn} , {ζn} , {ηn} and {θn} are six sequences
in (0,1) and {βn} is a sequence in (0,∞) .

THEOREM 3.5. Suppose that I −T and I −S are demiclosed at zero. If
Ω �= /0 and the following conditions are satisfied:

(C1) limn→∞ αn = 0 and ∑∞
n=0 αn = ∞;
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(C2) 0 < a1 < σn < c1 < ĉ1 < δn < b1 < 1√
k2
n+L2

1+k2
n
;

(C3) 0 < a2 < ζn < c2 < ĉ2 < ηn < b2 < 1√
l2n+L2

2+l2n
;

(C4) 0 < liminfn→∞ θn � limsupn→∞ θn < 1 ;
(C5) Lν < δ < 2α and 0 < liminfn→∞ βn � limsupn→∞ βn < 2α ;
(C6) ∑∞

n=1(kn −1) < +∞ , ∑∞
n=1(ln −1) < +∞;

(C7) limn→∞
kn−1

αn
= limn→∞

ln−1
αn

= 0 .
Then, the iterative sequence {xn} defined by Equation (3.9) strongly converges to

x̂ ∈ Ω which solves the generalized variational inequality

〈νφ(x̂)−ψ(x̂),ψ(x)−ψ(x̂)〉 � 0, ∀x ∈ Ω. (3.10)

In particular, if we take φ ≡ 0 , then ψ(x̂) is minimum-norm.

Proof. First, we prove that ψ(x)−νφ(x) is (1−νL/δ )-strongly ψ -monotone.

〈ψ(x) −νφ(x)− (ψ(y)−νφ(y)),ψ(x)−ψ(y)〉
= 〈ψ(x)−ψ(y),ψ(x)−ψ(y)〉−ν〈φ(x)−φ(y),ψ(x)−ψ(y)〉
� ‖ψ(x)−ψ(y)‖2−νL‖x− y‖‖ψ(x)−ψ(y)‖

(by(3.7)) � ‖ψ(x)−ψ(y)‖2−νL/δ‖ψ(x)−ψ(y)‖2

= (1−νL/δ )‖ψ(x)−ψ(y)‖2.

(3.11)

Since

‖ψ(x)−νφ(x)− (ψ(y)−νφ(y))‖ � ‖ψ(x)−ψ(y)‖+ ν‖φ(x)−φ(y)‖
� ‖ψ(x)−ψ(y)‖+Lν‖x− y‖
� (1+Lν/δ )‖ψ(x)−ψ(y)‖,

(3.12)

ψ − νφ is (1 + Lν/δ )-Lipschitzian. Therefore, from Property 3.3, the GVI (3.10)
has a unique solution which is denoted by x̂ . Since x̂ ∈ GVI(F ,ψ ,C ) and ψ(x̂) ∈
Fix(S )

⋂
Fix(T ) , by virtue of (2.1), we get ψ(x̂) = Pro jC [ψ(x̂)−βnF x̂] for all n �

1. In view of Property 3.1, we obtain

‖ψ(x)−βnFx− (ψ(y)−βnFy)‖2

� ‖ψ(x)−ψ(y)‖2 + βn(βn−2α)‖Fx−Fy‖2. (3.13)

From Equations (3.9) and (3.13), we have

‖un −ψ(x̂)‖
= ‖Pro jC [αnνφ(xn)+ (1−αn)(ψ(xn)−βnFxn)]−Pro jC [ψ(x̂)−βnF x̂]‖
� ‖αnνφ(xn)+ (1−αn)(ψ(xn)−βnFxn)− (ψ(x̂)−βnF x̂)‖
� αnν‖φ(xn)−φ(x̂)‖+ αn‖νφ(x̂)−ψ(x̂)+ βnF x̂‖

+(1−αn)‖(ψ(xn)−βnFxn)− (ψ(x̂)−βnF x̂)‖
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� αnνL‖xn − x̂‖+ αn‖νφ(x̂)−ψ(x̂)+ βnF x̂‖
+(1−αn)‖(ψ(xn)−βnFxn)− (ψ(x̂)−βnF x̂)‖ (3.14)

� αnνL/δ‖ψ(xn)−ψ(x̂)‖+ αn‖νφ(x̂)−ψ(x̂)+ βnF x̂‖
+(1−αn)‖ψ(xn)−ψ(x̂)‖

= [1−αn(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖+ αn‖νφ(x̂)−ψ(x̂)+ βnF x̂‖
� [1−αn(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖+ αn(‖νφ(x̂)−ψ(x̂)‖+2α‖F x̂‖)
= [1−αn(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖

+ αn(1−νL/δ )
‖νφ(x̂)−ψ(x̂)‖+2α‖F x̂‖

1−νL/δ
.

By (3.13) and (3.14), we get

‖un−ψ(x̂)‖2 � ‖αnνφ(xn)+ (1−αn)(ψ(xn)−βnFxn)− (ψ(x̂)−βnF x̂)‖2

� αn‖νφ(xn)−ψ(x̂)+ βnF x̂‖2

+(1−αn)‖(ψ(xn)−βnFxn)− (ψ(x̂)−βnF x̂)‖2

� αn‖νφ(xn)−ψ(x̂)+ βnF x̂‖2 +(1−αn)‖ψ(x)−ψ(x̂)‖2

+(1−αn)βn(βn−2α)‖Fx−F x̂‖2.

(3.15)

By the condition (C6) , without loss of generality, we may assume that supnkn � 2 and
supnln � 2 for all n � 1. By virtue of Lemma 2.10, we deduce

‖yn−ψ(x̂)‖2 = ‖(1−σn)un + σn (T n ((1− δn) I + δnT
n))un−ψ(x̂)‖2

� [1+2(kn−1)+2(kn−1)(2kn−1)]‖un−ψ(x̂)‖2

+ σn(σn − δn)‖T n ((1− δn) I + δnT
n)un−un‖2

� [1+8(kn−1)]‖un−ψ(x̂)‖2

+ σn(σn − δn)‖T n ((1− δn) I + δnT
n)un−un‖2

� [1+8(kn−1)]‖un−ψ(x̂)‖2

(3.16)

and

‖zn−ψ(x̂)‖2 = ‖(1− ζn)yn + ζn (S n ((1−ηn) I + ηnS
n))yn−ψ(x̂)‖2

� [1+2(ln−1)+2(ln−1)(2ln−1)]‖yn−ψ(x̂)‖2

+ ζn(ζn −ηn)‖S n ((1−ηn) I + ηnS
n)yn− yn‖2

� [1+8(ln−1)]‖yn−ψ(x̂)‖2

+ ζn(ζn −ηn)‖S n ((1−ηn) I + ηnS
n)yn− yn‖2

� [1+8(ln−1)]‖yn−ψ(x̂)‖2.

(3.17)

Hence,

‖yn−ψ(x̂)‖ � [1+4(kn−1)]‖un−ψ(x̂)‖ (3.18)
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and

‖zn −ψ(x̂)‖ � [1+4(ln−1)]‖yn−ψ(x̂)‖. (3.19)

Combining Equations (3.9), (3.18) and (3.19), we obtain

‖ψ(xn+1)−ψ(x̂)‖ � θn‖ψ(xn)−ψ(x̂)‖+(1−θn)‖zn−ψ(x̂)‖
� (1−θn)[1+4(kn−1)][1+4(ln−1)]‖un−ψ(x̂)‖

+ θn‖ψ(xn)−ψ(x̂)‖
� (1−θn)[1+4(kn−1)][1+4(ln−1)]‖un−ψ(x̂)‖

+ θn‖ψ(xn)−ψ(x̂)‖.

(3.20)

Applying Equation (3.14), we have

‖ψ(xn+1)−ψ(x̂)‖ � (1−θn)[1+4(kn−1)][1+4(ln−1)]‖un−ψ(x̂)‖
+ θn‖ψ(xn)−ψ(x̂)‖

� [1+4(kn−1)][1+4(ln−1)](1−θn)

×
{
[1−αn(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖

+ αn(1−νL/δ )
‖νφ(x̂)−ψ(x̂)‖+2α‖F x̂‖

1−νL/δ

}
+ θn‖ψ(xn)−ψ(x̂)‖

� [1+4(kn−1)][1+4(ln−1)]

×
{
[1−αn(1−θn)(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖

+ αn(1−θn)(1−νL/δ )
‖νφ(x̂)−ψ(x̂)‖+2α‖F x̂‖

1−νL/δ

}
� [1+4(kn−1)][1+4(ln−1)]

×max
{
‖ψ(xn)−ψ(x̂)‖, ‖νφ(x̂)−ψ(x̂)‖+2α‖F x̂‖)‖

(1−νL/δ )

}
.

(3.21)

By an inductive method, we derive

‖ψ(xn)−ψ(x̂)‖ �
n

∏
i=1

[1+4(ki−1)]
n

∏
i=1

[1+4(li−1)]

×max
{
‖ψ(x1)−ψ(x̂)‖, ‖νφ(x̂)−ψ(x̂)‖+2α‖F x̂‖)‖

(1−νL/δ )

}
.

(3.22)

It follows that

‖xn− x̂‖ � 1
δ
‖ψ(xn)−ψ(x̂)‖ �

n

∏
i=1

[1+4(ki−1)]
n

∏
i=1

[1+4(li−1)]

×max
{
‖ψ(x1)−ψ(x̂)‖, ‖νφ(x̂)−ψ(x̂)‖+2α‖F x̂‖)‖

(1−νL/δ )

}
.

(3.23)
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By the conditions (C6) , it is easy to see that the sequence {xn} and {ψ(xn)} are all
bounded.

By Equation (3.9), we get

ψ(xn+1)−ψ(xn) = (1−θn)[zn −ψ(xn)], n � 1. (3.24)

Combining Equations (3.9), (3.18)with (3.19), we obtain

‖ψ(xn+1)−ψ(x̂)‖2 = ‖θnψ(xn)+ (1−θn)zn −ψ(x̂)‖2

� θn‖ψ(xn)−ψ(x̂)‖2 +(1−θn)‖zn −ψ(x̂)‖2

−θn(1−θn)‖zn −ψ(xn)‖2

� θn‖ψ(xn)−ψ(x̂)‖2−θn(1−θn)‖zn −ψ(xn)‖2

+(1−θn)[1+8(kn−1)][1+8(ln−1)]‖un−ψ(x̂)‖2.

(3.25)

According to Equation (3.15), we deduce

‖ψ(xn+1) −ψ(x̂)‖2

� θn‖ψ(xn)−ψ(x̂)‖2 −θn(1−θn)‖zn −ψ(xn)‖2

+(1−θn)[1+8(kn−1)][1+8(ln−1)]‖un−ψ(x̂)‖2

� θn‖ψ(xn)−ψ(x̂)‖2 −θn(1−θn)‖zn −ψ(xn)‖2

+(1−θn)[1+8(kn−1)][1+8(ln−1)]

×{αn‖νφ(xn)−ψ(x̂)+ βnF x̂‖2 +(1−αn)‖ψ(x)−ψ(x̂)‖2

+(1−αn)βn(βn−2α)‖Fxn−F x̂‖2}.

(3.26)

In the sequel, we take into account two possible cases.
Case � . There exists m > 0 such that

{‖ψ(xn)−ψ(x̂)‖}
is decreasing when n � m . Thus, limn→∞ ‖ψ(xn)−ψ(x̂)‖ exists. According to Equa-
tions (3.26), we have

(1−θn)[1+8(kn−1)][1+8(ln−1)](1−αn)βn(2α −βn)‖Fx−F x̂‖2

+ θn(1−θn)‖zn−ψ(xn)‖2

� ‖ψ(xn)−ψ(x̂)‖2−‖ψ(xn+1)−ψ(x̂)‖2

+(1−θn){[1+8(kn−1)][1+8(ln−1)]−1}‖ψ(xn)−ψ(x̂)‖2

+ αn(1−θn)[1+8(kn−1)][1+8(ln−1)]

× (‖νφ(xn)−ψ(x̂)+ βnF x̂‖2−‖ψ(xn)−ψ(x̂)‖2).

(3.27)

This together with assumptions (C1) , (C4) , (C5) and (C7) implies that

lim
n→∞

‖zn−ψ(xn)‖ = 0 (3.28)
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and

lim
n→∞

‖Fxn−F x̂‖ = 0. (3.29)

By Equation (3.9), we get

ψ(xn+1)−ψ(xn) = (1−θn)[zn −ψ(xn)], n � 1. (3.30)

Furthermore, it follows from Equation (3.28) and (3.30) that

lim
n→∞

‖ψ(xn+1)−ψ(xn)‖ = 0. (3.31)

Set vn = ψ(xn)−βnFxn − (ψ(x̂)−βnF x̂) for all n � 1. In virtue of Equation (2.2),
the continuity of the norm, and the boundedness of the sequence {xn} , {ψ(xn)} and
{Fxn} , we deduce

‖un −ψ(x̂)‖2

� ‖Pro jC [αnνφ(xn)+ (1−αn)(ψ(xn)−βnFxn)]−Pro jC[ψ(x̂)−βnF x̂]‖
� 〈αn(νφ(xn)−ψ(x̂)+ βnF x̂)+ (1−αn)vn,un−ψ(x̂)〉
� 1

2
{‖αn(νφ(xn)−ψ(x̂)+ βnF x̂)+ (1−αn)vn‖2 +‖un−ψ(x̂)‖2

−‖αn(νφ(xn)−ψ(x̂)+ βnF x̂)+ (1−αn)vn −un + ψ(x̂)‖2}
� 1

2
{‖αn(νφ(xn)−ψ(x̂)+ βnF x̂− vn)+ vn‖2 +‖un−ψ(x̂)‖2

−‖αn(νφ(xn)−ψ(x̂)+ βnF x̂− vn)+ vn−un + ψ(x̂)‖2}
� 1

2
{‖vn‖2 +‖un−ψ(x̂)‖2 −‖vn−un + ψ(x̂)‖2}+ εn

=
1
2
{‖ψ(xn)−βnFxn − (ψ(x̂)−βnF x̂)‖2 +‖un−ψ(x̂)‖2

−‖ψ(xn)−un−βn(Fxn −F x̂)‖2}+ εn,

(3.32)

where εn > 0 and limn→∞ εn = 0. From Equation (3.29) and (3.32), we obtain

‖un−ψ(x̂)‖2 � 1
2
{‖ψ(xn)−ψ(x̂)‖2 +‖un−ψ(x̂)‖2

−‖ψ(xn)−un‖2}+ ε̂n,
(3.33)

where ε̂n > 0 and limn→∞ ε̂n = 0. Hence,

‖un−ψ(x̂)‖2 � ‖ψ(xn)−ψ(x̂)‖2−‖ψ(xn)−un‖2 + ε̂n. (3.34)
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In the light of Equations (3.25) and (3.34), we have

‖ψ(xn+1) −ψ(x̂)‖2

� (1−θn)[1+8(kn−1)][1+8(ln−1)]‖un−ψ(x̂)‖2

+ θn‖ψ(xn)−ψ(x̂)‖2

� (1−θn)[1+8(kn−1)][1+8(ln−1)]

×{‖ψ(xn)−ψ(x̂)‖2−‖ψ(xn)−un‖2 + ε̂n}
+ θn‖ψ(xn)−ψ(x̂)‖2

� (1−θn){[1+8(kn−1)][1+8(ln−1)]−1}‖ψ(xn)−ψ(x̂)‖2

− (1−θn)[1+8(kn−1)][1+8(ln−1)]{‖ψ(xn)−un‖2− ε̂n}
+‖ψ(xn)−ψ(x̂)‖2.

(3.35)

Hence,

(1−θn) [1+8(kn−1)][1+8(ln−1)]‖ψ(xn)−un‖2

� (1−θn){[1+8(kn−1)][1+8(ln−1)]−1}‖ψ(xn)−ψ(x̂)‖2 + ε̃n

+‖ψ(xn)−ψ(x̂)‖2−‖ψ(xn+1)−ψ(x̂)‖2,

(3.36)

where ε̃n = (1−θn)[1+8(kn−1)][1+8(ln−1)]ε̂n → 0. According to (C6) , we easily
deduce

lim
n→∞

‖ψ(xn)−un‖ = 0. (3.37)

In view of Equations (3.16) and (3.17), we get

‖zn −ψ(x̂)‖2 � [1+8(ln−1)][1+8(kn−1)]‖un−ψ(x̂)‖2

+[1+8(ln−1)]σn(σn−δn)‖T n ((1−δn) I+δnT
n)un−un‖2

+ ζn(ζn −ηn)‖S n ((1−ηn) I + ηnS
n)yn− yn‖2.

(3.38)

Therefore,

[1+ 8(ln−1)]σn(σn − δn)‖T n ((1− δn) I + δnT
n)un−un‖2

+ ζn(ζn−ηn)‖S n ((1−ηn) I + ηnS
n)yn− yn‖2

� {[1+8(ln−1)][1+8(kn−1)]−1}‖un−ψ(x̂)‖2

+‖un−ψ(x̂)‖2−‖zn−ψ(x̂)‖2

� {[1+8(ln−1)][1+8(kn−1)]−1}‖un−ψ(x̂)‖2

+‖un− zn‖(‖un−ψ(x̂)‖2 +‖zn−ψ(x̂)‖2).

(3.39)

From (3.28) and (3.37), we obtain

lim
n→∞

‖zn−un‖ = 0. (3.40)
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It follows from Equations (3.39), (3.40), (C2) and (C3) that

lim
n→∞

‖T n ((1− δn) I + δnT
n)un−un‖ = 0 (3.41)

and

lim
n→∞

‖S n ((1−ηn) I + ηnS
n)yn− yn‖ = 0. (3.42)

Note that
yn −un = σn[T n ((1− δn) I + δnT

n)un−un]

and
zn − yn = ζn[S n ((1−ηn) I + ηnS

n)yn− yn].

Therefore,

lim
n→∞

‖yn−un‖ = 0 (3.43)

and

lim
n→∞

‖zn − yn‖ = 0. (3.44)

Observe that

‖un−T nun‖ � ‖T n ((1− δn) I + δnT
n)un−un‖

+‖T n ((1− δn) I + δnT
n)un−T nun‖

� ‖T n ((1− δn) I + δnT
n)un−un‖

+L1δn‖T nun−un‖

(3.45)

and

‖yn−S nyn‖ � ‖S n ((1−ηn) I + ηnS
n)yn− yn‖

+‖S n ((1−ηn) I + ηnS
n)yn−S nyn‖

� ‖S n ((1−ηn) I + ηnS
n)yn− yn‖

+L2ηn‖S nyn− yn‖.

(3.46)

It follows that

‖un−T nun‖ � 1
1−L1δn

‖T n ((1− δn) I + δnT
n)un−un‖ (3.47)

and

‖yn−S nyn‖ � 1
1−L2ηn

‖S n ((1−ηn) I + ηnS
n)yn− yn‖. (3.48)

This together with (3.41) and (3.42) implies that

lim
n→∞

‖un−T nun‖ = 0 (3.49)
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and

lim
n→∞

‖yn−S nyn‖ = 0. (3.50)

From Equation (3.31), (3.37) and (3.43), we have

lim
n→∞

‖un−un+1‖ = 0 (3.51)

and

lim
n→∞

‖yn− yn+1‖ = 0. (3.52)

Since T and S are uniformly L1 -Lipschitzian and L2 -Lipschitzian, respectively, we
can derive

‖un+1−T un+1‖ � ‖un+1−T n+1un+1‖+‖T n+1un+1−T n+1un‖
+‖T n+1un−T un+1‖

� ‖un+1−T n+1un+1‖+2L1‖un+1−un‖
+L1‖un−T nun‖

(3.53)

and

‖yn+1−S yn+1‖ � ‖yn+1−S n+1yn+1‖+‖S n+1yn+1−S n+1yn‖
+‖S n+1yn−S yn+1‖

� ‖yn+1−S n+1yn+1‖+2L2‖yn+1− yn‖
+L2‖yn−S nyn‖.

(3.54)

By (3.49), (3.50), (3.51), (3.52), (3.53) and (3.54), we have immediately that

lim
n→∞

‖un−T un‖ = 0 (3.55)

and

lim
n→∞

‖yn−S yn‖ = 0. (3.56)

Next, we prove limsupn→∞〈νφ(x̂)−ψ(x̂),un−ψ(x̂)〉� 0. Let {uni} be a subsequence
of {un} such that

lim sup
n→∞

〈νφ(x̂)−ψ(x̂),un−ψ(x̂)〉
= lim

i→∞
〈νφ(x̂)−ψ(x̂),uni −ψ(x̂)〉

= lim
i→∞

〈νφ(x̂)−ψ(x̂),ψ(xni)−ψ(x̂)〉.
(3.57)

Note that xni is bounded. We can select a subsequence {xni j
} of xni such that xni j

⇀

z ∈ C . Without loss of generality, assume xni ⇀ z . Owing to the weak continuity of
ψ , this indicates that ψ(xni) ⇀ ψ(z) . Therefore, uni ⇀ ψ(z) and yni ⇀ ψ(z) .
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In view of Equation (3.55), (3.56) and the demi-closedness of I −T and I −S ,
we deduce ψ(z) ∈ Fix(T ) and ψ(z) ∈ Fix(S ) , respectively. That is, ψ(z) ∈ Fix(T )⋂

Fix(S ) .
Next, we show z ∈ GVI(F ,ψ ,C ) . By Remark 2.2, we obtain that Fψ−1 is

monotone. Let

R(v) =

{
Fψ−1v+NC (v), v ∈ C ,

/0 v �∈ C ,
(3.58)

where NC (v) is the normal cone to C at v . According to Reference [28], we can
easily derive that R is maximal monotone. Let (ψ(v),w) ∈ G(R) . Since w−Av ∈
NC (ψ(v)) and xn ∈ C , we have

〈ψ(v)−ψ(xn),w−Av〉 � 0.

Noting that
un = Pro jC [αnνφ(xn)+ (I −αn)(ψ(xn)−βnFxn)],

we get

〈ψ(v)−un,un − [αnνφ(xn)+ (I −αn)(ψ(xn)−βnFxn)]〉 � 0.

It follows that〈
ψ(v)−un,

un−ψ(xn)
βn

+Fxn− αn

βn
(νφ(xn)−ψ(xn)+ βnFxn)

〉
� 0.

Thus

〈ψ(v) −ψ(xni),w〉
� 〈ψ(v)−ψ(xni),Fv〉

�
〈

ψ(v)−ψ(xni),Fv〉− 〈ψ(v)−uni,
uni −ψ(xni)

βni

〉
+

αni

βni

〈ψ(v)−uni,νφ(xni)−ψ(xn)+ βniFxni〉

− 〈ψ(v)−uni,Fxni〉

� 〈ψ(v)−ψ(xni),Av−Fxni〉−
〈

ψ(v)−uni,
uni −ψ(xni)

βni

〉
+

αni

βni

〈ψ(v)−uni,νφ(xni)−ψ(xni)+ βniFxni〉

− 〈ψ(v)−uni,Fxni〉+ 〈ψ(v)−ψ(xni),Fxni〉

� −〈ψ(xni)−uni,Fxni〉−
〈

ψ(v)−uni,
uni −ψ(xni)

βni

〉
+

αni

βni

〈ψ(v)−uni,νφ(xni)−ψ(xni)+ βniFxni〉.

(3.59)
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By virtue of Equation (3.59), we deduce that 〈ψ(v)−ψ(z),w〉 � 0 owing to (3.37)
and ψ(xni) ⇀ ψ(z) . By the maximal monotonicity of R , ψ(z) ∈ R−10. So, z ∈
GVI(F ,ψ ,C ) . Therefore, z ∈ Ω . From Equation (3.57), we obtain

lim sup
n→∞

〈νφ(x̂)−ψ(x̂),un−ψ(x̂)〉
= lim

i→∞
〈νφ(x̂)−ψ(x̂),ψ(xni)−ψ(x̂)〉

= lim
i→∞

〈νφ(x̂)−ψ(x̂),ψ(z)−ψ(x̂)〉 � 0.

(3.60)

Applying Equation (2.2), we obtain

‖un −ψ(x̂)‖2

= ‖PC [αnνφ(xn)+ (1−αn)(ψ(xn)−βnFxn)]−Pro jC [ψ(x̂)− (1−αn)βnF x̂]‖2

� 〈αn(νφ(xn)−ψ(x̂))+ (1−αn)[(ψ(xn)−βnFxn)− (ψ(x̂)−βnF x̂)],un−ψ(x̂)〉
� αnν〈φ(xn)−φ(x̂),un−ψ(x̂)〉+ αn〈νφ(x̂)−ψ(x̂),un−ψ(x̂)〉

+(1−αn)〈[(ψ(xn)−βnFxn)− (ψ(x̂)−βnF x̂)],un−ψ(x̂)〉
� αnνL‖xn − x̂‖×‖un−ψ(x̂)‖+ αn〈νφ(x̂)−ψ(x̂),un −ψ(x̂)〉

+(1−αn)‖ψ(xn)−ψ(x̂)‖×‖un−ψ(x̂)‖
= [1−αn(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖×‖un−ψ(x̂)‖+αn〈νφ(x̂)−ψ(x̂),un−ψ(x̂)〉

� 1−αn(1−νL/δ )
2

‖ψ(xn)−ψ(x̂)‖2 +
1
2
‖un−ψ(x̂)‖2

+ αn〈νφ(x̂)−ψ(x̂),un−ψ(x̂)〉.

(3.61)

It follows that

‖un−ψ(x̂)‖2 � [1−αn(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖2 +2αn〈νφ(x̂)−ψ(x̂),un−ψ(x̂)〉.

This, together with Equation (3.35) implies that

‖ψ( xn+1)−ψ(x̂)‖2

� (1−θn)[1+8(kn−1)][1+8(ln−1)]‖un−ψ(x̂)‖2 + θn‖ψ(xn)−ψ(x̂)‖2

� (1−θn)[1+8(kn−1)][1+8(ln−1)]

×{[1−αn(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖2+2αn〈νφ(x̂)−ψ(x̂),un−ψ(x̂)〉}
+ θn‖ψ(xn)−ψ(x̂)‖2

� (1−θn){[1+8(kn−1)][1+8(ln−1)]−1}
×{[1−αn(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖2+2αn〈νφ(x̂)−ψ(x̂),un−ψ(x̂)〉}
+[1−αn(1−θn)(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖2

+2(1−θn)αn〈νφ(x̂)−ψ(x̂),un −ψ(x̂)〉.

(3.62)
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In the light of (C7) and (3.60), it can be seen easily that

(1− θn){[1+8(kn−1)][1+8(ln−1)]−1} (3.63)

× {[1−αn(1−νL/δ )]‖ψ(xn)−ψ(x̂)‖2 +2αn〈νφ(x̂)−ψ(x̂),un−ψ(x̂)〉}
αn(1−θn)(1−νL/δ )

→ 0.

Therefore, applying Lemma 2.13 to Equation (3.62), we can conclude that ψ(xn) →
ψ(x̂) and so xn → x̂ .

Case �� . There exists n0 such that ‖ψ(xn0)−ψ(x̂)‖ � ‖ψ(xn0+1)−ψ(x̂)‖ . At
this case, we set ϖn = ‖ψ(xn)−ψ(x̂)‖ . Then, we have ϖn0 � ϖn0+1 . For n � n0 , we
define a sequence {τn} by

τ(n) = max{l ∈�|n0 � l � n,ϖl � ϖl+1}.

it is easy to show that τ(n) is a non-decreasing sequence such that

lim
n→∞

τ(n) = +∞

and
ϖτ(n) � ϖτ(n)+1.

Employing techniques similar to Equations (3.60) and (3.62), we have

lim sup
n→∞

〈νφ(x̂)−ψ(x̂),uτ(n)−ψ(x̂)〉 � 0. (3.64)

and

ϖ2
τ(n)+1 � (1−θτ(n)){[1+8(kτ(n)−1)][1+8(lτ(n)−1)]−1}

×{[1−ατ(n)(1−νL/δ )]ϖ2
τ(n) +2ατ(n)〈νφ(x̂)−ψ(x̂),uτ(n)−ψ(x̂)〉}

+[1−ατ(n)(1−θτ(n))(1−νL/δ )]ϖ2
τ(n) (3.65)

+2(1−θτ(n))ατ(n)〈νφ(x̂)−ψ(x̂),uτ(n)−ψ(x̂)〉.

Since ϖτ(n) � ϖτ(n)+1, we have

ϖ2
τ(n) �

[1+8(kτ(n)−1)][1+8(lτ(n)−1)]−1

ατ(n)(1−νL/δ )
× [1−ατ(n)(1−νL/δ )]ϖ2

τ(n)

+
2[1+8(kτ(n)−1)][1+8(lτ(n)−1)]−1

(1−θτ(n))(1−νL/δ )
〈νφ(x̂)−ψ(x̂),uτ(n)−ψ(x̂)〉

+
2

1−νL/δ
〈νφ(x̂)−ψ(x̂),uτ(n)−ψ(x̂)〉. (3.66)

By (C7) and (3.64), we obtain

lim sup
n→∞

ϖτ(n) � 0
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and so

lim
n→∞

ϖτ(n) = 0. (3.67)

By Equations (3.64) and (3.65), we also obtain

lim sup
n→∞

ϖτ(n)+1 � lim sup
n→∞

ϖτ(n).

By the last inequality and Equation (3.67), we derive that

lim
n→∞

ϖτ(n)+1 = 0.

Applying Lemma 2.14 to get
ϖn � ϖτ(n)+1.

Therefore, ϖn → 0, i.e., ψ(xn) → ψ(x̂) which implies xn → x̂ .
Finally, if we take φ ≡ 0, we get

〈−ψ(x̂),ψ(x)−ψ(x̂)〉 � 0, ∀x ∈ Ω. (3.68)

Equivalently,
‖ψ(x̂)‖2 � 〈ψ(x),ψ(x̂)〉, ∀x ∈ Ω.

This clealy implies that
‖ψ(x̂)‖ � ‖ψ(x)‖, ∀x ∈ Ω.

The proof is completed. �

ALGORITHM 3.6. Choose an arbitrary initial value x1 ∈ C . Assume {xn} has
been constructed. Compute

un = Pro jC [αnνφ(xn)+ (1−αn)(xn −βnFxn)],
yn = (1−σn)un + σn (T n ((1− δn)I + δnT

n))un,

zn = (1− ζn)yn + ζn (S n ((1−ηn)I + ηnS
n))yn,

xn+1 = θnxn +(1−θn)zn, n � 1,

(3.69)

where ν > 0 is a constant, {αn} , {σn} , {δn} , {ζn} , {ηn} and {θn} are six sequences
in (0,1) and {βn} is a sequence in (0,∞) .

COROLLARY 3.7. Suppose that I −T and I −S are demiclosed at zero. If

Ω̃ = VI(F ,C )
⋂

Fix(S )
⋂

Fix(T ) �= /0

and the following conditions are satisfied:
(C1) limn→∞ αn = 0 and ∑∞

n=0 αn = ∞;
(C2) 0 < a1 < σn < c1 < ĉ1 < δn < b1 < 1√

k2
n+L2

1+k2
n
;

(C3) 0 < a2 < ζn < c2 < ĉ2 < ηn < b2 < 1√
l2n+L2

2+l2n
;
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(C4) 0 < liminfn→∞ θn � limsupn→∞ θn < 1 ;
(C5) Lν < 1 < 2α and 0 < liminfn→∞ βn � limsupn→∞ βn < 2α ;
(C6) ∑∞

n=1(kn −1) < +∞ , ∑∞
n=1(ln −1) < +∞;

(C7) limn→∞
kn−1

αn
= limn→∞

ln−1
αn

= 0 .
Then, the iterative sequence {xn} defined by Equation (3.69) strongly converges

to x̂ ∈ Ω̃ which solves the generalized variational inequality

〈νφ(x̂)− x̂,x− x̂〉 � 0, ∀x ∈ Ω̃. (3.70)

ALGORITHM 3.8. Choose an arbitrary initial value x1 ∈ C . Assume {xn} has
been constructed. Compute

un = Pro jC [(1−αn)(xn−βnFxn)],
yn = (1−σn)un + σn (T n ((1− δn)I + δnT

n))un,

zn = (1− ζn)yn + ζn (S n ((1−ηn)I + ηnS
n))yn,

xn+1 = θnxn +(1−θn)zn, n � 1,

(3.71)

where {αn} , {σn} , {δn} , {ζn} , {ηn} and {θn} are six sequences in (0,1) and {βn}
is a sequence in (0,∞) .

COROLLARY 3.9. Suppose that I −T and I −S are demiclosed at zero. If

Ω̃ = VI(F ,C )
⋂

Fix(S )
⋂

Fix(T ) �= /0

and the following conditions are satisfied:
(C1) limn→∞ αn = 0 and ∑∞

n=0 αn = ∞;
(C2) 0 < a1 < σn < c1 < ĉ1 < δn < b1 < 1√

k2
n+L2

1+k2
n
;

(C3) 0 < a2 < ζn < c2 < ĉ2 < ηn < b2 < 1√
l2n+L2

2+l2n
;

(C4) 0 < liminfn→∞ θn � limsupn→∞ θn < 1 ;
(C5) α > 1

2 and 0 < liminfn→∞ βn � limsupn→∞ βn < 2α ;
(C6) ∑∞

n=1(kn −1) < +∞ , ∑∞
n=1(ln −1) < +∞;

(C7) limn→∞
kn−1

αn
= limn→∞

ln−1
αn

= 0 .
Then, the iterative sequence {xn} defined by Equation (3.71) strongly converges

to x̂ ∈ Ω̃ which is minimum-norm solution, i.e., x̂ = PΩ̃θ .

4. Conclusion

In this paper, we investigated a generalized variational inequality and fixed points
problems. We presented an iterative algorithm for finding a solution of the general-
ized variational inequality and fixed point of two uniformly Lipschitzian asymptotically
quasi-pseudocontractive operators under a nonlinear transformation. Under some mild
conditions, we demonstrated the strong convergence of the suggested algorithm.
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