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Featured Application: This work can be applied in monitoring and predicting ESP failure when
it operates in high gas well condition. It can be used to interpret the downhole ESP data such
as pump intake pressure (PIP) and pump discharge pressure (Pdis) to diagnose ESP abnormal-
ities related to the multiphase condition. It highlights the importance of using nodal analysis
software (e.g., Schlumberger PIPESIM software) to evaluate the ESP operating condition before
and after installation. It is strictly applied in the field where gas lock is a major source of the
ESP abnormality.

Abstract: Electrical submersible pump (ESP) operation is compromised by free gas, resulting in
premature pump failure and production losses in new wells. It is essential to detect the onset of
abnormal operations. We develop a model that predicts abnormal ESP operation when the free gas
level increases in the pump. The model compares operation parameters with the parameters of
normal operating ranges; it shuts down the ESP when necessary. We used a Schlumberger PIPESIM
software (version 2017.01) to perform nodal analysis technique; we tested the model using the other
multiphase correlation model and field case studies (where the gas problem in ESP was reported).
We employ a homogenous model to calculate the differential pump pressures at various gas volume
fractions. Nodal analysis of the intake and discharge point predicted the commencement of abnormal
ESP conditions and the associated parameters (critical gas fraction, minimum operating pump intake
pressure, and pump discharge pressure). The model results were similar to other surging correlation
models (e.g., Romero, Dunbar, Turpin, Cirilo, and Zhou models); they were also identical to field case
studies. We identify three performance stability phases when an ESP is exposed to free gas. These
are the normal and abnormal operating ranges, as well as the ESP shutdown condition. Modeling
permits careful monitoring of ESP operations that can be compromised by free gas.

Keywords: abnormal operation; electrical submersible pump; gas volume fraction; nodal analysis

1. Introduction

Approximately 60% of global oil production is produced using the artificial lift (AL)
pump technique; more than 20% of the pumps used are electric submersible pumps
(ESPs) [1,2]. An ESP is an artificial lifting device that features multistage centrifugal
pumps, a motor, seals, power cables, and surface controls. Their applications are found in
both on- and off-shore production facilities [3]. This efficient downhole pump converts fluid
kinetic energy to hydraulic pressure; the developed pressure depends on the pump stages
and fluid properties [4,5]. The horizontal well has played a significant role in developing
unconventional reservoirs. It increases the contact between the target reservoir and the
production well, leading to increased flow rate and recoverable oil [6]. However, when
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they are new, most of these horizontal wells exhibit reductions in reservoir pressure that
compromise oil production viability [7]. A previous study showed that the application of
AL maintains the oil production before applying other expensive enhanced oil recovery
techniques. It provides the required energy that reduces the bottom hole flowing pressure
or increases the pressure drawdown. In principle, an ESP reduces the bottom hole flowing
pressure; it also allows more efficient and consistent oil-lifting capacity at lower reservoir
pressures than other artificial lifts. Since its invention, ESP has significantly optimized
unconventional oil production [6,8]. A decrease in reservoir pressure triggers multiphase
flow in a well when the pressure falls below the bubble point. Thus, the application of the
ESP in a horizontal well remains a critical issue since the presence of the free gas impedes
its boosting pressure [9].

The ESP was designed to manage incompressible fluid; its operation in multiphase
flow caused performance degradation compared to incompressible fluid (e.g., water) [10,11].
Lea and Bearden [12] demonstrated four types of free gas effects on ESP performance: non-
gas interference, gas lock interference, intermittent gas lock, and gas lock. During the first
two events, an ESP exhibits minor fluctuations in the production rate, pump intake pressure
(PIP), and pump discharge pressure (Pdisch). When the multiphase condition develops
into intermittent gas locking, ESP production significantly declines, the PIP increases, and
the Pd decreases. At higher intake gas volume fraction (GVF), ESP encounters significant
operation instability and vibration. After that, the impeller becomes entirely blocked by
free gas, causing a gas lock. To understand the ESP stable operation condition (below the
surging point), Turpin, Dunbar, Cirilo, Romero, Duran, Zhou and Sachdeva, Gamboa, and
Zhu have developed an empirical correlation predicting ESP instability onset [11,13].

2. Multiphase Surging Empirical Model Review

As discussed in Section 1, several models were developed to understand the ESP
operating behavior during the multiphase condition, such as dynamic and simplified
empirical models used to simulate multiphase pumping behavior. However, those models
require a complex solution of mass and momentum of the gas–liquid mixture in the entire
ESP, and their applicability needs a detailed pump impeller and diffuser design data.
Despite the developed models’ complexity and theoretical dominance, these models are
still used in the industry [14]. This section presents only available critical models of judging
stable and unstable (surging) ESP operation; their empirical formulas are summarized in
Table 1.

Table 1. Models of surging correlations.

Prediction Model ESP Surging Correlation

Turpin et al. (1986) [15]

∅Turpin =
(

2000
3PIP

)
Qg
Ql

, Assume ∅Turpin = 1, initiation of abnormal operation
Qg
Ql

= 3PIP
2000 , λc =

Qg
Qg+Ql

=
( 3PIP

2000 )
1+( 3PIP

2000 )
Qg, Ql, are gas and liquid flow rate at the critical gas volume fraction [λc ]

Dunbar (1989)-Pessoa (2001) [16] PIP = 935
(

Qg
Ql

) 1
1.724 ,

Qg
Ql

=
(

PIP
935

)1.724
, λc =

Qg
Qg+Ql

=

(
( PIP

935 )
1.724

)
1+

(
( PIP

935 )
1.724

)
Cirilo (1998) [17] λc = 0.0187PIP0.4342

Romero (1999) [18] λc = 0.004(PIP − 14.7)0.6801

Duran (2003) [19]

Qg
Qmax

=
(

5.580
(
ρg
ρl

)
+ 0.098

)(
Ql

Qmax

)1.421

Qg
Qmax

and Ql
Qmax

are normalized gas and the liquid rate at surging point, respectively, and Qmax
is the maximum rate from the pump curve
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Table 1. Cont.

Prediction Model ESP Surging Correlation

Zhou (2010) [14] Ql
Qmax

= 1.236426(PIP)−0.34870(α)0.86709(1 −α) For mixed flow pump [K-70]

Gamboa (2011) [13]

Qg
Qmax

= 0.102exp
(

Ql
Qmax

)4.4682(ρg
ρl

)0.2(
ωD2

v

)0.4

ω : pump rotational speed, rpm, v : fluid kinetic viscosity, and D: impeller outlet
diameter, m

Zhu (2017–2019) [11,20,21]
λc =

2
[

0.4σ
(ρl−ρg)δRI

]0.5

(
σ
ρl

)0.6( ∆PpumpQl
ρlV

)−0.4( ρl
ρg

)0.2

σ : surface tension, N/m, δ: Angular speed, rad/s, V: impeller volume, m3, and RI:
represent rotator radius, m

Turpin [15] formulated the first empirical model to predict ESP performance in gas
well conditions. Using Lea and Bearden’s experimental data [12], he developed a model to
predict the surging (abnormal) initiation. His model uses the Turpin correlation (∅Turpin)
parameter to judge the ESP operating condition, where the ∅Turpin is a function of gas
volume fraction and pump intake pressure. According to the author, the ESP surging
condition can be initiated when (∅Turpin > 1). Due to its simplicity, Turpin correlation is
widely used to relate the ESP performance to the in situ gas and PIP to evaluate the limits
of stable operation [5]. In 1989, Dunbar presented an empirical correlation for judging the
pump performance in homogenous conditions. Dunbar agreed with Turpin that the PIP
plays a significant role in determining critical GVF. In monitoring the ESP operation, the
Dunbar model can examine the ESP performance in gas well conditions [11]. Using the
mixture of air and water, Cirilo tested the two mixed flow pumps (GN4000 and GN7000)
and one radial flow pump (GN2100). Cirilo presented the empirical model to compute the
maximum GVF at ESP surging initiation point. The model evaluates the critical GVF as a
function of the pump operating PIP [17]. Similar to the previous authors, this model can
judge the ESP performance in gas well conditions.

Based on Cirilo’s experimental data, Romero developed the model to predict the
multiphase head degradation of the mixed flow pump (GN4000). His model relates the
critical GVF and the pump operating PIP. This model can be applied in the ESP performance
monitoring since it includes the pump operating PIP [18]. Duran developed an empirical
model for predicting pump performance in multiphase conditions. The model relates
the normalized gas rate, normalized liquid rate, and the ratio of gas density to liquid
density. The correlation predicts the stage pressure increment under the bubble flow
regime and defines the transition patterns [19]. This correlation is more widely applied in
designing pumps than monitoring; it is less attractive for judging the ESP performance
in gassy well conditions. Using Sachdeva’s original model, Zhou (2010) developed the
model to evaluate pump performance degradation in multiphase operation. His model
correlated the normalized liquid rate and pump intake pressure [14]. This model can also
be adopted to judge the ESP performance based on its operating PIP and normalized rate.
Gamboa combined a wide range of GVFs, pump rotational speeds, and intake pressures.
He developed the correlation for predicting the pump surging initiation as a function
of fluid properties and rotational speed [13]. Zhu conducted the recent experimental
study regarding the multiphase effect on ESP performance [11,20,21]. He developed a
new mechanistic model to evaluate the gas-liquid flow patterns in the ESP. His model
correlates the critical gas fraction with angular speed, surface tension, liquid flow rate,
impeller volume, and rotor radius. This model is more oriented to the ESP design than
monitoring operating conditions.

Briefly, the PIP plays a significant role in determining the threshold GVF amount
entrained in the ESP without degradation [5]. The surging model proposed by Turpin, Dun-
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bar, Cirilo, Romero, and Zhou offers practical parameters for judging the ESP performance
in gas well conditions. The remaining correlation models were not adopted in this study.

3. ESP Fault Monitoring and Diagnosis Review

As discussed in the previous section, operating the ESP in the free gas environment
results in an abnormal operation, and damages the ESP components. Unfortunately, it is
impossible to limit free gas formation in the production well; however, there are several
ways to control its liberation from the produced fluid. Takacs [5] demonstrated that
increasing operating PIP reduces the free gas amount liberated from the produced fluid
solution. Still, this approach impedes the oil production rate. Additional efforts have
been subjected to ESP monitoring and diagnosis to overcome operation losses, proceed
with the prevention measures, and promote abrupt free gas formation since removing and
replacing a damaged pump is 40-fold more expensive than installing a new pump [22].
This section presents different perspectives for monitoring and diagnosing ESP abnormal
conditions. Rensburg and Germany [23] demonstrated the usage of artificial intelligence
(AI) technology to detect, diagnose, and monitor ESP abnormal behavior. They explained
how the combination of artificial intelligence (AI) and Internet of Things (IoT) technologies
provide an effective way to use data-driven analytics to detect the ESP abnormal behavior,
based on the downhole data and providing decision support for managing the roots of
the abnormal conditions. Using the field data of the 30 ESPs, they showed how the AI
could provide a solution to the production disruptions caused by the several ESP failures.
Unfortunately, their approach focused on the data analysis of the previous scenario to
avoid future failure; this is hard to adopt in the green field where the previous failure
data are not available. Oyewole [24] showed the application of real-time data processing
and interpretation to reduce ESP failure. The author highlighted that a combination of
the reservoir and production data results in the effective management of the ESP well. It
also enhanced the oil well and reservoir monitoring, improving surveillance, analysis, and
diagnosis of the ESP well. As a result, the ESP well operation was optimized, which reduced
the failure likelihood. Through the presented case study (Brownfield of a Permian Basin),
this approach optimized the ESP well production through downhole equipment failure
reduction, early-warning detections, and reduced the equipment workover. Similar to the
previous approach, it is hard to adopt it where the historical failure data are not present.

Moreover, Awaid et al. [25] employed pattern recognition analysis for ESP well surveil-
lance. The authors developed an ESP abnormal troubleshooting checklist that quickly
identifies and differentiates the root of ESP malfunction. This approach can be adapted to
the new field by employing the developed checklist to diagnose ESP abnormal conditions.
However, a checklist requires more attention because different failures might have the same
signature; thus, ESP diagnosis can be compromised. Al-sadah et al. [26] reported that proac-
tive ESP monitoring was possible via real-time monitoring and diagnosis. They showed
that monitoring real-time data of downhole sensor readings and surface data provides a
diagnostic tool that identifies ESP abnormality that could lead to shutdowns; thus, ESP trips
can be prevented in advance. Agrawal et al. [27] used ESP data to monitor ESP performance,
diagnose issues, and optimize production during polymer flooding. The authors combined
a real-time ESP parameter alarm system, time-lapse analysis (production tubing pressure
drop, pump head de-rating factor, pump, and VFD horsepower), deadhead, and multi
choke test data to evaluate the most likely mechanisms leading to ESP abnormality. Their
study provided a diagnostic approach to differentiate the polymer flooding plugging or gas-
related failure. Based on their findings, the approach proposed can be applied in the new
oil well to optimize and monitor ESP operating conditions. Nunez et al. [28] developed an
ESP troubleshooting guide that reduced failures. Using monitoring information, tearing
down evidence, setting configuration, and building a database with all the information of
450 oil well data, they developed a troubleshooting manual, which quickly identifies likely
conditions that impede the production and performance of ESP systems.
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In addition, Peng et al. [1] demonstrated that significant ESP failure happens when its
key parameters start deviating from the normal operating range until an ESP stops working.
They proposed an application of the principal component analysis (PCA) model to perform
ESP fault detection to maintain ESP in the normal operational range. Castellanos et al. [29]
showed the machine learning algorithm’s preference for future failure prediction based on
historical ESP data. They adopted Classification and Regression Trees (CART) to detect
and classify elementary faults in the ESP well system. CART’s proposed methodology
monitored the system based on the pressure variation, flow rate, torque, and temperature.
Liang et al. [30] proposed a new downhole monitoring tool, which uses an experimental
phase to neutral communication scheme. In their design, an effective signal communication
path is formed by the external impedance on the wellhead (connecting one phase) to the
grounding ESP motor. The laboratory and field testing demonstrated the reliability of
the method. Li et al. [31] proposed an online ESP fault diagnosis that combines the ESP
electrical and production parameters. They designed the algorithms that perform feature
extraction, combining the electrical and production parameters. This approach effectively
monitored the nine typical operating fault conditions at reduced downhole sensor impact.
Fusiek et al. [32] presented the three-phase optical voltage sensor for ESP monitoring.
They applied a piezoelectric transducer that converts the voltage into strain. The strain
is measured using a fiber Bragg grating sensor. The measured strain is amplified at the
grating location and improves the measurement resolution. The electrical breakdown
was minimized using the finite element electrostatic modeling software. This approach
improved the electrical performance in the ESP well system. Bruijnen [33] employed
a nodal, analytical, graphical method to monitor ESP well performance. He provided
a general approach to assessing the ESP-assisted well based on the pump intake and
discharge pressure deviation trends. However, these approaches afford diagnostic tools
after abnormal conditions have occurred and provide only retrospective explanations of
real-world failures.

It is essential to predict and prevent ESP failure associated with a drastic performance
reduction and other problems. An effective early-warning system must be designed before
ESP installation. We use Schlumberger PIPESIM software (version 2017.01) to predict
ESP operation pre-installation. We consider the uncertainty imparted by multiphase well
conditions. We monitor the PIP, Pd, and production rate; we compare these values (at all
times) to normal reference values. Any difference predicts abnormal ESP operation. The
work is novel in that we devise reference threshold values for several distinct phases of
ESP operation. We used an oil well located in the Delaware Basin to evaluate the model. To
generalize the model, we evaluated different types of wells. For example, an ESP deployed
in a dead well was used to stimulate production; an ESP installed in a naturally flowing well
served to increase production. We consider both single-phase and multiphase conditions
inside the pump.

4. Materials and Methods
4.1. Model Formulation

An ESP converts fluid kinetic energy to hydraulic pressure when developing the
required differential pressure. Performance is maximal when an ESP manages an in-
compressible fluid (e.g., water). Liquid with a density similar to water enhances pump
performance; thus, fluid density directly affects ESP performance. Any density variation
significantly affects the PIP and Pd. In practice, the fluid density significantly changes
during oil production when the gas volume fraction (GVF) at the pump intake exceeds the
design parameters. Pump operation fails; oil movement from the bottom hole to the surface
decreases sharply, then stops [34]. To clarify the effect of free gas on ESP performance,
an ESP well was divided into three compartments: from the pump discharge point to
the wellhead, across the pump, and from the sand face to the ESP intake (Figure 1). The
variation in each compartment was evaluated as the change in fluid density when the
GVF increased. Awaid et al. [25] showed that a variation in Pd reflected a change in the
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upper ESP (Equation (1)), for example, at nodal point B of Figure 1. Equation (2) shows
that differential pressure fluctuation across the pump can be affected by variations in fluid
mixture density under identical pump head conditions; variations in PIP indicate events
that occur below the pump (Equation (3)). The combination of these parameters defines the
condition of the ESP well.

Pdisch. = Pwh + ∆Pgarv. + ∆Pfric. (1)

∆Ppump = H × ρmix (2)

PIP = Pbh −
(
∆Pgarv. + ∆Pfric.

)
(3)

where Pdisch. (psi) and PIP (psi) are defined above, Pwh is the wellhead pressure (psi), Pbh
is the bottom hole pressure, ∆Pgarv. is the pressure loss related to gravity (psi), ∆Pfric. is the
pressure loss related to friction, ∆Ppump (psi) is the differential pressure between Pdisch.
and PIP (psi), H is the pumping head (ft), and ρmix is the density of the fluid mixture
(lb/ft3).

Figure 1. Nodal analysis simulation model. (Left) Schematic diagram of the ESP horizontal oil well
components. (Right) Shows the model representation in Schlumberger PIPESIM software (version
2017.01), developed by Schlumberger, located in Houston, TX, USA.

4.2. The Homogenous Model

The fluid densities at various GVFs were calculated using a homogenous model. The
two-phase mixture (liquid and gas) was treated as a homogenous fluid [35]. The total
mixture flow rate Qm is calculated as the sum of the in situ liquid (oil and water) flow rate
Ql and the gas flow rate Qg (Equation (4)):

Qm = Ql + Qg (4)

Pessoa and Prado [35] showed that the pumping head under two-phase flow (Htp)
could be expressed by multiplying the head of the single liquid phase (Hl) and the degra-
dation factor (the two-phase specific gravity, SGm) for each individual GVF. Hence, ESP
head degradation is given by Equation (8):

λg = Qg/Qm (5)

ρm = λgρg +
[
1 − λg

]
ρl (6)

SGm = ρm/ρl (7)
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Htp = SGmHl (8)

where the new abbreviations are ρl for the liquid density, ρg for the gas density, and λg for
the GVF.

4.3. Nodal Analysis Simulation

Nodal analysis can be used to increase oil and gas well production by determining an
optimal flow rate, identifying problems, and optimizing artificial lifting. A point of interest
in the production system serves as a node; this is an intersection point of the inflow and
outflow performance curves. Bruijnen [33] found that a combination of pump intake and
discharge node data, as well as downhole pressure information, could be used to analyze
ESP performance. The inflow and outflow curves are governed by Equations (9) and (10),
respectively, when the intake pressure node serves as the nodal point (A in Figure 1).

IIPR = PIP (9)

VVLP − EESP = PIP (10)

The inflow and outflow curves are governed by Equations (11) and (12), respectively,
when the discharge node serves as the nodal point (B in Figure 1).

IIPR + EESP = Pd (11)

VVLP = Pd (12)

where IIPR is the inflow performance relationship, EESP is the ESP performance, VVLP is the
vertical (tubing) lift performance, and PIP and Pd are defined above. We simulated this
approach using Schlumberger PIPESIM software (version 2017.01); we employed nodal
points A and B as defined above. To generalize the model, we evaluated different types of
wells. For example, an ESP deployed in a dead well was used to stimulate production; an
ESP installed in a naturally flowing well served to increase production. We considered both
single-phase and multiphase conditions inside the pump. Using the homogenous model,
we calculated the ∆Ppump at various GVF conditions. The PIP was estimated using nodal
point A. The Pd was evaluated at nodal point B. Again, we set threshold ranges for normal
operation by reference to field data; any point outside a range reflected an abnormality.
For example, ESP operation was considered abnormal when the PIP deviation caused
by gas slugging exceeded 5% in the Mangala oil field [27]. Dowling [34] reported that a
PIP deviation > 3% indicated gas locking. Thus, we considered that PIP deviations ± 5%
were normal, implying that the ESP operated under maximum production conditions
(Qmax) when PIP fell by 5% from the design value; conversely, the ESP worked under the
minimum operating conditions when the PIP increased by 5% of the design value—any
greater deviation indicated an abnormality. In detail:

Step 1 (nodal analysis in the absence of the ESP): Nodal analysis proceeded under
natural flow conditions prior to ESP installation; we estimated the bottomhole pressure
(BHP) and production rate (QN) for a well exhibiting natural flow (Figure 2a) and the BHP
for a dead well (Figure 2b).

Step 2 (nodal analysis in the presence of an ESP): The ESP was installed, and nodal
analysis proceeded at the intake node (nodal point A, Figure 1). We recorded the operating
ESP PIPa and production rate (Qa) under the design conditions (Figure 3a).

Step 3: We calculated the PIPmin (PIPmin = PIPa + 0.05 PIPa) and PIPmax (PIPmax = PIPa
− 0.05 PIPa) and projected these onto Figure 3a to compute Qmin and Qmax (Figure 3b).

Step 4: We performed nodal analysis at the ESP discharge point (nodal point B,
Figure 1) and estimated the discharge pressure of the operating pump (Pda) (Figure 4a).

Step 5: We plotted Qmin and Qmax (estimated in step 3) to compute Pdmin and Pdmax
for the ESP discharge point (Figure 4b).
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Figure 2. (a) Operating BHP for a naturally flowing well. (b) Static BHP for a dead well.

Figure 3. ESP PIP operating threshold limits. (a) Design conditions. (b) Minimum and maximum
normal operating threshold limits.

Moreover, based on Equations (9) and (10), a conceptual graph showing the variation
in the tubing performance (TPR) curve was developed by reference to the ESP operating
conditions. In Figure 5a–d, the TPR-ESP curve adequately represents the ESP tubing
performance. As shown in Figure 5a–d, PIPa falls when the ESP is installed as designed.
However, the ESP performance falls as the gas fraction increases inside the pump; the TPR-
ESP curve is thus shifted upward until the ESP shuts down. Therefore, the PIP increases,
and the oil production rate (Qo) decreases, compared with the design parameters.

Figure 4. Computation of the ESP (discharge pressure) operating threshold limit. (a) Design condi-
tions. (b) Minimum and maximum normal operating threshold limits.
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Figure 5. Variations in TPR curves as ESP performance varies. (a) Multiphase flow (dead well),
(b) single-phase flow (dead well), (c) multiphase flow (naturally flowing well), (d) single-phase flow
(naturally flowing well). The TPR-ESP curve reflects the TPR of a well with an ESP when the nodal
analysis is performed at the intake (nodal point A of Figure 1).

Using Equations (11) and (12), a conceptual graph showing IPR curve variation was
drawn to reflect production well status (ESP shutdown, normal ESP operation, and abnor-
mal ESP operation) at the ESP discharge node (point B of Figure 1). The ESP performance
curve is added to the IPR curve to generate the IPR + ESP curve (Equation (11)); this ade-
quately represents the inflow performance of the ESP. As shown in Figure 6a–d, when an
ESP is normally installed (i.e., under the design conditions), normal ESP operation increases
the Pd and Qo, compared with abnormal ESP operation or ESP shutdown. Reduced ESP
performance shifts the IPR curve downward, thereby reducing Qo and Pd.

4.4. Model Validation and Interpretation

To evaluate the model’s utility, we used Delaware Basin oil well data to validate
and calibrate the model under field conditions. We used the Schlumberger PIPESIM
software (version 2017.01) to build a horizontal well model, then calibrated the model using
field data, as shown in Figure 7. A horizontal oil well was considered as a test example.
Table 2 summarizes the well, reservoir, fluid, and production data used in this model.
The IPR curve was developed using the pseudo-steady state gas equation established by
Babu and Odeh [36]. The pressure drop in the tubing was estimated by employing the
Hagedorn and Brown correlation for vertical sections and the Beggs and Brill correlation
for horizontal sections [37,38]. Thereby, the model estimated an approximate oil production
rate of 430.3 STB/d. Less than 0.07% relative error was calculated compared to the field
production rate.
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Figure 6. IPR curve variations at various ESP performances. (a) Multiphase flow (a dead well);
(b) single-phase flow (a dead well); (c) multiphase flow (a naturally flowing well); (d) single-phase
flow (a naturally flowing well). The IPR + ESP curve adequately reproduces the IPR + ESP curve
when the nodal analysis is focused on the discharge node (nodal point B of Figure 1).

After that, ESP equipment optimized for wells of various types was selected during
nodal analysis. Then, the GVFs were increased from 0.03 to 0.99 at a fixed gas–oil ratio
(GOR) and water cut (Wcut); the model was tested under multiphase conditions when GOR
= 2218SCF/STB and WC = 92.9% (real well data) and under single-phase conditions when
GOR = 100 SCF/STB and Wcut = 0 (artificial data). We used the homogenous model to
calculate the corresponding heads and PIP/Pd differential pressures at specified GVFs.
Thus, we performed a sensitivity analysis of ESP behavior at the intake and discharge
nodes using the calculated differential pressures when the GVF varied.

The Pd and PIP values at various GVFs were compared with the values of the specified,
normal operating ranges (within ±5% of the design conditions). We developed a method
predictive of ESP operation conditions, from normal to shutdown (Table 3). The PIPs
calculated at nodes were used to predict the critical gas fractions (λc values) at which an
ESP abnormality (surging) commenced. For example, Ref. [15] showed that abnormal
ESP operation commenced when the Turpin correlation ∅Turpin ≥ 1 (Table 1). Using this
correlation, the PIPs appropriate for all pump conditions studied during nodal analysis
were used to compute the corresponding critical gas fractions. We also employed the
correlations established by Cirilo, Romero Dunbar, and Zhou (Table 1).
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Figure 7. Model validation process.

Table 2. Input data sets, field example oil well.

Parameter

Reservoir pressure (psia) 3378.93
Reservoir temperature (F) 206
Payzone thickness (ft) 68
Horizontal distance (ft) 3901
Well permeability, (kx, ky, kz, respectively) (md) 0.05, 0.05, 0.05
Water cut (%) 92.9
Gas oil ratio, GOR (SCF/STB) 2218
Gas SG 0.65
API 42.98
Well measured depth (MD) (ft) 12,216
Tubing measured depth (MD) (ft) 7021
Tubing ID (in) 2.785
Oil production rate (STB/d) 430

Table 3. Our scheme for prediction of ESP operation conditions.

Type of Production Well ESP Operating Condition At PIP Node At Pd Node

Natural flowing well
(or dead well)

Normal PIPmax < PIPa < PIPmin Pdmax > Pda > Pdmin

The transition from normal to
abnormal conditions (surging) PIPa = PIPmin Pda = Pdmin

Abnormal operation PIPa > PIPmin Pda < Pdmin

Gas locking (pump stopped);
return to

natural flow
PIPa = Pda = BHP Pda = Pda = BHP
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5. Results
5.1. Results of Nodal Analysis Simulation

The effects of an increasing GVF on ESP performance were evaluated at both the intake
node (nodal point A, Figure 1) and the discharge node (nodal point B, Figure 1). The intake
node evaluation yielded the operating PIP given by the intersection of the TPR-ESP and
IPR curves. Similarly, evaluation at the discharge node yielded the operating Pd given by
the intersection of the TPR and IPR + ESP curves.

Case one shows the nodal analysis of GVF variation when an ESP is deployed in a
dead well. Thus, the IPR and TPR-ESP curves do not intersect when GVF = 0.99 (the ESP
is not operating). Figure 8a shows that the TPR-ESP curve moves upward when the GVF
increases; Figure 8b shows that the operating intake nodal point is shifted to the left of
the IPR curve, thereby increasing PIP and reducing Qo. Similarly, Figure 8c shows that
the IPR + ESP curve moves downward when the GVF increases; Figure 8d shows that the
discharge nodal point shifts to the left of the minimum point on the TPR curve. Because of
these changes, both Pd and Qo decrease. The pressure difference (∆Ppump) between PIP
and Pd gradually decreases as GVF increases. Thus, ESP performance and oil production
both decrease.

Case two shows the nodal analysis of GVF changes when an ESP is deployed in
a naturally flowing well; the TPR-ESP and IPR curves intersect when the GVF is 0.99,
although the ESP is not operating. Similar to case one, an increase in the GVF degrades
ESP performance, thereby increasing the TPR curve (Figure 9a,b) and decreasing the IPR
curve (Figure 9a,c). Qmin develops at GVF = 0.69 for a multiphase well (Figure 9b,d). Thus,
the ESP operation is abnormal when GVF exceeds 0.69. However, for a single-phase well,
ESP operation is normal despite a GVF of 0.99 (Figure 9a,c) because all intersection points
of the TPR and IPR curves are within the reference threshold normal ranges.

The changes in the TPR and IPR curves when the GVF increases can be interpreted
over three phases:

Phase I: Stable ESP operation. In this phase, the TPR and IPR curves intersect within
the normal operating ranges, irrespective of the ESP operating point. The intersections
(TPR-ESP and IPR curves or IPR + ESP and TPR curves) are stabilized within the threshold,
normal operating ranges. For example, at a fixed GOR = 100 SCF/STB and Wcut = 0,
the intersection points remain in the normal ranges until GVF attains 0.79 (dead well,
Figure 8a,c). When GOR = 2218 SCF/STB and Wcut = 92.9%, the intersection points remain
in the normal ranges until GVF exceeds 0.37 (dead well, Figure 8b,d).

Phase II: Abnormal operation. The TPR and IPR curves intersect outside the normal
threshold ranges during this phase. Despite the abnormality, ESP operation continues;
the differential pressure becomes low. At a fixed GOR = 100 SCF/STB and a Wcut = 0,
operation becomes abnormal when the GVF exceeds 0.79 (dead well, Figure 8a,c). When
GOR = 2218 SCF/STB and Wcut = 92.9%, abnormal operation is observed when the GVF
exceeds 0.37 (dead well, Figure 8b,d) or 0.69 (naturally flowing well, Figure 9b,d).

Phase III: The ESP is shut down, and the well operates under natural flow conditions.
This phase comprises two parts, depending on the condition of the well prior to ESP
installation. For a dead well, Phase III is associated with zero production. Conversely,
when the well previously flowed naturally, it shifts to its natural operating point when
this phase initiates. The measured PIP and Pd are very similar to the operating bottomhole
pressure of the (formerly) naturally flowing well; this is the ESP shutdown condition. When
the ESP shuts down, the TPR-ESP and IPR + ESP curves coincide with the curves of the
natural well (at a GVF = 0.99, Figures 8 and 9).

5.2. ESP Operation as Pdisch and PIP Deviate

Awaid et al. [25] found that hydraulic parameters were critical when monitoring ESP
operation under multiphase conditions. Pd reflects the fluid properties in terms of tubing
behavior and slugging effects; PIP reflects the fluid properties below the pump and the
liquid level in the casing. It is important to understand that Pdisch and PIP vary according
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to the GVF; these deviations must be considered when analyzing ESP operation. Figure 10
shows these deviations when the GVF increases. The deviations are greater when an ESP
operates under multiphase conditions; performance degradation is then high.

Figure 8. Nodal analysis of an ESP deployed in a dead well (case 1). (a) The intake node of a single-
phase well at a fixed GOR = 100 SCF/STB and a water cut = 0; (b) the intake node of a multiphase
well at a fixed GOR = 2218 SCF/STB and a water cut = 92.9%; (c) the discharge node of a single-phase
well at a fixed GOR = 100 SCF/STB and a water cut = 0; (d) the discharge node of a multiphase well
at a fixed GOR = 2218 SCF/STB and a water cut = 92.9%.

Figure 9. Nodal analysis of an ESP deployed in a natural well (case 2). (a) The intake node of a
single-phase well (fixed GOR = 100 SCF/STB and water cut = 0); (b) the intake node of a multiphase
well (fixed GOR = 2218 SCF/STB and water cut = 92.9%); (c) the discharge node of a single-phase
well (fixed GOR = 100 SCF/STB and water cut = 0); (d) the discharge node of a multiphase well (fixed
GOR = 2218 SCF/STB and water cut = 92.9%).
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Figure 10. PIP and Pd deviations from the design conditions for two cases. (a) Case 1: ESP deployed
in a dead single-phase well at a fixed GOR = 100 SCF/ST and a water cut = 0; (b) case 1: ESP deployed
in a dead multiphase well at a fixed GOR = 2218 SCF/STB and a water cut = 92.9%; (c) case 2: ESP
deployed in a naturally flowing single-phase well at a fixed GOR = 100 SCF/STB and a water cut = 0;
(d) case 2: ESP deployed in a naturally flowing multiphase well at a fixed GOR = 2218SCF/STB and a
water cut = 92.9%.

5.3. Comparison of Nodal Analysis and Surging Prediction Models

The operating PIPs recorded at every GVF during nodal analysis were used to com-
pute the corresponding critical gas fractions using the models established by Cirilo [17],
Romero [18], Dunbar [16], and Turpin (the correlation model) [15] (Table 1). Except for the
Cirilo correlation, the correlations of the other models were consistent with the predictions
afforded by nodal analysis (Figure 11).

The operating PIP and GVF from the nodal analysis were also used to calculate the
corresponding normalized liquid rate using Zhou (the correlation model) [14] (Table 1).
Both nodal analysis and Zhou normalized rate at different GVFs were compared, and the
results showed a consistent trend (Figure 12). The normalized rate decreasing trend was
observed when GVF increased, indicating the ESP abnormal condition (failed to pump the
liquid at high GVF).

5.4. Changes in the PIP and Pdisch.—A Field Example

A field example was used to evaluate the observed changes in PIP and Pd. Example 1
(Figure 13a) shows that the ESP was operating stably when a sudden gas increase occurred.
This was followed by an abrupt increase in the PIP and a decrease in the Pd. The ESP
was gas locked briefly but quickly resumed normal operation. A PIP increase and a Pd
decrease normally signal a gas lock [34]. Example 2 (Figure 13b) illustrates automatic ESP
shutdown when the differential pressure becomes zero. In this example, an increase of gas
at the ESP intake caused the PIP to rise and the Pd to fall. The ESP operated at increasingly
low production rates until the PIP and Pd attained the same values; the ESP automatically
shut down. Example 3 (Figure 13c) shows the PIP and Pd variations caused by severe gas
degradation. When the pump ingests substantial gas, ESP efficiency is reduced as the Pd
falls and the PIP rises. These trends continue until the lift is insufficient and the ESP shuts
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down. The wellhead production rate becomes zero, as shown by the constant wellhead
pressure [39]. These field examples show that our model will find practical applications.

Figure 11. Critical gas fractions at various PIPs (derived at intake nodes). Case 1: an ESP deployed in
a dead well and in (a) a single-phase well at a fixed GOR = 100 SCF/STB and a water cut = 0; (b) a
multiphase well at a fixed GOR = 2218SCF/STB and a water cut = 92.9%; case 2: ESP deployed in
natural flowing well; (c) a single-phase well at a fixed GOR = 100 SCF/STB and a water cut = 0; (d) a
multiphase well at a fixed GOR = 2218SCF/STB and a water cut = 92.9%.

5.5. Model Assessment

This section compares standard errors, normality, and homogeneity of the critical GVFs
predicted using nodal analysis and the empirical models developed by Cirilo, Romero,
Dunbar, and Turpin (the correlation model). The normalized liquid rate obtained from the
nodal analysis was also compared with Zhou (2010) (the empirical model). The average
deviation error was calculated based on the nodal analysis for each model; thus, 4–13%,
5–13%, 5–14%, 13–17%, and 9–54% increases were observed in the Turpin (1986), Romero
(1999), Dunbar (1989), Cirilo (1998), and Zhou (2010) models, respectively (Figure 14).
Better result matching was observed at the GVF above 0.8; unexpectedly high standard
deviation error in the Zhou model resulted from the low production rate associated with
the dead well conditions. Since the Zhou model relies on the pump design capacity, such as
maximum flow rate, its prediction can be erroneous, especially in a low rate well. The Zhou
model performs better at a high production rate well condition (for example, less than
10% average error was observed when ESP is operating in natural well condition). Other
models are consistent, with less than 17% error in all well conditions. The Shapiro–Wilk
normality test was performed at a 95% confidence level. Except for the Cirilo model, other
correlations were normally distributed in the abnormal range predicted using the nodal
analysis (Tables 4 and 5). We performed a Chi-square test to evaluate the homogeneity of
the results. It was found that the models’ results are homogenous (Table 6).
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Figure 12. Normalized liquid rate at various PIPs (derived at intake nodes and GVF in abnor-
mal range). Case 1: an ESP deployed in a dead well and in (a) a single-phase well at a fixed
GOR = 100 SCF/STB and a water cut = 0; (b) a multiphase well at a fixed GOR = 2218 SCF/STB and
a water cut = 92.9%; case 2: ESP deployed in natural flowing well (c) a single-phase well at a fixed
GOR = 100 SCF/STB and a water cut = 0; (d) a multiphase well at a fixed GOR = 2218 SCF/STB and a
water cut = 92.9%.

Figure 13. Field examples showing variations in ESP performance. (a) An increased GVF causes a
sudden gas lock in the ESP. Reprinted with permission from Ref. [34]. Copyright 2019 Joseph Iranzi.
(b) Automatic ESP shutdown after a gas lock [34]. (c) An ESP gas lock. Reprinted with permission
from Ref. [39]. Copyright 2018 Joseph Iranzi, Han AmSon, Youngsoo Lee and Jihoon Wang.
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Figure 14. Average of standard errors of different models. Single-phase and two-phase indicates the
well condition at GOR = 100 SCF/STB and a water cut = 0, and at a fixed GOR = 2218 SCF/STB and a
water cut = 92.9 %, respectively.

Table 4. Results of the Shapiro–Wilk normality test (critical GVF predicted in abnormal operating range).

Correlation
Case 1a Case 1b Case 2a Case 2b

W p-Value W p-Value W p-Value W p-Value

Nodal analysis 0.969 0.700 0.963 0.700 0.986 0.985 0.986 0.985
Turpin (1986) 0.829 0.075 0.953 0.700 0.847 0.300 0.874 0.300
Cirilo (1998) 0.777 0.035 0.952 0.700 0.846 0.300 0.873 0.300

Dunbar(1989) 0.870 0.300 0.953 0.700 0.847 0.300 0.857 0.300
Romero (1999) 0.876 0.300 0.952 0.700 0.845 0.300 0.872 0.300

W: statistic test value, Case 1a: single-phase dead well, Case 1b: two-phase dead well, Case 2a: single-phase
natural flowing well, and Case 2b: two-phase natural well. The significant p-values (<0.05) are shown in bold.

Table 5. Results of the Shapiro–Wilk normality test (normalized liquid rate calculated in abnormal
operating range).

Correlation
Case 1a Case 1b Case 2a Case 2b

W p-Value W p-Value W p-Value W p-Value

Nodal analysis 0.925 0.300 0.951 0.700 0.994 0.990 0.985 0.965
Zhou (2010) 0.913 0.300 0.852 0.300 0.995 0.700 0.982 0.965

W: statistic test value, Case 1a: single-phase dead well, Case 1b: two-phase dead well, Case 2a: single-phase
natural flowing well, and Case 2b: two-phase natural well.

Table 6. Results of the Chi-square homogeneity test (both normalized liquid rate and critical GVF
obtained in the abnormal operating range).

Correlation
Case 1a Case 1b Case 2a Case 2b

W p-Value W p-Value W p-Value W p-Value

Turpin (1986) 0.03 1.00 0.11 1.00 0.05 1.00 0.05 1.00
Cirilo (1998) 0.02 1.00 0.09 1.00 0.04 1.00 0.04 1.00

Dunbar (1989) 0.03 1.00 0.11 1.00 0.06 1.00 0.06 1.00
Romero (1999) 0.02 1.00 0.14 1.00 0.05 1.00 0.05 1.00

Zhou (2010) 0.02 1.00 0.05 1.00 0.01 1.00 0.01 1.00

W: statistic test value, Case 1a: single-phase dead well, Case 1b: two-phase dead well, Case 2a: single-phase
natural flowing well, and Case 2b: two-phase natural well.
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6. Conclusions and Recommendation

We used nodal analysis to predict abnormal ESP operation when free gas at the ESP
intake suddenly increases. The model was validated using various multiphase surging
models (developed using experimental results) and field data (where the gas lock problem
was reported). Our conclusions are:

(1) Nodal analysis precisely predicted ESP operating conditions by matching real-time
downhole and surface sensor data trends. Nodal analysis can be used for real-time
monitoring of ESP wells.

(2) Nodal analysis can be used to manage future ESP wells; the normal operating ranges
are based on the natural conditions of the well. Such proactive planning prevents
uncertainties that might otherwise arise when an ESP is installed.

(3) The nodal analysis allows quick diagnosis and interpretation of downhole sensor data,
facilitating rapid responses to ESP conditions that might otherwise damage the pump.

(4) We add to the current body of ESP well-monitoring knowledge.

This work is novel in that we introduce (and define) reference, threshold, and normal
operating ranges for the several distinct phases of ESP operation: the stable phase (when
the operating points decrease in such ranges); the abnormal condition (a point outside
of the normal range); and ESP shutdown (before an ESP returns to natural flow status).
Existing methods consider only ESP failure.

Despite the utility of the model, care is needed. The PIP, Pd, and flow rate can be
changed due to the various production conditions (for example, a decrease in reservoir
pressure, a decrease or increase in the productivity index). The reference threshold normal
ranges must then be updated. The model will be particularly useful in oilfields where free
gas is the major cause of potential ESP failure. Further studies are needed to determine
whether the proposed model can be used not only in the high GOR condition but also to
the other ESP failure conditions.
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