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INTRODUCTION: Drosophila melanogaster has
had a fruitful history in biological research be-
cause it has contributed tomany key discoveries
in genetics, development, and neurobiology.
The fruit fly genome contains ~14,000 protein-
coding genes, ~63% of which have human or-
thologs. Single-cell RNA-sequencinghas recently
been applied to multiple Drosophila tissues and
developmental stages. However, these data have
been generated by different laboratories on dif-
ferent genetic backgrounds with different disso-
ciation protocols and sequencing platforms,
which has hindered the systematic compari-
son of gene expression across cells and tissues.

RATIONALE: We aimed to establish a cell atlas
for the entire adult Drosophila with the same
genetic background, dissociation protocol, and

sequencing platform to (i) obtain a comprehen-
sive categorization of cell types, (ii) integrate
single-cell transcriptome data with existing
knowledge about gene expression and cell
types, (iii) systematically compare gene expres-
sion across the entire organism and between
males and females, and (iv) identify cell type–
specific markers across the entire organism. We
chose single-nucleus RNA-sequencing (snRNA-
seq) to circumvent the difficulties of dissociat-
ing cells that are embedded in the cuticle (e.g.,
sensory neurons) or that are multinucleated
(e.g., muscle cells). We took two complementary
strategies: sequencing nuclei from dissected
tissues to know the identity of the tissue source
and sequencing nuclei from the entire head
and body to ensure that all cells are sampled.
Experts from 40 laboratories participated in

crowd annotation to assign transcriptomic
cell types with the best knowledge available.

RESULTS: We sequenced 570,000 cells using
droplet-based 10x Genomics from 15 dissected
tissues as well as whole heads and bodies,
separately in females and males. We also se-
quenced 10,000 cells from dissected tissues
using the plate-based Smart-seq2 platform,
providing deeper coverage per cell. We devel-
oped reproducible analysis pipelines using
NextFlow and implemented a distributed
cell-type annotation system with controlled
vocabularies in SCope. Crowd-based anno-
tations of transcriptomes from dissected tis-
sues identified 17 main cell categories and
251 detailed cell types linked to FlyBase on-
tologies. Many of these cell types are charac-
terized for the first time, either because they
emerged only after increasing cell coverage
or because they reside in tissues that had not
been previously subjected to scRNA-seq. The
excellent correspondence of transcriptomic
clusters from whole body and dissected tis-
sues allowed us to transfer annotations and
identify a few cuticular cell types not detected
in individual tissues. Cross-tissue analysis re-
vealed location-specific subdivisions of muscle
cells and heterogeneity within blood cells. We
thendetermined cell type–specificmarker genes
and transcription factors with different spec-
ificity levels, enabling the construction of gene
regulatory networks. Finally, we explored sexual
dimorphism, finding a link between sex-biased
expression and the presence of doublesex, and
investigated tissue dynamics through trajec-
tory analyses.

CONCLUSION: Our Fly Cell Atlas (FCA) consti-
tutes a valuable resource for the Drosophila
community as a reference for studies of gene
function at single-cell resolution. All the FCA
data are freely available for further analysis
through multiple portals and can be down-
loaded for custom analyses using other single-
cell tools. The ability to annotate cell types
by sequencing the entire head and body will
facilitate the use of Drosophila in the study
of biological processes and in modeling hu-
man diseases at a whole-organism level with
cell-type resolution. All datawith annotations
can be accessed from www.flycellatlas.org,
which provides links to SCope, ASAP, and
cellxgene portals.▪
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Tabula Drosophilae. In this single-cell atlas of the adult fruit fly, 580,000 cells were sequenced and >250 cell
types were annotated. They are from 15 individually dissected sexed tissues as well as the entire head and body.
All data are freely available for visualization and download, with featured analyses shown at the bottom right.
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For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied
model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae, that includes
580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body,
annotated to >250 distinct cell types. We provide an in-depth analysis of cell type–related gene
signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal.
Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types
and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community
and serves as a reference to study genetic perturbations and disease models at single-cell resolution.

D
rosophila melanogaster has had a fruit-
ful history in biological research, dating
back to the experiments of ThomasHunt
Morgan more than a century ago (1),
and has been at the basis of many key

biological discoveries. The highly collaborative
nature of the Drosophila community contrib-
uted to many of these successes and led to the
development of essential research resources,
including a high-quality genome (2), a large col-
lection of genetic and molecular tools, and im-
portant databases such as Flybase (3), FlyMine
(4), FlyLight (5), VirtualFlyBrain (6), andModERN
(7). The fly genome contains about 17,000 genes,
including 13,968 protein-coding genes of which
~63% have human orthologs. Studies such as
ModENCODE (8) and FlyAtlas (9) explored ex-
pression patterns in different tissues but lacked

cell-type resolution. Recent advances in single-
cell technologies have enabled the transcrip-
tomic profiling of thousands of cells at once,
facilitating the creation of tissue-wide atlases.
Several studies have already applied single-cell
RNA sequencing (scRNA-seq) to multipleDro-
sophila tissues and developmental stages (10).
However, these data were generated by dif-
ferent laboratories on different genetic back-
grounds with different dissociation protocols
and sequencing platforms, which has hindered
the systematic comparison of gene expression
across cells and tissues.
Here, we present a single-cell transcriptomic

atlas of the entire adult Drosophila, with male
and female samples separately analyzed, using a
uniform genotype and a unified single-nucleus
RNA-seq (snRNA-seq) platform (11) with two

sequencing strategies: droplet-based 10x Ge-
nomics (12) and plate-based Smart-seq2 (13).
The resulting Tabula Drosophilae, the first
dataset within the Fly Cell Atlas (FCA) Con-
sortium, contains more than 580,000 cells,
resulting in >250 distinct cell types anno-
tated by >100 experts from 40 laboratories.
This atlas reports cellular signatures for each
tissue, providing the entire Drosophila com-
munity a reference for studies that probe the
effects of genetic perturbations and disease
models at single-cell resolution. All data and
annotations can be accessed through multi-
ple visualization and analysis portals from
https://flycellatlas.org (figs. S1 to S3).

Sampling single cells across the entire adult fly

We used a unified snRNA-seq platform for all
samples because it is difficult to isolate intact
cells from many adult Drosophila tissues, es-
pecially cuticular ones (e.g., antenna, wing)
and adipocyte-enriched ones (e.g., fat body). In
addition, snRNA-seq can be applied to large
multinucleated cells (e.g., muscle) and facili-
tates (frozen) tissue collection from different
laboratories. Finally, 70 to 90% of transcrip-
tomic information is preserved from snRNA-
seq compared with scRNA-seq of the same fly
cell types (11).
To achieve a comprehensive sampling, we

used two complementary strategies. First, we
dissected 12 individual tissues from both
males and females as well as three sex-specific
tissues (Fig. 1A). For tissues that are localized
across the body (fat body, oenocytes, and tra-
chea) and cannot be directly dissected, we used
specific GAL4 lines driving nuclear–green flu-
orescent protein (GFP) to label and collect
nuclei using fluorescence-activated cell sort-
ing (FACS). In addition, two rare cell types
were sequenced only with Smart-seq2: insulin-
producing cells and corpora cardiaca cells.
Second, we sorted and profiled nuclei from
the entire head and body, aiming to detect cell
types not covered by the selected tissues. In
total, we obtained 580,000 high-quality nuclei:
570,000 from 10x Genomics and 10,000 from
Smart-seq2 (Fig. 1A).
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To analyze the 10x Genomics data in a re-
producible manner, we used the automated
VSN pipeline (14) (methods and table S1),
which takes the raw sequencing data as input
and performs preprocessing (e.g., normaliza-
tion, doublet removal, batch-effect correction)

to produce LoomX-formatted files with ex-
pression data, embeddings, and clusterings
(Fig. 1B and fig. S4). A presumed artifactual
cluster showed expression of nearly all genes,
so we added an additional preprocessing step
that models and subtracts ambient RNA sig-

nals (15) to remove this cluster, resulting in a
Stringent dataset of 510,000 cells (see methods
and Fig. 1C). However, because adjusting the
gene expression values per cell can introduce
other biases (e.g., overcorrection, removal of
nondoublet cells), we also retained the original
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Fig. 1. Overview of the FCA. (A) Experimental platform of snRNA-seq using
10x Genomics and Smart-seq2. (B) Data analysis pipeline and data visualization
using SCope (17) and ASAP (18). (C) Two versions of 10x datasets: Relaxed
and Stringent. t-distributed stochastic neighbor embedding (tSNE) colors
are based on gene expression: grh (epithelia, red), Mhc (muscle, green),
and Syt1 (neuron, blue). The red arrow denotes an artifactual cluster with
coexpression of all three markers in the Relaxed dataset. (D) tSNE visualization
of cells from the Stringent 10x dataset and Smart-seq2 (SS2) cells. 10x cells

are from individual tissues. Integrated data are colored by tissue (left) and
platform (right). (E) Tissue-level comparison of the number of detected genes
between 10x and Smart-seq2 platforms. (F) Number of cells for each tissue
by 10x and Smart-seq2. Male and female cells are indicated. Mixed cells are
from pilot experiments where flies were not sexed. Different batches are
separated by vertical white lines. (G) All 10x cells from the Stringent dataset
clustered together; cells are colored by tissue type. Tissue names and colors
are indexed as in (F).
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Fig. 2. Cell-type annotation for dissected tissues. (A) Illustration of 15 indi-
vidual tissues: Twelve are sequenced separately from males and females and
three are sex-specific. Fat body, oenocyte, and tracheal nuclei were labeled
using a tissue-specific GAL4 driving UAS–nuclear-GFP. (B) tSNE plot with
annotations for the body wall from the Stringent 10x dataset. *1, epidermal cells
of the abdominal posterior compartment; *2, epidermal cells specialized in

antimicrobial response. (C) Uniform manifold approximation and projection
(UMAP) plot with annotations for the testis from the Relaxed 10x dataset.
(D) tSNE plots of the other 13 tissues from the Stringent 10x dataset. Detailed
annotations are in figs. S6 to S18. (E) Number of unique annotations for each
tissue. Fractions of annotated cells over all analyzed cells from the Relaxed
dataset are indicated in red.
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Relaxed dataset of 570,000 cells. In the analy-
ses below, unless mentioned otherwise (e.g.,
Fig. 2C), the Stringent dataset was used.
Cells from 10x Genomics and Smart-seq2

were well integrated after batch correction
usingHarmony (16) (Fig. 1D). Smart-seq2 yielded
a higher number of detected genes for most
tissues (Fig. 1E) because cells were sequenced
to a higher depth. We analyzed each tissue sep-
arately, combining the male and female runs,
which yielded between 6500 (haltere) and
100,000 (head) cells and a median of 16,500
cells per tissue for 10x and between 263 (male
reproductive gland) and 1349 (fat body) cells
and amedian of 534 cells per tissue for Smart-
seq2 (Fig. 1F). We obtained similar numbers of
male and female cells for non–sex-specific tis-
sues with, on average, 1895 unique molecular
identifiers (UMIs) and 828 genes per cell (fig.
S5). Next, all cells were combined in a meta-
analysis, showing tissue-specific clusters like
the germline cells of the testis and ovary and
shared clusters of common cell types (Fig. 1G
and figs. S24 and S25).

Crowd-based cell-type annotation by
tissue experts

Experts from 40 laboratories collaborated
on cell-type annotation for 15 individual tis-
sues, including 12 tissues for both sexes (an-
tenna, body wall, fat body, haltere, heart, gut,
leg, Malpighian tubule, oenocyte, proboscis with
maxillary palp, trachea, and wing) and three
sex-specific tissues (male reproductive gland,
testis, and ovary) (Fig. 2A). We developed a
consensus-voting strategy within the SCope
web application (https://flycellatlas.org/scope)
(17), where curators annotated clusters at mul-
tiple resolutions (ranging from 0.8 to 8; fig.
S6A), with additional analysis performed in
ASAP (https://flycellatlas.org/asap) (18). To en-
sure that cell-type annotations are consistent
with previous literature and databases and
to allow posteriori computational analyses
at different anatomical resolutions, we used
Flybase anatomy ontology terms (19).
Because some cell types are annotated at

low resolutions and others at high resolutions,
we collapsed all annotations across resolu-
tions and retained the annotation with the
highest number of up votes. All initial anno-
tationswere performed on theRelaxed dataset
and were then exported to the Stringent data-
set, where field experts verified the accuracy
of the annotation transfer (Fig. 2, A to E, and
figs. S6 to S18). Overall, we annotated 251 cell
types in the Stringent dataset (262 cell types
if combining Relaxed and Stringent datasets;
table S2), with a median of 15 cell types per
tissue.
Our dataset provides a single-cell transcrip-

tomic profile for several adult tissues not pro-
filed previously, including the haltere, heart,
leg, Malpighian tubule, proboscis, maxillary

palp, trachea, and wing (figs. S6 to S18). In
these tissues, all major expected cell types
were identified. In the proboscis and maxil-
lary palp (fig. S7, A and B), we could annotate
gustatory and olfactory receptor neurons,
mechanosensory neurons, and several glial
clusters. All seven olfactory receptors expressed
in the maxillary palp were detected. In the
wing (fig. S8), we could identify four differ-
ent neuronal types—gustatory receptor neu-
rons, pheromone-sensing neurons, nociceptive
neurons, and mechanosensory neurons—as
well as three glial clusters. In the leg (fig. S9),
we could distinguish gustatory receptor neu-
rons from two clusters of mechanosensory
neurons. In the heart (fig. S10), we found a
large proportion of resident hemocytes and
muscle cells, with cardiac cells marked by the
genes Hand and tinman constituting a small
proportion. In theMalpighian tubule (fig. S11),
15 cell types were identified, including the dif-
ferent principal cells of the stellate and main
segments. In the haltere (fig. S13), we identi-
fied two clusters of neurons, three clusters of
glial cells, and a large population of epithelial
cells. In some tissues, cell types formed a big
cluster instead of being split into distinct pop-
ulations. In these cases, we identified genes or
pathways that showed a gradient or compart-
mentalized expression. For example, in the fat
body (figs. S14 and S19), themain fat body cells
formed one big cluster, but ourmetabolic path-
way enrichment analysis performed through
ASAP (18) revealed that fatty acid biosynthesis
and degradation are in fact compartmental-
ized, highlighting possible fat body cell heter-
ogeneity in metabolic capacities.
Our crowd annotations with tissue experts

also revealed cell types that had not been pro-
filed previously, such as multinucleated mus-
cle cells (Fig. 2B) and two distinct types of
nuclei among the main cells in the male ac-
cessory gland (fig. S17), a cell type that was
previously thought to be uniform. The high
number of nuclei analyzed allowed identifi-
cation of rare cell types. For example, in the
testis (Fig. 2C), we identified 25 distinct cell
types, covering all expected cell types, includ-
ing very rare cells, such as germinal prolifer-
ation center hub cells (79 nuclei in the Relaxed
version, out of 44,621 total testis nuclei).
Next, we compared the distribution of cells

between 10x and Smart-seq2 and found a good
match based on a coclustering analysis (figs.
S20 and S21). Because Smart-seq2 cells only
account for a small fraction, our previous an-
notations focused on 10x cells. The cell-matched
coclustering analysis allowed us to transfer
annotations from 10x to Smart-seq2 datasets
(fig. S20E), using cluster-specific markers as
validation (fig. S20F). We also identified genes
that were specifically detected using Smart-
seq2 thanks to its higher gene detection rate
(Fig. 1E and fig. S20G). In summary, the high-

throughput 10x datasets form the basis for
identifying cell types, whereas the Smart-seq2
datasets facilitate the detection of lowly ex-
pressed genes and enable future exploration
of cell-specific isoform information.

Correspondence between dissected tissues
and whole head and body

To generate a complete atlas of the fly, we next
performed snRNA-seq experiments on whole-
head and whole-body samples. Whole-body
single-cell experiments were previously per-
formed on less complex animals (20, 21). Full
head and body sequencing provides a prac-
tical means to assess the impact of mutations
or to track diseasemechanisms,without having
to focus on specific tissues. In addition, it could
yield cell types that are not covered by any of
the targeted tissue dissections.
In the head, we annotated 81 mostly neu-

ronal cell types (Fig. 3A and fig. S22). In the
body, we annotated the top 33 most abundant
cell classes, including epithelia, muscle, and
ventral nerve cord and peripheral neurons,
followed by fat cells, oenocytes, germ line cells,
glia, and tracheal cells (Fig. 3B and fig. S23).
Many of these cell classes can be further di-
vided into cell types for further annotation (see
Fig. 2 and figs. S6 to S18).
Next, we examined how well the head and

body samples covered the cell types from the
dissected tissues.We analyzed head, body, and
tissue samples together, with most of the se-
lected tissues clustering togetherwith the body.
We also detected head- and body-enriched clus-
ters (Fig. 3C).Onebody-specific cluster contained
cuticle cells, likely from connective tissue (Fig.
3D). Others were relatively rare cell types in
their respective tissues, such as adult stem cells.
Conversely,most tissue clusters contained body
cells, with only a small number being com-
pletely specific to dissected tissues. Because
tissue-specific clusters were mostly observed
in tissues with high cell coverage, such as the
testis andMalpighian tubule, we anticipated
that these clusters would also be identified
in the body upon sampling a larger number
of cells.
For the head, the antenna and proboscis

with maxillary palp were dissected for tissue
sequencing. Cell types from those two tissues
largely overlappedwith head cells.Many other
cell types, such as central brain cells, including
Kenyon cells (ey, prt) and lamina glia (repo,
Optix), were only detected in the head sample.
To compare our data with existing datasets,

we integrated our head snRNA-seq dataset
(“head” hereafter) with published brain scRNA-
seq data (“brain” hereafter) (17, 22–24) (Fig.
3E). Head-specific clusters made up 20% of
the cells, including the antennae, photorecep-
tors, muscle, cone cells, and cuticular cell types,
whereas the other 80% were present in clus-
ters containing both head- and brain-derived
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Fig. 3. Whole-head and whole-body sequencing leads to full coverage of
the entire fly. (A) tSNE of the whole-head sample with 81 annotated clusters.
See fig. S22 for full cell types. Many cells in the middle (gray) are unannotated,
most of which are central brain neurons. (B) tSNE of the whole-body sample
with 33 annotated clusters, many of which can be further divided into subclusters.
Cells in gray are unannotated. See fig. S23 for full cell types. (C) tSNE of the
entire dataset colored by standardized tissue enrichment, leading to the
identification of head- and body-specific clusters, is shown on the left. Stacked bar
plot showing tissue composition (head, body, or dissected tissues) for different

clusters at Leiden resolution 50 are shown on the right. (D) Examples of head-
and body-specific clusters. (E) Integration of a brain scRNA-seq dataset with
the head snRNA-seq for label transfer. Outlined are example clusters revealed
by the head snRNA-seq dataset but not by the brain scRNA-seq datasets,
including epithelial cells (EPI), photoreceptors (PRs), olfactory receptor neurons
(ORNs), and muscle cells (MUS). (F) Subclustering analysis reveals types of
photoreceptors, including inner and outer photoreceptors, with the inner
photoreceptors further splitting into R7 and R8 types, and mushroom body
Kenyon cells comprising three distinct types: a/b, a′/b′, and g.
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cells covering the neuronal and glial cell types
of the brain. This coclustering across geno-
types and protocols underscores the quality
and utility of our snRNA-seq data compared
with that of scRNA-seq data. Next, we used
machine-learning models to predict annota-
tions per cluster, followed by manual curation
(22). Given the high number of neuron types,
additional subclustering was performed on
each cluster, identifying subtypes of peptidergic
neurons (dimm, Pdf) and olfactory projection
neurons based on oaz, c15, and kn. Finally, we
identified many cell types in the optic lobe,
including lamina (e.g., L1 to L5), medulla (e.g.,
Mi1, Mi15), lobula (e.g., LC), and lobula plate
(e.g., LPLC). Using acj6 and SoxN, we identi-
fied the T4/T5 neurons of the optic lobe that
split in T4/T5a-b and T4/T5c-d subtypes by
subclustering. Abig clumpofneurons remained
unannotated (Fig. 3A), indicating that our
dataset cannot resolve the complexity of the
central brain, which may contain hundreds to
thousands of neuron types.
Subclustering in the combined dataset sep-

arated inner and outer photoreceptors from
the dorsal rim area and ocellar photoreceptors,
with the inner photoreceptors further split-
ting into R7 and R8 types, each with pale and
yellow types based on rhodopsin expression
(Fig. 3F). Additionally, Kenyon cells were split
into three types: a/b, a′/b′, and g (17). These
cases highlight the resolution in our dataset
and the potential of using subclustering to
discover rare cell types.

Cross-tissue analyses allow comparison
of cell types by location

Using thewhole-body andwhole-head sequenc-
ing data, we assigned cells to major cell classes
(e.g., epithelial cells, neurons,muscle cells, hemo-
cytes), which allowed us to compare common
classes across tissues (Fig. 4, A to C, and figs.
S24 and S25). First, we compared blood cells
across tissues by selecting all Hml-positive
cells, a knownmarker for hemocytes (Fig. 4D).
Combining hemocytes across tissues revealed
a major group of plasmatocytes, the most com-
mon hemocyte type (~56%), crystal cells (1.5%;
PPO1, PPO2), and several unknown types (fig.
S26, A and B). Looking deeper into the plas-
matocytes, we uncovered gradients based on
the expression of Pxn, LysX, Tep4, trol, and
Nplp2 that can be linked to maturation and
plasticity, with Pxn-positive cells showing the
highest Hml expression, whereas Tep4, trol,
and Nplp2 are prohemocyte markers (25).
Furthermore, different antimicrobial peptide
families such as the Attacins and Cecropins
were expressed in different subgroups, indi-
cating specialization. Finally, expression of
acetylcholine receptors was specific for a sub-
set of hemocytes, relating to the cholinergic
anti-inflammatory pathway as described in
humans and mice (26). Lamellocytes were not

observed in adults as previously suggested
(27). On the contrary, an unknown hemocyte
type expressed Antp and kn (43 cells, 0.5%)
reminiscent of the posterior signaling center
in the lymph gland, an organization center
previously thought to be absent in the adult
(28, 29) (fig. S26B). These findings highlight
the value of performing a whole organism–
level single-cell analysis and constitute a foun-
dation for investigating the fly immune system
in greater detail.
Second, we compared themuscle cells of the

different tissues (Fig. 4E and fig. S26, C and
D). Muscle cells are syncytia—individual cells
containing many nuclei—and to our knowl-
edge have not been profiled by single-cell se-
quencing before our study. With snRNA-seq,
we recovered all knownmuscle cell types, with
specific enrichment in the body, body wall,
and leg. This comprehensive view of the fly
muscular system highlights a separation of
visceral, skeletal, and indirect flight muscle
based on the expression of different troponins.
Specifically, we discovered gradients of dysf
and fln in the indirect flight muscle, which
may indicate regional differences in these very
large cells (>1000 nuclei) (fig. S26E). We iden-
tified four types of visceral muscle in the gut
based on expression of theAstC,Ms,Dh31, and
CCAP neuropeptide receptors, indicating po-
tential modulators for muscle contraction (30).
Ms and Dh31 have been described to func-
tion in spatially restricted domains (30–32),
suggesting similar domains for AstC and CCAP.
All visceral muscle cells are enriched for the
receptor of Pdf, a neuropeptide involved in
circadian rhythms, pointing toward a function
in muscle contraction as well (33).

Transcription factors and cell-type specificity

Our data allow the comparison of gene expres-
sion across the entire fly. Clustering cell types
showed the germline cells as the most distinct
group, followed by neurons (figs. S27 to S32).
We calculated marker genes for every cell type
using the whole FCA data as background, with
14,240 genes found as amarker for at least one
cell type and a median of 638 markers per cell
type [minimum: visceral muscle (94); maxi-
mum: spermatocyte (7736)]. Notably, markers
specific for cell types in a tissue were not al-
ways specific in the whole body (fig. S33).
Next, we calculated the tau score of tissue

specificity (34) for all predicted transcription
factors (TFs) (3) and identified 500 TFs with
a score >0.85, indicating a high specificity for
one or very few cell types (Fig. 5A and table S3).
Of these TFs, 127 were “CGs” (computed genes),
indicating that their functions are poorly
studied. We found that the male germline
stands out in showing expression of a great
number of cell type–specific TFs. This may be
related to the broad activation of many genes
in late spermatocytes, as discussed below.

Similar analysis across broad cell types (Fig. 5,
B and C) identified 156 TFswith high tau scores,
for example, the known regulators grh for epi-
thelial cells and repo for glia, as well as 24 un-
characterized genes. Network visualization
shows the grouping of central nervous system
(CNS) neurons and sensory organ cells, includ-
ing many sensory neurons, with shared pan-
neuronal factors such as onecut and scrt but
with each cluster having a distinct set of TFs,
such as ey, scro, and dati for CNS neurons and
lz and glass (gl) for sensory neurons.
In addition to the specificity of TF expres-

sion, we predicted gene regulatory networks
based on coexpression and motif enrichment
using SCENIC (31). Because of the stochastic-
ity of this network inference method, we ran
SCENIC 100 times, ranking predicted target
genes by their recurrence. This approach se-
lected 6112 “regulons” for 583 specific TFs across
all tissues, whereby each regulon consists of the
TF, its enrichedmotif, and the set of target genes
that are predicted in at least 5 out of 100 runs.
In fat cells, our analysis predicted a regulon for
sugarbabe (sug), a sugar-sensitive TF necessary
for the induction of lipogenesis (32). In photo-
receptors, the analysis identified a gl regulon,
with key photoreceptor markers such as Arr1,
eya, and multiple rhodopsins as predicted tar-
get genes (Fig. 5, D and E) (33). The SCENIC
predictions for all cell types are available through
SCope (https://flycellatlas.org/scope).
A comparative analysis of genes across broad

cell types or tissues (Fig. 5F and fig. S34) iden-
tified common genes and specifically expressed
genes, such as a shared set of 555 housekeep-
ing genes that are expressed in all tissues. The
testis has the highest number of specifically
expressed genes consistent with previous re-
ports (34), followed by the Malpighian tubule
and male reproductive glands (fig. S34). These
tissue-specific genes seemed to be evolution-
arily “younger” based onGenTree age compared
with the set of commonly expressed genes that
are all present in the common ancestor. This
suggests that natural selection works on the
tissue specialization level, with the strongest
selection on testis, male reproductive tract, and
Malpighian tubules (35). In addition, this anal-
ysis allowed an estimation of transcriptomic
similarity or difference measured by the num-
ber of shared distinct genes. For example, the
two flight appendages, the haltere and wing,
share a set of 16 specifically expressed genes,
reflecting the evolutionary origin of halteres as
a modified wing (36) (fig. S34).

Analysis of sex-biased expression
and sex-specialized tissues

To study sex-related differences, we compared
male- and female-derived nuclei for all com-
mon tissues (fig. S35) and found roX1/2 and
Yp1/2/3 as the top male- and female-specific
genes, respectively. Notably, a large fraction
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Fig. 4. Cross-tissue analyses of common cell classes. (A) Overview of
main cell classes identified throughout the fly cell atlas. Male repr. syst. and
fem. repr. syst., male and female reproductive system; male germ. cell and
fem. germ. cell, male and female germline cells. (B) tSNE plots showing
expression of four markers in four common cell classes. (C) Composition of
whole-head and whole-body samples, showing a shift from neurons to epithelial
and muscle cells. Composition of the entire FCA shows enrichment for
rarer cell classes compared with the whole-body sample. (D) Cross-tissue
analysis of hemocytes reveals different cell states of plasmatocytes. Annotations
marked in blue are hemocytes containing markers of different cell types,
including lymph gland posterior signaling center (LGP), muscle (MUS), antenna
(ANT), neurons (NEU), photoreceptor (PR), male accessory glands (MAG), glia
(G), male testis and spermatocyte (MS), odorant-binding proteins (OBP), and
heat-shock proteins (Hsp). Other abbreviations show top marker gene(s) in

red. Plasmatocytes and crystal cells are indicated. On the right are genes
showing compartmentalized expression patterns within the plasmatocyte cluster.
(E) Cross-tissue analysis of muscle cells reveals subdivision of the visceral muscle
cells based on neuropeptide receptors. Annotations marked in blue are muscle
cells containing markers of different cell types, including neuron (NEU) and male
testis and spermatocyte (MS). Muscle cells from three body parts are indicated:
head muscle (HEAD), body muscle (BODY), and testis muscle (TESTIS). Other
annotated muscle types include indirect flight muscle (IFM), ovarian sheath
muscle (OSM), abdominal visceral muscle (ABD), dpy expressing muscle (DPY),
visceral muscle of the midgut AstC-R2 (VMM-A), visceral muscle of the crop
MsR1 (VMC-M), visceral muscle of the midgut Dh31-R (VMM-D), and visceral
muscle CCAP-R (VM-C). Pdfr is expressed in all visceral muscle cells, including the
ovarian sheath muscle; the other four receptor genes (AstC-R2, MsR1, Dh31-R,
CCAP-R) are expressed in different gut visceral muscle types.
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of genes withmale-enriched expressionwere un-
characterized (37). Theprimary sex-determination
pathway in somatic cells leads to sex-specific
splicing of doublesex (dsx) to encode female-
or male-specific TFs (38) (Fig. 6A). Consistent
with this, we found dsx expression in a largely
non–sex-specific pattern, whereas many other
genes showed sex-biased expression (Fig. 6B).
Next, we performed differential expression

between sexes for all cell types. Notably, cell
types tended to show either high female or
male bias, but not both (Fig. 6, B and C). We

found strong female bias in the excretory sys-
tem, including the principal and stellate cells of
the Malpighian tubule and in the pericardial
nephrocytes (Fig. 6C). Female-biased genes (i.e.,
Ics and whe) were differentially expressed un-
der high-salt conditions, suggesting sex-bias
in nephric ion transport. Across cell types, sex-
biased expression strongly correlated with dsx
expression (Fig. 6D) (39), consistent with the
role of Dsx as a key regulator.
Among all tissues in the adult fly, those best

characterized that have ongoing cellular dif-

ferentiation are the gut, ovaries, and testis.
Trajectory analysis has been performed on the
gut and ovary stem cell lineages in previous
studies (40–42), and our FCA data on gut and
ovary accurately coclustered with these pub-
lished datasets (figs. S36 and S37). Therefore,
we focused on the testis plus seminal vesicle as
a case study. The testis has two populations of
stem cells, the somatic cyst stem cells (CySCs)
that produce cell types with supporting roles
essential to spermatogenesis, and the germ-
line stem cells (GSCs) that produce haploid
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Fig. 5. TF pleiotropy versus
cell-type specificity.
(A) Heatmap showing the
expression of key marker
genes and distinctive
TF profiles for each of the
annotated cell types. TFs
were selected based on tau
score. Cell types were grouped
based on hierarchical terms:
CNS neurons (N), sensory
organ cells (S), epithelial cells
(E), muscle cells (M), glia (G),
fat cells (F), oenocytes (O),
hemocytes (H), (fe)male
reproductive system and
germline (MR, MG, FR, FG),
excretory system (X), tracheal
cell (T), gland (L), cardiac
cell (C), and somatic precursor
cell (P). (B) A network analysis
of TFs and cell classes based
on similarity of ontology terms,
reveals specific and shared TFs
across the individual tissues.
(C) Heatmap showing the
expression of specific TFs per
cell class. Factors from the
literature are highlighted.
(D) Glass is specifically
expressed in photoreceptors
and cone cells in the head.
(E) Overview of the Glass
regulon of 444 target genes,
highlighting known photo-
receptor marker genes.
(F) Gene expression comparison
across broad cell types. Only
sets with more than 10 genes
are shown. The left bar graph
shows the number of uniquely
expressed genes for each
tissue. The top bar graph shows
the gene age in branches,
ranging from the common
ancestor to D. melanogaster–
specific genes (http://gentree.
ioz.ac.cn). See fig. S34 for
a tissue-based comparison.
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Fig. 6. Sex-biased expres-
sion and trajectory
analysis of testis cell
lineages. (A) Simplified
sex-determination pathway.
Sex-chromosome karyotype
(XX) activates Sex-lethal
(Sxl), which regulates
transformer (Tra), resulting
in a female Dsx isoform
(DsxF). In XY (or X0) flies,
Sxl and Tra are inactive
(light gray) and the male-
specific DsxM is produced.
(B) dsx expression and
female- and male-biased
expression projected onto
tSNE plots of all female (top
left) and male (top right)
cells except reproductive
tissue cells (tables S4 and
S5). Female-biased (bottom
left) and male-biased
(bottom right) expression
measured as the percent-
age of genes in the
cluster showing biased
expression in favor of the
respective sex (table S6)
are also shown. The
percentage values were
computed for each
annotated cluster, and
those cluster-level values
were projected onto the
individual cells in the
corresponding clusters.
For all four tSNE plots,
values outside the scale
in the heatmap key are
represented by the
closest extreme color
(> and < signs in the scale).
(C) Scatter plot of female-
and male-bias values
across non–reproductive
cell clusters defined as
percentage of sex-biased
genes (at least twofold
change with false discovery
rate <0.05 based on
the Wilcoxon test and
Benjamini-Hochberg
correction) in the cluster
(table S6). Data point size
indicates cell numbers per cluster (key). Selected clusters are labeled, with those from excretory cells highlighted (brown). MT, Malpighian tubule. (D) Box plots
showing the relationship between dsx gene expression and sex-biased expression (table S5). Clusters (B) were partitioned into the set of clusters with dsx expression
(dsx+) or not (no/low) using dsx expression in germ cells as an expression cutoff. Each box shows hinges at first and third quartiles and median in the middle.
The upper whisker extends from the upper hinge to the largest value no further than 1.5 times the interquartile range (IQR) from the hinge (where the IQR is the
distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value, at most 1.5 times the IQR of the hinge. Outliers
are not shown. p values are based on the Wilcoxon test. (E to G) Trajectory of testis subsets. We used slingshot to infer a possibly branching trajectory for
spermatogonia-spermatocytes (E), spermatids (F), and early cyst cells (G). Shown are the trajectories on a UMAP (top) and the expression patterns of the strongest
differentially expressed genes, together with the smoothed proportions of annotated cells and average number of UMIs along the trajectory (bottom).
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sperm (Fig. 2C). The main testis analysis (Fig.
2C) revealed transitions from GSCs and pro-
liferating spermatogonia to spermatocytes,
then to maturing spermatids, and finally to
late elongation stage spermatids.
We further performed trajectory inference

on spermatocytes and spermatids separately
(Fig. 6, E and F). As expected, the spermato-
cyte stage featured a continuous increase in the
number of genes being transcribed (Fig. 6E),
with many of the strongly up-regulated genes
(kmg,Rbp4, fzo, can, sa, and, for later spermato-
cytes, Y-linked fertility factors kl-3 and kl-5)
not substantially expressed in any other cell
type. Late spermatocytes, however, showed ex-
pression ofmarker genes frommany other cell
types like somatic cells (Upd1, eya), epithelial
cells (grh), muscle (Mhc), or hemocytes (Hml)
(Fig. 5A), although their expression level was
lower than in their marked cell type. Early
spermatids are in transcriptional quiescence,
as can be seen by a very low number of nu-
clear transcripts (Fig. 6F; low UMI), followed
by a burst of new transcription in elongating
spermatids, including many cup genes. In the
somatic cyst cell lineage, we found CySCs ex-
pressing the cell cycle marker string that were
transitioning into postmitotic (no string expres-
sion) early cyst cells and branching into two
related clusters of cyst cells likely associated
with spermatocytes (Fig. 6G).

Discussion

Recent technological developments have en-
abled single-cell transcriptomic atlases of
Caenorhabditis elegans (21) and selected tis-
sues in mice and humans (43–46). Here, we
provide a single-cell transcriptomic map of
the entire adult D. melanogaster, a premier
model organism for studies of fundamental
and evolutionarily conserved biological mech-
anisms. The FCA provides a resource for the
Drosophila community as a reference for studies
of gene function at single-cell resolution.
A key challenge in large-scale cell atlas projects

is the definition of cell types. We addressed this
using a consensus-based voting system across
multiple resolutions. An FCA cell type is thus
defined as a transcriptomic cluster detected
at any clustering resolution that could be sep-
arated by the expression of known marker
genes from other clusters. Further, all annota-
tions were manually curated by tissue experts,
leading to a high-confidence dataset with more
than 250 annotated cell types. We note dif-
ferences in annotation depth for different cell
groups, with some cell types only linked to
broad classes (e.g., epithelial cell), in contrast
to other, more detailed cell types (e.g., differ-
ent olfactory receptor neurons). We also note
that although many marker genes are useful
in identifying cell types, some marker-gene
expression was not congruent with cluster ex-
pression. This can be caused by discrepancies

betweenmRNA and expression or bymistakes
that were made in the literature. These exam-
ples highlight the need for and the opportu-
nities presented by TabulaDrosophilae to serve
as the basis for future validation.
We have generated lists of marker genes

per cell type with different levels of specificity,
ranging from the tissue-wide to the animal-
wide level. This distinctive level of precision
presents a blueprint for future integration
with other datamodalities such as single-cell
assay for transposase-accessible chromatin
(ATAC)–seq (47) and spatial omics and for gen-
erating cell-type reporter lines to study new
cellular functions. Furthermore, the large num-
ber of uncharacterized genes that show cell-
type specific, sex-biased, or trajectory-dependent
expression provides the foundation for many
follow-up studies. Our analysis also presents
several technical novelties, including the use of
reproducible Nextflow pipelines (VSN, https://
github.com/vib-singlecell-nf), the availability of
raw and processed datasets for users to explore,
and the development of a crowd-annotation
platform with voting, comments, and refer-
ences through SCope (https://flycellatlas.org/
scope), linked to an online analysis platform in
ASAP (https://asap.epfl.ch/fca). These elements
may inspire future atlas projects. Given thework
in other model organisms, we also envision a
use for the FCA data in cross-species studies.
Furthermore, TabulaDrosophilae is fully linked
to existingDrosophila databases by a common
vocabulary, benefitting its use and integration
in future projects. Finally, all FCA data are
freely available for further analysis through
multiple portals and can be downloaded for cus-
tom analysis using other single-cell tools (fig.
S1; links available on www.flycellatlas.org).

Materials and methods summary

For most samples, 5-day-old adult w1118 flies
were used for both male and female tissues
except sex-specific tissues. We estimated the
required tissue number based on three factors:
total cell number in each tissue, targeted cell
number, and recovery rate. Fly tissues were
dissected by different dissection labs, flash-
frozen using liquid nitrogen, stored at –80°C,
and then processed using the same platform.
The snRNA-seq was largely adapted from our
recently published protocol (11). All libraries
were sequenced using Illumina NovaSeq 6000.
Before read alignment, the raw FASTQ files

from 10x Genomics were processed with the
index-hopping-filter software. A Cell Ranger
(version 3.1.0) index was built from a pre-
mRNA GTF from the Flybase version r6.31. To
ensure reproducibility of the 10x Genomics
data processing, all the analyses from raw
counts to final processed files were performed
using the Nextflow VSN-Pipelines. Two ver-
sions of the processed data were generated:
Relaxed and Stringent. For most analyses, we

focused on the Stringent dataset, which should
be used as a default for new users. Leiden clus-
tering was performed for a wide range of res-
olutions, and large clusters were subclustered.
Crowd annotation by tissue experts was per-
formed across all cluster resolutions in SCope,
using terms from the FBbt ontology. ASAP was
used to perform more specific analyses. Loom
and H5AD files are available for download, vi-
sualization in SCope and cellxgene, and de-
tailed analyses in ASAP.
10x Genomics and Smart-seq2 data were

integrated using Harmony. For brain-head
data integration, annotationswere addedusing
computational approaches, and all annotations
were then manually curated in jamborees. For
common cell analyses, hemocytes and muscle
cells were extracted from different tissues, and
harmonywas used to remove batch effects. Cell
type–specific TFs were identified using the tau
factor, and TF regulons were predicted using
SCENIC. For the sex-bias analysis, sex-specific
cells were removed, and about 270,000 cells
from 176 annotated clusters were used to cal-
culate male- and female-bias genes for each
cluster. Trajectory analyses of the testes were
performed using slingshot. The strongest dif-
ferentially expressed genes along the trajectories
were calculated and shown using heatmaps.
Detailed descriptions of all experimental

protocols and analyses are provided in the
supplementary materials.
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Cell type diversity in a whole fly
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