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a b s t r a c t

The defect states and electrical properties of AlxGa1-xN (x ¼ 0.4) grown by hydride vapor

phase epitaxy (HVPE) were investigated. To identify the effect of incorporation of elemental

O in AlxGa1-xN crystals, HVPE growth of AlxGa1-xN crystals was conducted with and without

the flow of O2. The crystal quality and electrical properties of the AlxGa1-xN layer was

analyzed by X-ray diffraction and deep level transient spectroscopy (DLTS). Schottky de-

vices for IeV, CeV and DLTS measurement were formed using Ni/Au metal and Ti/Al

metallization. Capacitance DLTS spectra showed two types of deep traps of H1 and H2 in

Al0.4Ga0.6N grown without oxygen, while H1’ traps were observed in Al0.4Ga0.6N grown with

oxygen. All traps were hole-like traps with activation energies of 1.3 eV(H1), 0.59 eV(H2),

and 1.2 eV(H1ʹ). These results show that the oxygen atoms can improve the crystal quality

and suppress the defect states in AlxGa1-xN crystals.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

AlN and AlGaN have favorable properties in high thermal

conductivity, mechanical strength, and radiation hardness,

which show promise as new materials for semiconductors

such as ultraviolet light-emitting diodes (UV-LEDs), radio fre-

quency applications such as surface acoustic wave (SAW)

devices [1e6], and field emitters [7,8]. When the Al/Ga ratio is

changed in AlxGa1-xN, an emission spectrum is generated in

the wavelength range from 210 to 365 nm [9]. However, the

quantum efficiency of AlxGa1-xN LED is about 3% [10]. This

value is too low. To improve the performance of the device,
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homo-substrates must be used. However, due to the lack of

AlGaN native substrates, conventional AlGaN films commonly

have been grown on foreign substrates such as sapphire (a-

Al2O3) using hydride vapor phase epitaxy(HVPE), or metal-

organic chemical vapor deposition (MOCVD) [11]. In this case,

the AlGaN layer exhibits a high dislocation density and point

defects, which was induced by lattice mismatch and thermal

expansion coefficient (TEC) differences between substrates

and films [12]. These are the major causes of the decreased

mobility, quantum efficiency and reliability of LEDs [13,14]. To

address these issues, it is important to understand the states

and origin of faults in the AlGaN epilayer. In addition, AlGaN is
(E.K. Kim).
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Fig. 1 e Schematic diagram of the Al0.4Ga0.6N Schottky

device.
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the formation of native defects and their complexes, such as

Al vacancy and the Al vacancyeoxygen complex which pro-

vide the electronic levels inside the band gap. These deep level

centers are partly responsible for the low n-type conductivity

observed in Si-doped AlN and AlGaN alloys and reduced deep

ultraviolet (DUV) emission efficiency.

Understanding basic point defects and their electronic

structure is crucial to further improve material quality and

consequently improve the performance of AlGaN-based de-

vices. Deep level transient spectroscopy (DLTS) is a useful

method for determining the defect state in the epilayer. Using

this method, the activation energy, capture cross-section, and

trap density of the defect can be obtained, thereby speculating

the origin of the defect.

In this paper, we study the effect of oxygen on defect states

and electrical properties and the defect origin of AlxGa1-xN

grown by HVPE, elucidating the mechanism by which these

influence the performance of an AlGaN-based device.
2. Experiment

The AlGaN layers were grown on a c-plane sapphire substrate

under atmospheric pressure at 1373 K using a horizontal

home-made hot wall HVPE system. Metallic Al and Ga were as

used as a Group III precursors, NH3 was chosen as a reactive

gas, andN2was used as the carrier gas. To identify the effect of

incorporation of elemental O in AlGaN crystals, one set of

experiments was conducted with flowing O2 and another set

was conducted without flowing O2 [15]. First, HCl gas, NH3 gas,

and O2 gas were supplied to the reactor for 5 min to form the

oxygen terminated surface on the sapphire substrate. This is

the surface treatment stage. Next, HCl gas was reacted with

liquid Ga and Almetal to formGaCl and AlCl3 gas at 823 K. The

NH3, GaCl, AlCl3 and O2 gases were then fed into the growth

zone to form an AlGaN layer at 1373 K. This indicates the

growth stage. The V/III ratio was approximately 10. In the

second experiment, an AlGaN crystal was grown under the

same conditions without any intentional supply of O2 in the

whole stage. The content of x in AlxGa1-xN was controlled by

the flow amount of HCl gas reacting with Ga and Almetal. The

thickness of the grown AlGaN crystals was about 1.5 mm for all

the samples. The growth rates of AlGaN crystals with and

without O2 introduction were 15 mm/h and 30 mm/h,

respectively.

In the AlGaN alloy, when the amount of Al is high, the

native oxide is well formed on the surface of the AlGaN layer.

Prior to metal contact deposition, to remove the native oxide

on surface of the AlGaN layer, the samples were dipped in a

solution of the buffer oxide etchant (BOE) and HCl:H2O (1:1).

After the surface cleaning, the Ti/Al (30/70 nm) metal was

deposited on the Al-face of AlGaN to form Ohmic contacts

using thermal evaporation. Thereafter, it was annealed at

850 �C in N2 ambient for 1 min [16]. The Ni/Au (50 nm/100 nm)

for the Schottky contact was formed on the Al face by thermal

evaporation. The schematic diagram of the AlxGa1-xN

Schottky device is shown in Fig. 1.

In AlxGa1-xN, the bandgap changes with Al mole fractions

can be calculated using the following equation: [17].
EgðxÞ¼ ð1�xÞEgðGaNÞ þ xEgðAlNÞ � bxð1� xÞ (1)

where Eg(GaN), Eg(AlN), and b are 3.5 eV, 6.1 eV, and 0.86 eV,

respectively [18e20]. On the other hand, the activation energy

(DEa) and capture cross section (sn) of defect states appeared in

DLTS spectra were obtained by the Arrhenius plot follow the

equation [1].
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Here, en is the emission rate, T is the measured temperature, k

is the Boltzmann's constant, m* is the effective mass, and h is

the Plank's constant. Furthermore, the trap density Nt can be

determined as follows:

Nt ¼2Nd$ DC=C (3)

where Nd is the donor concentration, DC/C is the capacitance

transient value of each trap peak.

To confirm the content of x in AlxGa1-xN crystal, the near-

band-edge (NBE) peak in photoluminescence (PL; EtaMax

PLATOM)wasmeasured at room temperaturewith the 213 nm

wavelength. The crystal quality of the AlxGa1-xN films was

investigated by the (0002) X-ray omega scan rocking curve

(Panalytical, X'Pert Pro MRD cradle). The DLTS measurement

was performed in the temperature range of 80e600 K by a

HP4280A capacitancemeter and a Lake Shore 331 temperature

controller. The pulse voltage (Vp) was 0 V, and measurement

voltage (Vm) was �2 V. The filling pulse width was 20 ms, and

the measurement interval was 50 ms.
3. Result and discussion

Fig. 2(a) shows PL spectra to measure the Al mole fraction

from the bandgap. AlxGa1-xN with and without oxygen has a

sharp peak at 4.35 eV (~285 nm), which is called the near-

band-edge(NBE) band. The increase in the bandgap of

AlxGa1-xN as the Al mole fractions increase. The NBE peak of

AlxGa1-xN obtained by Equation (1) is 4.36 eV. From this value,

it can be observed that the value of x is 0.4.

High resolution X-ray diffraction (HR-XRD) was measured

to determine the crystal quality of the Al0.4Ga0.6N epilayer

grown on the sapphire substrate by HVPE. The omega scan

HR-XRD rocking curve for (002) planes of Al0.4Ga0.6N epilayer
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Fig. 2 e (a) Near-Band Edge of PL spectra and (b) HR-XRD rocking curve of (002) planes of the Al0.4Ga0.6N epilayer grown with

and without oxygen.
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grown with and without oxygen is shown in Fig. 2(b). The full

width at half maximum (FWHM) of the X-ray rocking curve for

the (002) plane was compared to confirm the crystalline

quality of the Al0.4Ga0.6N epilayer with and without oxygen.

The FWHM of X-ray rocking curve of Al0.4Ga0.6N with and

without oxygen were 540 arcsec and 648 arcsec, respectively.

This resulted in better crystalline quality of the Al0.4Ga0.6N

epilayer, grown with oxygen. This inclination appears to be

consistent with that previously reported effect of oxygen on

the growth of the AlN epilayer [15].

The currentevoltage(IeV) measurements of the Ni/Au

Al0.4Ga0.6N Schottky diode was performed at room tempera-

ture. Measurement was performed from 5 V to �5 V, Fig. 3

shows that the Ni/Au Al0.4Ga0.6N Schottky diode is well-

formed. In addition, the inset in Fig. 3 shows that the for-

ward and reverse leakage currents increase exponentially

with bias voltage and involve thermoelectric field emission

and trap-assisted tunneling [1,21]. Furthermore, the

Al0.4Ga0.6N without oxygen is higher in leakage current at the

reverse voltage thanAl0.4Ga0.6Nwith oxygen, it can be inferred

that Al0.4Ga0.6N without oxygen hasmore defects. The ideality

factor at room temperature based on the IeV data of

Al0.4Ga0.6N was obtained 1.50 for grown with oxygen, and 1.89

for grown without oxygen.
Fig. 3 e IeV Characteristic of the Ni/Au/AlGaN Schottky diode a

Al0.4Ga0.6N without oxygen.
Fig. 4 shows the capacitanceevoltage (CeV) depth profile

measured at room temperature. Measurement was performed

from 0 V to �5 V. Based on the CeV measurement results(in-

set), we confirmed that the depletion region of the Al0.4Ga0.6N

epilayer was well-formed. The carrier concentration of the

Al0.4Ga0.6N epilayer with and without oxygen during the

growth were 1.97 � 1017 cm�3, 6.29 � 1016 cm�3, and the

Schottky barrier height of the Al0.4Ga0.6N epilayer with and

without oxygen was 1.00 eV and 1.01 eV, respectively. The

difference in carrier concentration between the Al0.4Ga0.6N

epilayer with and without oxygen seems to be the effect of

oxygen spilled during growth. The fact that the carrier con-

centration of the Al0.4Ga0.6N epilayer with oxygen is higher

than the Al0.4Ga0.6N epilayer without oxygen is in good

agreement with oxygen acting as an n-type dopant.

Fig. 5 shows the DLTS signal an emission rate of 5.12 Hz

and the Arrhenius plot(inset). DLTS signal of Al0.4Ga0.6N epi-

layer with oxygen (Fig. 5(a)) shows a hole like trap near 400 K

(H10). The H1 (460 K) and H2 (350 K) traps were obtained from

Al0.4Ga0.6N epilayer without oxygen(Fig. 5(b)). The H1 and H10

traps have similar activation energies and capture cross sec-

tions. The parameters of deep levels were obtained by using

the Equation (2), and then the activation energy of H1 and H10

are 1.3 ± 0.05 eV and 1.2 ± 0.05 eV, respectively. The capture
t room temperature. (a) Al0.4Ga0.6N with oxygen, (b)
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Fig. 4 e CeV Characteristic and depth profile of the Al0.4Ga0.6N epilayer (a) with oxygen, (b) without oxygen.

Fig. 5 e DLTS signal and Arrhenius plot(inset) of the Al0.4Ga0.6N epilayer (a) with oxygen, (b) without oxygen.

Table 1 e Deep level parameters measured from the Al0.4Ga0.6N epilayer.

Sample Carrier traps Activation energy (eV) Capture Cross Section (cm2) Trap density (cm�3)

Al0.4Ga0.6N with oxygen H10 1.2 ± 0.05 3.37 � 10�13 1.82 � 1014

Al0.4Ga0.6N without oxygen H1 1.3 ± 0.05 4.45 � 10�13 1.25 � 1015

H2 0.59 ± 0.01 1.47 � 10�18 7.95 � 1014

j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c hno l o g y 2 0 2 2 ; 1 7 : 1 4 8 5e1 4 9 01488
cross section of H1 and H10 are 4.45 � 10�13 cm2, and

3.37 � 10�13 cm2, respectively. The activation energy of H2 is

0.59 ± 0.01 eV above the valence band edge. The capture cross

section of H2 is 1.47� 10�18 cm2. The density for each trapwas

calculated as 1.25 � 1015(H1), 7.95 � 1014(H2), and

1.82 � 1014(H1’) cm�3, respectively, by the Equation (3). The

defect states are summarized in Table 1.

In general, the point defect is easily produced as the Al

mole fraction of AlxGa1-xN increases, and the origin is from the

cation vacancies (VIII) or related complex [22,23]. The origin of

the trap H1 and H10 is the native cation(group III sublattice)

vacancy(VIII) such as VGa and VAl [24,25] or VIII-ON
2-/1- [26,27],

and the H2 origin seems to be VIII-2ON
1�/0 [26e28]. The defect

measurement results were compared with or without oxygen
flow during growth of the Al0.4Ga0.6N epilayer. The additional

H2 trap was only observed in the Al0.4Ga0.6N epilayer without

oxygen, and this defect is believed to have disappeared from

the Al0.4Ga0.6N with the oxygen sample due to the oxygen

spillage during Al0.4Ga0.6N epilayer growth. Further research is

needed to determine how the H1’ defect in the Al0.4Ga0.6N

epilayer with oxygen during growth will affect the device.
4. Conclusion

We investigated the crystal quality and defect states in AlxGa1-

xN based Schottky diodes to identify the effect of incorpora-

tion of oxygen in AlxGa1-xN crystals. It is confirmed that the Al
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mole fractions of the AlxGa1-xN crystal is 0.4 from the value of

the NBE peak in the PL spectrum. We can verify that the

crystal quality the Al0.4Ga0.6N epilayer with oxygen was better

than thatwithout oxygen from the XRDdata. The defect states

were investigated by DLTS, and there are three types of a hole-

like trap in the device. The activation energy of each trap is

1.3 ± 0.05 eV (H1), 1.2 ± 0.05 eV (H10), and 0.59 ± 0.01 eV (H2).

Capture cross sections of the trap are 4.45 � 10�13 cm2 (H1),

3.37 � 10�13 cm2 (H10), and 1.47 � 10�18 cm2 (H2), respectively.

Additionally, each trap density is 1.25 � 1015 cm�3 (H1),

7.95� 1014 cm�3 (H2), and 1.82� 1014 cm�3 (H10).The trap origin

of H1 and H10 is the VAl-VO complex or VIII-ON and the origin of

H2 is VIII-2ON. The H2 trap has been further observed in the

Al0.4Ga0.6N epilayer grown without oxygen, and this defect

was disappeared by oxygen spilling during growth. As a result,

the defect concentration was reduced, and the crystal quality

was improved. In conclusion, the O2 flow used for AlxGa1-xN

growth reduced the deep level center. Further research is

needed to determine the mechanism by which the H1’ defect

in the Al0.4Ga0.6N epilayer with oxygen during growth will

affect the device.
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