
Received January 25, 2022, accepted February 13, 2022, date of publication February 16, 2022, date of current version February 25, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3152187

A Hierarchical Motion Planning Framework
for Autonomous Driving in Structured
Highway Environments
DONGCHAN KIM , GIHOON KIM , HAYOUNG KIM , AND KUNSOO HUH , (Member, IEEE)
Department of Automotive Engineering, Hanyang University, Seoul 04763, South Korea

Corresponding author: Kunsoo Huh (khuh2@hanyang.ac.kr)

This work was supported by the Ministry of Trade, Industry, and Energy (MOTIE), South Korea, through the Technology Innovation
Program (Industrial Strategic Technology Development Program, Development of Test Procedure Standards for V2I Connected
Automated Driving Systems) under Grant 20014460.

ABSTRACT This paper presents an efficient hierarchical motion planning framework with a long planning
horizon for autonomous driving in structured environments. A 3D motion planning with time information
is a non-convex problem because there exists more than one local minimum point and various constraints
such as roads and obstacles. Accordingly, to deal with high computational complexity and the problem of
falling into a local minimum in an enormous solution space, a decoupled method is utilized, that consists
of two steps: Long-term planning and short-term planning. First, the long-term planner provides reasonable
far-sighted behavior through two processes. In the first process, a rough path that includes a driving strategy
is generated in the 2D spatial space. Then, the jump point search algorithm is utilized with time information
on the path to reduce the computational burden of A*, giving an acceptable quality of solution at the same
time. In this step, a safe, comfortable, and dynamically feasible trajectory is generated. Next, the short-term
planner optimizes a short-sighted trajectory using particle swarm optimization. In this method, a steering
angle set is encoded as a particle, resulting in a safe, comfortable, and kinodynamically feasible trajectory.
The proposed algorithm is implemented and evaluated in a range of vehicle-in-the-loop simulation scenarios,
which include various virtual static and dynamic obstacles generated by Intelligent Driver Model. In the
evaluation results, the proposed method reduced the computation time by up to 0.696 s with increasing the
step cost by up to about 3%. The proposed algorithm is executed every 100 ms for a planning horizon of
10 seconds, and the average computation time is 31 ms with the worst-case computation time of 94 ms.

INDEX TERMS Motion planning, Dijkstra’s algorithm, jump point search algorithm, particle swarm
optimization.

I. INTRODUCTION
During the last few decades, research on autonomous driving
has been actively studied worldwide, both in academia and
the industry [1], [2] to aid drivers and, reduce tedious driving-
related tasks. It also aims to prevent accidents caused by
carelessness of drivers, which accounts for the majority of
casualties [3], [4]. As a core module and being the decision
stage in autonomous driving, the motion-planning module
generates a legal, safe, comfortable, and kinodynamically
feasible trajectory considering the surrounding environments

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .

and vehicle states. To date, many motion planning algorithms
have been developed.

A. RELATED WORK
The motion planning of an autonomous vehicle can be
divided into two approaches [5]: Direct planningmethods and
decoupled planningmethods based onwhether the state space
of the configuration space is decoupled.

In direct methods, the optimal solution is selected instan-
taneously through optimal planning using searching or opti-
mization approaches in a spatiotemporal state space, which
includes time information along with longitudinal and lat-
eral motions. Ziegler et al. [6] used a method that transforms

20102 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-8251-7104
https://orcid.org/0000-0002-1631-7024
https://orcid.org/0000-0003-0290-5121
https://orcid.org/0000-0002-7179-7841
https://orcid.org/0000-0003-0961-8758


D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

a nonconvex problem into a convex problem considering
the comfort, safety, and smoothness of the trajectory. Then,
using a sequential quadratic programming (SQP) algorithm,
a nonlinear optimization problem is solved numerically. It is
well-known that the SQP algorithm should have a good initial
value for an acceptable computation time [7]. Chen et al.
proposed the constrained iterative linear-quadratic regula-
tor (CILQR) to efficiently solve the optimal control prob-
lem with nonlinear system dynamics and a general form
of constraints [8]. The computational efficiency of CILQR
was shown to be much higher than that of the SQP solver.
However, without a good initial value, it can also influence
the convergence speed of the algorithm.

For other approaches of direct methods, spatiotemporal
state lattice-based trajectory planning methods were intro-
duced to generate a feasible trajectory in a dynamic sce-
nario [9], [10]. The choice of resolution of the search space
is a trade-off between computation time and solution quality.
If the resolution increases, the computation time increases.
If the resolution decreases, the optimality of the solution
space may be degraded, and a feasible solution cannot
be found. Dorff et al. proposed a trajectory planning and
control method using nonlinear model predictive controller
(NMPC) [11]. It is validated in partially occluded parking
environments with safe planning horizon of 1 s to 1.5 s.
In addition, in [12] and [13], MPC-based trajectory planning
methods were used. MPC solves a sequence of finite-time
optimization problems in a recursive manner and gen-
erates consecutive control actions regarding the vehicle’s
motion. A comfortable trajectory is generated while guaran-
teeing the safety of an autonomous vehicle. However, this
method shows poor performance for non-convex and high-
complexity problems.

Conversely, decoupled methods attempt to generate an
optimal solution through multiple steps by reducing the
dimensions of the state space. Werling et al. [14] gener-
ated longitudinal and lateral trajectories separately consid-
ering dynamic obstacles in the Frenet coordinate and then
selected one optimal trajectory. Among the generated trajec-
tories using quartic and quintic polynomials versus time, the
jerk-minimizing trajectory is chosen. This method has the
drawback of frequent swerving motion due to shortsighted
planning. In [15] and [16], Li et al. performed a path-speed
decomposition method to obtain an optimal trajectory step
by step. First, a spatial path was generated using a curva-
ture polynomial, and then a trapezoidal velocity profile was
smoothed using a polynomial spline to obtain a trajectory.
This method has the drawback of a short planning horizon
and incompleteness of the solution owing to the finite set
of motion primitives. In [17], a combination of dynamic
programming and quadratic programming was proposed to
generate path and speed profiles, respectively. A 3D station-
lateral-speed problem is transformed into two 2D station-
lateral and station-speed problems to reduce the complexity
of the problem and computation time. Unfortunately, a lim-
itation is that the generated trajectory is not guaranteed to

be kinematically feasible. Xu et al. [18] used a method that
consisted of two parts: Trajectory planning and trajectory
optimization. First, a rough path and speed profile are gen-
erated, and then, they are iteratively optimized. However,
non-holonomic constraints are not guaranteed to be satis-
fied. Zhang et al. proposed a method which adopts several
steps [19]. In the first step, in a Frenet frame, a smooth driving
guide line is obtained, then, optimization is performed for
path generation. The second strategy is the proposition of
piecewise-jerk path formulation. Finally, the optimization is
performed to search a safe and kinematically feasible solution
considering obstacles.

In addition, Li et al. proposed a semantic-level maneu-
ver decision-making and trajectory planning method [20].
After the upper-level maneuver is decided, the lower-level
trajectory planning is decoupled into longitudinal and lat-
eral directions. Then, the selected trajectory is optimized
by the operator splitting quadratic program (OSQP). This
method is validated using Prescan simulator under two
scenarios. Zhang et al. [21] introduced a hybrid trajectory
planning method that generates a smooth, safe, and compu-
tationally efficient solution. However, only static obstacles
were considered in their work. Lim et al. [22] used a hierar-
chical strategy in which a sampling-based approach was used
for behavioral planning, and optimization was conducted for
trajectory planning. However, the planner lacks the capabil-
ity to generate trajectories with long horizons. Jin et al. [23]
proposed amethod to adaptively change the longitudinal hori-
zons considering obstacles for better performance of on-road
autonomous driving with avoidance of both static andmoving
obstacles. In decoupled methods, static obstacle is typically
considered in the path planning stage and dynamic obstacle
is considered in the speed planning stage. Thus, it is not
guaranteed that the decoupled method is optimal. In addition,
the number of tuning parameters is usually much more than
the direct methods and their adjustment becomes difficult.

B. CONTRIBUTION
Nonetheless, a decoupled method was used for motion plan-
ning in our work to reduce the problem complexity and
computational burden. Motion planning for self-driving can
be divided into two parts [24], behavioral planning and tra-
jectory planning. Behavioral planning can be categorized
as high-level decision-making and is responsible for long-
term planning (thorizon > 5s) in complex situations [25].
Many studies have been conducted on state machines when
performing long-term planning [26]–[30]. Various behaviors
are represented as predefined states, and then an appropriate
behavior is selected at every step. However, when the situ-
ation becomes complicated and the maneuvers to model are
increased, it becomes computationally intractable owing to
the exponentially growing number of state transition rules.
Therefore, to address this problem, Hubmann et al. [25]
proposed a generic long-term planning method using the
A* graph search algorithm. However, only longitudinal plan-
ning was regarded in their work.

VOLUME 10, 2022 20103



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

In this paper, a hierarchical framework for motion plan-
ning in structured environments is proposed that provides a
long-term solution that considers both the longitudinal and
lateral directions. The algorithm structure is divided into two
steps, long-term planning and short-term planning. Long-
term planning is performed first and consists of two pro-
cesses. In the first process, an optimal spatial path is obtained
by considering the road geometry and obstacles. This part
determines which space to drive is desirable in a complex
situation. In the next process, a spatiotemporal trajectory is
generated by placing the position and velocity profiles versus
time on the previously obtained long-term path, which has a
reduced searching space. This process provides a legal, safe,
comfortable, and dynamically feasible long-term maneuver.
In the second step, short-term planning is performed using
the front part of the long-term solution. This step provides a
safe, comfortable, and kinodynamically feasible trajectory in
a combined resampling and optimization manner. Finally, the
performance of the proposed algorithm is verified through a
vehicle-in-the-loop simulation (VILS) with a real car under
various scenarios. The contributions of this study can be
summarized as follows:

• The proposed hierarchical scheme can generate safe,
comfortable, and kinodynamically feasible trajectories
that can deal with static and dynamic obstacles.

• Jump point search (JPS) algorithm which has been used
only for the problemswith a uniform step cost, is utilized
in our problem which has a non-uniform step cost with
the help of a carefully designed assumption. Leveraging
JPS algorithm reduces the computation time signifi-
cantly and allows real-time long-term planning with an
acceptable solution quality.

• The short-term trajectory planner optimizes the ini-
tial trajectory from the long-term planner. Furthermore,
steering angle sets are encoded as particles in particle
swarm optimization (PSO) through a kinematic vehi-
cle model that satisfies the non-holonomic constraint.
Additionally, in PSO, the driving comfort, safety, and
dynamic constraints are considered as well.

• The feasibility of the proposed method was demon-
strated in various automated driving scenarios
using VILS.

C. PAPER ORGANIZATION
The remainder of this paper is organized as follows: The
overall algorithm framework is introduced in Section II. The
optimal long-term path planning using the shortest-path algo-
rithm and long-term trajectory planning using a JPS algo-
rithm are described in Section III. In Section IV, short-term
trajectory optimization using PSO algorithm is explained.
Section V explains the experimental setup and evaluation of
the proposed algorithm in a vehicle-in-the-loop environment.
Section VI summarizes the proposed algorithm and discusses
the future work.

II. ALGORITHM FRAMEWORK
To generate a trajectory in an autonomous driving situation
that is non-convex [31], the autonomous vehicle must con-
sider complex driving environments which comprise static
and dynamic surrounding vehicles, roads, traffic rules, etc.
Based on the scene information, an autonomous vehicle must
run within the normal speed range, change lanes, and drive
safely without colliding with surrounding vehicles. There-
fore, when a trajectory is generated, safety, comfort, and
limits of the vehicle kinematics and dynamics should be con-
sidered. The overall algorithm framework for optimal motion
planning is shown in Fig. 1. This study focuses on a hierar-
chical motion planning framework for autonomous driving
on unidirectional roads. The information of the surrounding
vehicle states from the perception module is assumed to be
available to the planning module.

FIGURE 1. Overall hierarchical algorithm framework for optimal motion
planning.

In the first step, the long-term (∼10s) spatial path including
the longitudinal and lateral motions, is obtained by consider-
ing the surrounding vehicles. A maneuver with a lane-level
lateral motion target is generated by considering the current
state and prediction during a specific time horizon of the
surrounding environments.

In the second step, the position and velocity profiles are
applied to the optimal spatial path from the first step to obtain
a long-term spatiotemporal trajectory. Safe motion planning
is carried out in which a collision-free trajectory is gener-
ated considering static and dynamic obstacles. The improved
A* algorithm, JPS, was utilized as the base algorithm to
reduce the computational effort [32]. The original JPS is
optimized for solving the grid-based problem, which has a
uniform cost for each action. In our problem, which is without
a uniform cost for each action, a sub-optimality condition is
defined and the JPS is applied.

Finally, short-term trajectory optimization was performed
using the front-part of the optimal long-term trajectory. It is of
practical importance to follow the adjacent short-term (∼3s)
trajectory when tracking the control of the generated trajec-
tory. In our work, the PSO algorithm was utilized to make the
short-term trajectory kinodynamically feasible, smooth, and
safe.

20104 VOLUME 10, 2022



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

FIGURE 2. Frenet coordinates of the road geometry. (a) Cartesian
coordinates (b) Frenet coordinates.

III. LONG-TERM PLANNING
In this section, the concept of long-term planning of the
proposed hierarchical framework is explained in detail. First,
the optimal spatial path generation is described, then the
spatiotemporal trajectory using the optimal spatial path is
described.

A. OPTIMAL SPATIAL PATH GENERATION
To create an optimal spatial path, a search space is created that
comprise lane-level nodes. An optimal path selection process
was performed on the search space. Each node is represented
by the following 3D space as state n.

N =
{
n ≡ [s, d, l]T |s ∈ R,d ∈ R,l ∈ [1,Nl]

}
(1)

where s and d are defined as the longitudinal and lateral
positions along the road, respectively, l is defined as the right-
most lane having a value of 1 and the leftmost lane having
a value of Nl . The road geometry was defined according to
the Frenet coordinates, as described in Fig. 2. The search
space consists of a total of Np × Nl nodes in the Frenet
coordinates. In addition, except for the initial node n0, the
k th step longitudinal position sk of node nk is expressed as
follows:

1s = v01t lt (2)

sk = s0 + k1s (3)

where vo and s0 are the initial velocity and longitudinal
position of the ego vehicle, respectively, and 1tlt is the time
interval. 1s is determined by the current speed of the ego
vehicle. However, to prevent the search space from disap-
pearing under low speeds, 1s is set to be greater than 1smin,
which is set to 10 m in our work.

Fig. 3 shows an example of the optimal spatial path gen-
eration. The blue vehicle is the ego autonomous vehicle and
the white vehicle represents the obstacle vehicle during the
prediction horizon. The nodes were placed in the direction
of the road with an interval of 1s. Each node is generated
at every layer, and the result is defined as a directed, acyclic
graph. The edge is a linear path from a node in one layer to
a node in the next layer. The cost of edge enk→nk+1 is shown

FIGURE 3. Example of the optimal spatial path generation.

in the following equation, where nk is a node in layer Lk and
nk+1 is a node in layer Lk+1.

J (enk→nk+1 ) = wdistdist(enk→nk+1 )+ wcc(enk→nk+1)

+wcolcol(enk→nk+1 ) (4)

where wdist , wc, wcol are weights for each index.
The first cost term represents the length of each edge using

the Euclidean distance between two nodes, and it prevents
the ego vehicle from changing lanes frequently by assigning
a penalty to a long edge, as shown in (5).

dist
(
enk→nk+1

)
=

∣∣∣−−−−−−−−−−−→nk (1, 2)nk+1(1, 2)
∣∣∣ (5)

The second cost term is for the consistency of consecutive
plans. This term reduces the difference in the lateral offset
between the current path candidate and the previous optimal
spatial path, as described in (6):

c
(
enk→nk+1

)
=
∣∣dprevk+1 − dk+1

∣∣ (6)

where dprevk+1 and dk+1 are the lateral positions of the pre-
viously selected optimal path and a new path candidate,
respectively.

The velocity profile of the previous planning cycle was
used to calculate the predicted position of the ego vehicle.
It is assumed that using the velocity profile of the previous
planning cycle is reasonable because the planning frequency
is sufficiently high. The last collision cost term suppresses the
collision between the predicted ego vehicle and the surround-
ing vehicles predicted with the constant velocity (CV) model
and is defined as

col(enk→nk+1)

=

{
ccol, if

∣∣∣se,i − sOji ∣∣∣ < ssf and li = lO
j
i

0, otherwise
(7)

with ssf =
LO
2
+
Lego
2
+ smargin. (8)

Here, subscript j denotes a number from 1 to No where No is
the number of obstacles in the region of interest. For each
j from i = ks to i = kc, it is checked if the condition
in (7) is satisfied. If the condition is satisfied even once, cost
ccol is imposed. Furthermore, ks and ke represent the start
and end indices of the s-axis position, where the predicted
ego vehicle is within the edge enk→nk+1 , respectively. Addi-

tionally, se,i and sO
j
i are the s-axis positions of the predicted

ego vehicle and jth obstacle Oji at the i
th step, respectively.

VOLUME 10, 2022 20105



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

Further, li and lO
j
i are the lane values of nodes ni and

jth obstacle, Oji, at the i
th step, respectively. A constant value

ccol is set sufficiently large so as to make it dominate the
overall cost function for penalizing collisions. The lengths of
the obstacle and ego vehicle are LO and Lego, respectively. The
margin distance value is smargin, and ssf is the safety distance
to restrict collisions between vehicles.

This becomes a shortest-path problem, in which dynamic
programming is utilized to solve it quickly. The shortest-
path problem is an algorithm for finding the shortest path
between nodes in a graph. In our problem, one node per layer
is selected to construct the path using the cost function in (4).
The optimal solution with minimum total cost is given by a
sequence of nodes on the Np layers covering the space that
satisfies:

argmin
{enk→nk+1 }

Np−1∑
k=0

J (enk→nk+1 ). (9)

B. SPATIOTEMPORAL TRAJECTORY GENERATION
PROBLEM FORMULATION
A spatial path planner provides the desired maneuver to a
spatiotemporal trajectory planner considering the long-term
objective of autonomous driving in the spatial search space.
An optimization problem is formulated to generate a trajec-
tory based on the optimal spatial path given, and is repre-
sented as:

min J = ctot =
Np−1∑
k=0

c (xk , ak , xk+1,Ool)

s.t. xk+1 = A
[
xk
1

]
+ Bak

c(·) = wvcv(xk+1)+ wAcA(ak )+ cO(xk , xk+1,Ool)

Ool =
{[
lOlen, s

O
ol,s,i, s

O
ol,e,i, t

O
ol,s,i, t

O
ol,e,i

]T
|i = 1 · · ·m

}
O =

{
Ok |k = 0 · · ·Np

}
ak ∈ A, (10)

The detailed description is contained in Sections III-B1
to III-B3. State x in the state space X ⊆ R3 is represented
as follows:

X =
{
x ≡ [s, v, t]T |s ∈ R+, v ∈ R+, t ∈ R+

}
(11)

where the state x includes the longitudinal position s,
velocity v and time t .
The problem is formulated as a discrete planning

problem [33] with a similar approach as in [25] and is solved
using the JPS algorithm, which will be explained in detail
in Section III-C.

1) TRANSITION MODEL
The state xk represents a state in the planning step k , and
the state transition model in discretized form is expressed

as follows:

xk+1 =

 sk+1vk+1
tk+1

 =
 1 1t lt 0 0
0 1 0 0
0 0 1 1t lt

 skvk
tk


+

 0.5(1t lt)2

1t lt
0

 ak (12)

where ak is an acceleration candidate belonging to a dis-
cretized acceleration set A. The state is expanded using the
state transition model for a limited time Tlt with an interval
of 1t lt .

2) REPRESENTATION OF THE ENVIRONMENT
The autonomous vehicle encounters a static and dynamic
obstacle O on the road, the information of a specific obstacle

at the k th step is parameterized as a vector,
[
lOklen, s

Ok , dOk
]T

where lOklen is the length of the obstacle, s
Ok is the longitudinal

position, and dOk is the lateral position.
Next, a procedure is performed to extract information

about the obstacles that affect the ego vehicle. The long-
term optimal spatial path obtained is checked to determine
the extent of overlap with the prediction of surrounding vehi-
cles. The overlapped obstacle Ool is represented as follows
using O which includes the accumulated information of Ok
during the prediction horizon:

Ool =
{[
lOlen, s

O
ol,s,i, s

O
ol,e,i, t

O
ol,s,i, t

O
ol,e,i

]T
|i = 1 · · ·m

}
(13)

O =
{
Ok |k = 0 · · ·Np

}
(14)

where sOol,s,i and s
O
ol,e,i represent the start and end positions

in the longitudinal direction of the optimal spatial path at the
ith overlap with the specific obstacle, respectively. Further-
more, tOol,s,i and t

O
ol,e,i represent the time information at the

corresponding step, respectively.
Fig. 4 shows an example in which one obstacle is over-

lapped twice on the optimal spatial path. In Fig. 4(a), the
predicted ego vehicle (light blue color) through the optimal
spatial path (blue solid line) represents the position informa-
tion for the Np step calculated from the velocity profile of the
previous planning cycle.

In Fig. 4(b), the overlapped information is expressed

as
{[
lOlen, s

O
ol,s,i, s

O
ol,e,i, t

O
ol,s,i, t

O
ol,e,i

]T
|i = 1, 2

}
using (13)

where m = 2. It is considered overlapped if the prediction
of the surrounding vehicle is in the same lane as the optimal
spatial path, and the difference in the longitudinal position
between the obstacle and the ego vehicle is within ssf . Assum-
ing highway driving, the variation in ssf owing to the heading
angle is ignored. The overlapped path is represented by the
red line in Fig. 4(b).

At k = 1 and k = 2, the ego vehicle and obstacle overlap.
Therefore, it is assumed that the position of s between the
two points continues to overlap. Next, at k = 3, the optimal

20106 VOLUME 10, 2022



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

FIGURE 4. Example of overlapped information throughout the optimal
spatial path.

spatial path moves to the left lane and does not overlap with
the obstacle at the same time step. Therefore, the first overlap
section is set as: [sOol,s,1, s

O
ol,e,1].

Next, at k = Np − 1, the optimal spatial path and obstacle
do not overlap, whereas at k = Np, they overlap. In this
case, utilizing the s positions of the ego vehicle, s posi-
tion of the obstacle and ssf , the second overlap section is
set as [sOol,s,2, s

O
ol,e,2]. Furthermore, tOol,s,1, t

O
ol,e,1, t

O
ol,s,2, t

O
ol,e,2

represent time information corresponding to each s overlap
value.

3) COST FUNCTION
If an action ak is taken to state xk , it moves to the next
state xk+1 through the transition model. The step cost c
(xk , ak , xk+1,Ool) is defined for each path, and the overall
cost ctot which is summed along the path is represented as
follows [33]:

ctot =
Np−1∑
k=0

c (xk , ak , xk+1,Ool) (15)

The path with a minimal cost from the initial state to the
goal state is obtained using the graph search algorithm. The
step cost is defined as

c (xk , ak , xk+1,Ool)

= wvcv(xk+1)

+wAcA(ak )+ cO(xk , xk+1,Ool) (16)

where wv and wA are weights for each index.

FIGURE 5. Example of solutions compared for a target velocity of 20 m/s
using (a) an optimal solution with A* (b) a suboptimal solution with JPS.

The first cost term represents the deviation from the refer-
ence velocity vref and is defined as follows:

cv(xk+1) =
(
vk+1 − vref (sk+1)

vref (sk+1)

)2

. (17)

The limit velocity vlimit =
√

d̈max
κ

is determined by the

maximum lateral acceleration d̈max and road curvature κ .
Furthermore, there exists a road velocity limit vroad . vref is
decided to be the minimum value of these two velocities:

vref = min(vlimit , vroad ). (18)

The second cost term penalizes the size of the action that
belongs to acceleration setA. It increases the driver’s comfort
by providing cost in the form of squared acceleration.

The last cost term represents the cost of obstacles.
An obstacle has an area on the distance-time plane in state
space X . The cost for the static and dynamic obstacles is
expressed as follows using the overlapped obstacle Ool :

cO(xk , xk+1,Ool) = cOol (xk , xk+1), (19)

with cOol (xk , xk+1) =

{
inf , if

{
−−−→xkxk+1

}
∩ Ool 6= ∅

0, otherwise

(20)

where −−−→xkxk+1 is defined as the set of points on the vector
between xk and xk+1.

C. SPATIOTEMPORAL TRAJECTORY GENERATION
PROBLEM SOLVING
Many search algorithms exist to solve planning problems.
Dijkstra, A*, and JPS are widely used in discrete planning
problems. The JPS algorithm [32] reduces the computation
time of A* by adding only the jump points to the open list.
The optimality of JPS is guaranteed only when the step cost
is uniform, which is not the case in our study. Nonetheless,
to take advantage of JPS in terms of computational efficiency

VOLUME 10, 2022 20107



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

Algorithm 1 Function JPS
Require: xs : start state, g : goal state, h(x) : heuristic, O :

obstacle
1: C← ∅
2: N = {xs, 0, 0, 0,∅}
3: O← N
4: KeepSearching← 1
5: while KeepSearching is 1 do
6: if O is empty then
7: xnew = transition(N .x,−amax)
8: Nnew = {xnew, cnew, h(xnew),−amax ,N }
9: Add Nnew to O

10: else
11: N = Extract node with minimum c+ h from O
12: Add N to C and Delete from O
13: if N is g then
14: trajectory = Backtracking(N)
15: KeepSearching← 0
16: else
17: foreach a ∈Available action(N ) do
18: {xnew, cnew} ←

jump(N .x, a, g,O,N .c)
19: Nnew = {xnew, cnew, h(xnew), a,N }
20: if Nnew ∈ C then
21: continue
22: else if Nnew has the same state with
23: n ∈ O with smaller cost then
24: Replace n with Nnew
25: else
26: Add Nnew to O
27: end if
28:

29: end if
30: end if
31: end while
32: return trajectory

and to carry out long-term planning in real time, the condition
for the sub-optimality of the solution is defined as follows:
• In the time domain where obstacles overlap within the
planning horizon of the ego vehicle, if a = 0 is taken once
as the minimum action, only that action can be taken for
the rest of the time.

A suboptimal solution is equivalent to the optimal solution
if there are no other vehicles on the path, and it further, shows
different movements if there are obstacles within the planning
horizon of the ego vehicle. Let us assume that both the ego
vehicle and the preceding vehicle on the path have a lower
velocity than the reference velocity. In this case, as shown in
Fig. 5(a), the optimal solution when wA is low as in our case
is as follows: first to accelerate to reach the target velocity
of 20 m/s in the example, and then to decelerate near the
obstacle. In contrast, as shown in Fig. 5(b), the suboptimal
solution is to maintain a = 0 after acceleration. If it collides
with the obstacle, as shown in Fig. 5(b), the node lastly

Algorithm 2 Function Jump
Require: xk : initial state, ak : action, g : goal state, O :

Obstacle, Ccum : cumulative cost
1: xk+1← transition (xk , ak)
2: if xk+1 is inside an obstacle then F collision
3: return xk+1, c (xk , ak , xk+1,O)+ Ccum
4: else if xk+1 = g then F goal state
5: return xk+1, c (xk , ak , xk+1,O)+ Ccum
6: else if tk is near end of tOol,e,i for any o ∈ O then
7: F forced neighbor
8: return xk+1, c (xk , ak , xk+1,O)+ Ccum
9: else if a 6= 0 then

10: for a = 0 do
11: if jump (xk+1, ak , g) has finite cost then
12: return xk+1, c (xk , ak , xk+1,O)+ Ccum
13: end if
14: end for
15: else
16: return jump (xk+1, ak , g) , c (xk , ak , xk+1,O)+Ccum
17: end if

FIGURE 6. Forced neighbor. (a) Grid world (b) our problem.

accelerated is not added to the open list. Thereafter, the
trajectory that maintains a constant speed is chosen as the
suboptimal solution.

To an original optimal problem, JPS cannot be utilized
because the minimum action that has a minimum step cost is
not consistent and changes according to the state and action.
However, to solve a suboptimal problem, as in our case,
JPS can be utilized because maintaining a constant speed at
last is a solution, and the constant speed (a = 0) can be
interpreted as the minimum action.

Searching begins with the addition of the current state and
zero cost to the open list. The state (xk ) with the lowest cost
is excluded from the open list, and added to the closed list.
If xk is the goal state, then the search ends. If not, the jump
point is searched within the action set which is modified to
prevent the velocity of the next state from being lower than
zero. If the searched state (xk+1) is in the open list, but the
sum of the step cost and heuristic is lower than that of the
state in the list, the information of the corresponding state
is updated. If the state (xk+1) is not in the open list, it is
added to the open list. This process is repeated for the state
in the open list, and if the selected state is the goal, the

20108 VOLUME 10, 2022



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

search is finished and the optimal profile is constructed by
backtracking via the closed list. If the open list is empty as no
state candidate exists, emergency braking with amax = 8 is
conducted for safety, as added in Lines 7 to 9. The pseudocode
is described in Algorithm 1, where N represents a node con-
sisting of {state, action, path cost, heuristic, parent node}.
Furthermore, O and C indicate the open list and closed list,
respectively.

In Line 18 of Algorithm 1, the JPS algorithm is performed
as described in Algorithm 2, which represents a recursive
function that makes a jump between the nodes. The jump step
continues until the stop conditions are met [25], which consist
of a collision, goal state, and forced neighbor as described
in Lines 2 to 7 of the algorithm. In Line 1, the transition
model described in (12) is utilized to obtain the next state,
xk+1, using the current state and action. Line 2 indicates the
collision situation, Line 4 is when the goal state is reached and
Line 6 is when the forced neighbor is encountered. The forced
neighbor is represented as xk+1 in Fig. 6, which is the state
blocked by obstacles and must be passed through xk [32].
Lines 8 to 11 proceed when the first step’s action is not the
minimum action. In this case, the jump function recurses with
the minimum action and checks if it collides with obstacles.
If no collision occurs, the cost has a finite value, and the next
state xk+1 is returned. Otherwise, the jump is performed again
with the same step action, ak . The search heuristic used in this
study is represented as follows:

h = wv

Tlt−1∑
k=t

(
vk+1 − vref (sk+1)

vref (sk+1)

)2

, (21)

where

vk+1 = vk +1tltargmin
a∈A

(vref (sk+1)− (vk + a1tlt )). (22)

In (22), the action that minimizes the difference between
the reference velocity and the state’s velocity at k + 1 is
calculated. Then, the selected action is applied to obtain vk+1,
which is utilized in (21). This process is repeated from k = t
until k = Tlt − 1. The heuristic is admissible in (21) and
has exactly the same form as the cost cv in the step cost
in (16), and it is guaranteed to have a lower value than the
minimal cost from k = t to k = Tlt − 1 which is expressed
as
∑Tlt−1

k=t c∗ (xk , ak , xk+1,Ool). In addition, as long as the
heuristic is the lower bound on the actual cost and is consis-
tent, the A* algorithm is complete. Consistency is fulfilled
if h(xk ) ≤ c (xk , ak , xk+1,Ool) + h(xk+1)∀xk , xk+1. Thus,
an admissible and consistent heuristic was used in this study.

Next, to verify the performance of the solution using
the JPS, three metrics which comprise the number of nodes
in the open list, computation time, and step cost are evaluated
under the test scenarios generated in Section V. In Table 1,
the metrics are compared with the JPS for the test scenarios.
The average value was used to evaluate the first two metrics,
and the ratio to the JPS was utilized for the last metric. For
the number of nodes in the open list, it is significantly reduced

TABLE 1. Quantitative comparison of evaluation metrics.

for all scenarios. Accordingly, the computation time was also
greatly reduced for each test scenario. Finally, in the worst-
case scenario related to the step cost, the optimal solution
from A* reaches 0.97 times that of the solution from the JPS,
which is acceptable.

IV. SHORT-TERM PLANNING
In this section, the short-term planning of the proposed hier-
archical framework is explained. First, to increase the reso-
lution, resampling of the spatiotemporal trajectory obtained
from long-term planning is performed. Then, the part that
optimizes the trajectory by encoding a steering angle set as
a particle is explained using the resampled trajectory as the
reference position value in the PSO.

A. RESAMPLING OVER TRAJECTORY
The spatiotemporal trajectory obtained from the long-term
planning is a behavioral strategy with a long time horizon.
However, tracking a short-term trajectory is important for the
control module, therefore, the front part of the entire long-
term trajectory was used for the resampling step. The resul-
tant trajectory has sufficient resolution for considering the
continuous changes of the vehicle state. Linear interpolation
between discrete nodes is used for the resampling step. The
planning horizon of Tst is discretized by 1tst resulting in the
Npso number of sample nodes.

B. TRAJECTORY OPTIMIZATION
PSO is an algorithm that was inspired by the flocking behav-
ior of swarms [34]. It is well-known that PSO performs
well when solving nonlinear optimization problems and has
the advantages of a fast convergence speed with only a
small number of parameters that need to be adjusted [35].

VOLUME 10, 2022 20109



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

FIGURE 7. Example for a particle swarm encoding with kinodynamic
constraints. Among the valid trajectories (black) except for
invalid (yellow) trajectories, the optimal trajectory (red) is selected.

In addition, it is a very efficient global search algorithm
and derivative free. Furthermore, although there is no guar-
antee that PSO provides the global optimal solution, it is
less likely to converge to a local minimum and finds good
quality of solution with reasonable computational effort.
For this reason, many studies have used the PSO for path
planning [35]–[38].

Each particle pit at time t in the swarm indicates a
possible solution in the multidimensional search space.
A particle consists of a total of Npso steering angle values
and becomes an Npso-dimensional vector. The fitness of the
particle is calculated through a designed fitness function,
which is described in detail in Section IV-C. Each particle
moves with a speed vector vit , and the trajectory is adjusted
accordingly. In addition, the personal best solution pipbest and
swarm’s best solution pgbest are updated respectively. Each
particle is updated as follows:

pt+1 = vt+1 + pt (23)

Then, the velocity of each particle is updated considering
the current velocity, the personal best solution xpbest , and the
global (the swarm’s) best solution xgbest , as follows:

ut+1=wiut+wpr1(ppbest−pt )+wgr2(pgbest−pt ) (24)

wherewi is the inertia weight damping ratio,wp andwg are the
personal learning coefficient and global learning coefficient,
respectively. Furthermore, r1 and r2 are uniformly distributed
random numbers.

The optimization phase is terminated when the given opti-
mization criteria are met, or if the maximum iteration limit is
reached.

Fig. 7 shows an example of a steering angle set encoding
as a particle of the PSO algorithm, and the ith particle pit ,
is expressed as shown in (25).

pit =
[
δ0, δ1, · · · , δNpso−1

]T (25)

A particle consists of a steering angle set of the ego
vehicle during horizon Npso. A particle is passed through
the kinematic [39], [40] that satisfies the non-holonomic
constraint to obtain position information sk , dk , and heading

FIGURE 8. (a) Resampled behavioral trajectory. (b) Optimized short-term
trajectory using the PSO algorithm.

angle θk as follows:

sk = 1tst · vk−1 · cos (θk−1)+ sk−1 (26)

dk = 1tst · vk−1 · sin (θk−1)+ dk−1 (27)

θk = 1tst ·
vk−1
L
· tan (δk−1)+ θk−1 (28)

where L is the length of the ego vehicle, and the subscript k
denotes a number from 1 to Npso. The obtained position
set ensures that the curvature of the trajectory is within the
kinematic constraints.

C. FITNESS FUNCTION
In the PSO, particles move in the direction of minimizing the
fitness function to find the optimal value. In this study, the
fitness function is composed of six terms and is expressed by
the following equation.

fpso = wref fref + wasfas + wad fad + wjsfjs + wjd fjd + fcol
(29)

wherewref ,was,wad ,wjs andwjd are the weights for each index
except for the last collision cost.

The first fitness term represents a reference cost and is
defined as

fref =
Npso∑
i=1

(
si − si,ref

)2
+
(
di − di,ref

)2 (30)

where si,ref and di,ref are the reference nodes for the longi-
tudinal and lateral directions from the resampled behavioral
trajectory. This fitness term makes a particle vector from the
PSO that does not deviate significantly from the generated
trajectory through the node and edge of the road geometry.
The next four fitness terms indicate the acceleration and

jerk costs and are related to driving comfort, which are
defined as follows:

fas =
Npso−2∑
i=0

a2s,i =
Npso−2∑
i=0

(
si+2 − 2si+1 + si

1tst2

)2

(31)

fad =
Npso−2∑
i=0

a2d,i =
Npso−2∑
i=0

(
di+2 − 2di+1 + di

1tst2

)2

(32)

20110 VOLUME 10, 2022



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

FIGURE 9. Test area: TS KATRI PG (Proving Ground).

fjs =
Npso−3∑
i=0

j2s,i

=

Npso−3∑
i=0

(
−si+3 + 3si+2 − 3si+1 + si

1tst3

)2

(33)

fjd =
Npso−3∑
i=0

j2d,i

=

Npso−3∑
i=0

(
−di+3 + 3di+2 − 3di+1 + di

1tst3

)2

. (34)

The acceleration and jerk values were calculated using
forward finite differences. The physical limits of the vehicle
dynamics for safe driving are considered using a circle of
forces [41]. The acceleration values used when calculating
the acceleration costs fas and fad were constrained to bewithin
the maximum acceleration:

a2s,i + a
2
d,i ≤ a

2
max . (35)

If the condition in (35) is violated, the ith cost of fa is set
to be infinite to prevent the particle from being selected. The
restriction check is not performed in Cartesian coordinates
but rather in the Frenet space.

The last fitness term is related to collisions. The vehicle
shape is represented using two circles for collision checks,
similar as in [6],: wherein the distance between the centers
of each circle of obstacles and the ego vehicle is required
to be greater than the sum of each circle’s radius. When the
requirements are violated, fcol becomes infinite. In Fig. 8(a),
the resampled trajectory is shown, and in Fig. 8(b), the initial
trajectory is optimized using the PSO algorithm, which gener-
ates a kinodynamically feasible, smooth, and safe trajectory.

V. VEHICLE-IN-THE-LOOP SIMULATION
The VILS [42], [43] is implemented on the TS KATRI
PG track, as shown in Fig. 9 with virtual scenarios and
a test vehicle equipped with GPS, wherein it is assumed
that information regarding virtual surrounding obstacles’
positions and velocities is perfectly known. The proposed

TABLE 2. Motion planner parameters.

hierarchical motion planning framework is implemented in
C++ language on a PC running Ubuntu 16.04 equipped with
a quad-core Intel Core i7-6700K CPU. The execution period
of the algorithm was 100ms. For validation, five highway
scenarios in a unidirectional road were generated. Our first
four scenarios included static and dynamic obstacles mod-
elled by intelligent driver model (IDM). The last scenario
included an obstacle performing a sudden cut-in maneuver.
These scenarios were selected to show that our algorithm
can perform many functionalities such as lane changing, car-
following, obstacle avoidance, and stopping in various speed
ranges. The motion planner parameters for implementation
are listed in Table 2.

A. TRAFFIC GENERATION
The obstacle vehicles are controlled by an IDM. To imitate
human drivers who might be aggressive or defensive, both
types of vehicles are included in the environment for the
first two scenarios. Only one type of vehicle was considered
for test scenarios 3 and 4. The dynamics of the vehicle are
described by the following equations:

ẋ = v (36)

v̇ = a

(
1−

(
v
v0

)4

−

(
s∗(v,1v)

s

2
))

(37)

where s∗(v,1v) = s0 + vT + v1v/2
√
ab, v0, s0, T , a and b

are the model parameters. The parameters of each vehicle are
listed in Table 3.

B. SCENARIOS
1) SCENARIO 1 (FAST DYNAMIC OBSTACLE SCENARIO)
In this scenario, dynamic obstacles are set to have relatively
high-speed profiles using the IDM parameters as shown in
Table 3. A total of 10 dynamic obstacles were arbitrarily
positioned on two-lane roads within a certain distance in
front of the ego vehicle. The ego vehicle is expected to
perform appropriate lane change and car-following maneu-
vers, generating a safe and smooth spatiotemporal trajectory.

VOLUME 10, 2022 20111



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

TABLE 3. IDM parameters used for different driving styles in test
scenarios.

In Fig. 10(a), the upper figure shows the results of the motion-
planning algorithm. The long-term path (blue) is the output of
the first part of the algorithm, and the short-term trajectory
(light blue) is the result of the last part of the algorithm. The
bottom left figure shows the result of the JPS algorithm when
solving the problem of the second part of the algorithm in
the distance-time plane by displaying the planned trajectory
and jump point. The bottom-right figure shows the velocity
profile generated by the algorithm. The reference velocity
was set to 20 m/s. The long-term profile (blue) is from the
second part of the algorithm, and the short-term profile (light
blue) is from the last part of the algorithm. In Fig. 10(a),
the ego vehicle undergoes a lane change while accelerating
to the reference speed. Next, in Fig. 10(b), the ego vehicle
keeps the lane while maintaining the reference speed. Finally,
in Fig. 10(c), the ego vehicle slows down while performing a
car-following maneuver. There are two obstacles in the right
lane, therefore a lane maintenance path is generated for the
long-term path. Finally, the results in Fig. 10(d) show both
the reference velocity and velocity profile of the ego vehicle
during the entire scenario. In Fig. 11, the plots show the
trajectories of the ego vehicle and obstacles within a certain
time gap. The blue trajectory depicted with a triangle inside
belongs to the ego vehicle, and the other trajectories belong
to the obstacles.

2) SCENARIO 2 (SLOW DYNAMIC OBSTACLE SCENARIO)
In this scenario, dynamic obstacles are set to have relatively
low-speed profiles, as shown in Table 3. This scenario aims
to evaluate the lane change and car-following performance in
low-speed traffic. In Fig. 12(a), a long-term path is generated
to change the lane considering the surrounding obstacles.
As shown in Fig. 12(b), car-following is performed because
the risk of a lane change is high owing to the obstacle behind
in the right lane. Then in Fig. 12(c), the ego vehicle performs
a safe lane changemaneuver as there is sufficient space. In the
JPS plot in Fig. 12(c), while changing the lane and avoiding
collision with obstacles, the planned trajectory shows that the
ego vehicle tries to accelerate to the reference velocity. The
overall maneuvering is shown in Fig. 13.

3) SCENARIO 3 (STATIC OBSTACLE SCENARIO)
In this scenario, static obstacles are placed in front of the
ego vehicle. This scenario aims to evaluate the obstacle

FIGURE 10. Evaluation in scenario 1: The ego vehicle (blue) (a) chooses a
lane change maneuver; (b) keeps speed to the reference velocity;
(c) decreases speed while performing a car-following maneuver.
(d) Speed profile of the ego vehicle during the scenario.

FIGURE 11. Trajectories of the ego vehicle and obstacles in scenario 1.

avoidance and stopping performance of the proposed algo-
rithm. In Fig. 14(a), the ego vehicle avoids collision with
a static obstacle ahead by choosing a long-term path for
lane changing. As can be seen in the JPS plot, an optimal
long-term trajectory is obtained which decelerates through

20112 VOLUME 10, 2022



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

FIGURE 12. Evaluation in scenario 2: The ego vehicle (blue) (a) chooses a
lane change maneuver; (b) performs a car-following maneuver;
(c) performs another lane change when there is enough space. (d) Speed
profile of the ego vehicle during the scenario.

FIGURE 13. Trajectories of the ego vehicle and obstacles in scenario 2.

the optimal long-term path while keeping it collision-free.
In Fig. 14(b) and (c), it can be seen that the ego vehicle
continuously decelerates and finally stops to avoid colli-
sion with the obstacles. The overall maneuvering is shown
in Fig. 15.

FIGURE 14. Evaluation in scenario 3: The ego vehicle (blue) (a) performs
a lane change maneuver; (b) decreases speed smoothly; (c) stops behind
the static obstacles. (d) Speed profile of the ego vehicle during the
scenario.

FIGURE 15. The trajectory of the ego vehicle in scenario 3.

4) SCENARIO 4 (HAZARD DYNAMIC OBSTACLE SCENARIO)
In this scenario, the hazard dynamic obstacles overlap with
the lane. As shown in Fig. 16(a), the ego vehicle first changes
lanes. Then, then, the long-term trajectory is generated as if
there are no obstacles, as shown in Fig. 16(b). However, the
short-term trajectory is generated considering the obstacles
with collision cost described in Section IV-C, resulting in a
trajectory that deviates from the reference trajectory. Next,
as shown in Fig. 16(c), a short-term trajectory is generated

VOLUME 10, 2022 20113



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

FIGURE 16. Evaluation in scenario 4: The ego vehicle (blue) (a) chooses a
lane change maneuver; (b) performs an obstacle avoidance maneuver to
avoid a collision with the surrounding vehicles; (c) plans a short-term
trajectory toward the centerline when there is no more collision risk.
(d) Speed profile of the ego vehicle during the scenario.

FIGURE 17. The trajectory of the ego vehicle in scenario 4.

toward the centerline when the collision risk disappears. The
overall maneuvering is shown in Fig. 17.

5) SCENARIO 5 (CUT-IN SCENARIO)
In this last scenario, a dynamic obstacle performs an abrupt
cut-in maneuver in terms of duration and relative speed [44].

FIGURE 18. Evaluation in scenario 5: The ego vehicle (blue) (a) keeps the
lane; (b) performs a lane change maneuver due to the cut-in vehicle
ahead; (c) successfully performed a lane change. (d) Speed profile of the
ego vehicle during the scenario.

FIGURE 19. The trajectory of the ego vehicle in scenario 5.

The obstacle performs a lane change for 3 s, the relative speed
with the ego vehicle is -5 m/s, and the lane change starts 25 m
ahead. This scenario is intended to see how the planner reacts
to a lane change of the obstacle. In Fig. 18(a), the ego vehicle
maintains the lane while avoiding collision, as shown in the
JPS plot. Then, in Fig. 18(b), the ego vehicle avoids collision
with the cut-in obstacle ahead by choosing a long-term path
for lane changing. The ego vehicle successfully performs a
lane change to the left, as shown in Fig. 18(c). The overall
maneuvering is illustrated in Fig. 19.

20114 VOLUME 10, 2022



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

FIGURE 20. The steering wheel angle of the ego vehicle in all test
scenarios.

FIGURE 21. Histogram of the computation time for all scenarios.

The steering wheel angle of the ego vehicle for all test sce-
narios is shown in Fig. 20. The results show that appropriate
steering wheel angle is applied to the ego vehicle in order to
perform lane change maneuvers. In the test scenario 5, it is
seen that an abrupt lane change is performed by applying
a larger steering wheel angle than other scenarios to avoid
collision with the cut-in obstacle.
Remark 1: The selected five scenarios include represen-

tative situations that may be encountered while driving on a
highway. There are static and dynamic obstacles, including
hazard vehicles that deviate from the center of the lane.
The autonomous vehicle performs lane keeping, follow-
ing, lane changing, stopping and swerve for safe highway
driving.
Remark 2: In the test scenarios, the long-term path planner

provides a desired maneuver with a lane-level lateral tar-
gets considering the lanes and obstacles. The paths gener-
ated show appropriate planning strategy, especially in lane
selection. The long-term trajectory planner then applies the
position and velocity profiles to the optimal path to avoid
collisions with obstacles determined to overlap the path.

Experimental results show satisfactory performance covering
all scenarios.
Remark 3: The last short-term trajectory planner opti-

mizes the trajectory considering comfort and safety. The
optimization using the particles of steering angle sets with an
adequate vehiclemodel makes smooth and feasible trajectory.
In addition, the obstacles not considered in long-term planner
are considered in optimization procedure to make collision
free trajectory.

Fig. 21 shows a histogram of the computation time of
the proposed algorithm for all scenarios. The distribution
of the computation time is expressed through a histogram
with an additional normal distribution. The average compu-
tation time was 31 ms, and the worst-case computation time
was 94 ms.

VI. CONCLUSION AND FUTURE WORK
In this paper, the proposed hierarchical motion planning
framework was shown to be a safe and efficient solution for
autonomous driving in structured environments with various
static and dynamic obstacles. The proposal was evaluated by
means of a VILS with a real car under five representative
scenarios.

The long-term planner, which consists of two processes,
first provides a rough path for the driving strategy over
a long time horizon. Then, the JPS is utilized to reduce
the computational burden of A*, giving an acceptable
quality solution. The generated trajectory was safe, com-
fortable, and dynamically feasible. This long horizon plan-
ner gives a long-sighted solution which can handle various
maneuvers in decision-making where a plenty of obstacles
exist.

Next, the short-term planner optimizes the front part of
the rough trajectory by first resampling and then applying
the PSO. This procedure provides kinodynamically feasible
trajectory, enhancing the quality of trajectory in terms of com-
fort, smoothness and safety. The performance is evaluated
under five scenarios, which include virtual static and dynamic
obstacles. The proposed method provides a feasible and rea-
sonable path and trajectory for performing lane changing, car-
following, obstacle avoidance, and stopping in an appropriate
manner. Furthermore, the computation time of the algorithm
was within 100 ms.

As future work, the proposed planning framework will be
tested on a broader range of traffic scenarios including urban
situations, to further verify and evaluate the performance.
The traffic light scenario can be conducted where a long
horizon capable planning is important in maneuver decision-
making (to pass or to stop at traffic light). In addition, to meet
the requirements of advanced prediction methods [45]–[48],
interaction-aware trajectory predictionwith uncertainty could
be considered in motion planning instead of simple physi-
cal model-based predictions. Finally, it could be interesting
to focus on applying the deep learning technique to make
human-like behavior decision-making.

VOLUME 10, 2022 20115



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

REFERENCES
[1] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, ‘‘A review of

motion planning for highway autonomous driving,’’ IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 5, pp. 1826–1848, May 2020.

[2] D. González, J. Pérez, V. Milanés, and F. Nashashibi, ‘‘A review of motion
planning techniques for automated vehicles,’’ IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 4, pp. 1135–1145, Nov. 2016.

[3] V. Beanland, M. Fitzharris, K. L. Young, and M. G. Lenné, ‘‘Driver
inattention and driver distraction in serious casualty crashes: Data from
the Australian national crash in-depth study,’’ Accident Anal. Prevention,
vol. 54, pp. 99–107, May 2013.

[4] 2015 Motor Vehicle Crashes: Overview, Traffic Safety Facts: Research
Note, National Highway Traffic Safety Administration, Washington, DC,
USA, 2016, pp. 1–9.

[5] Y. Meng, Y. Wu, Q. Gu, and L. Liu, ‘‘A decoupled trajectory planning
framework based on the integration of lattice searching and convex opti-
mization,’’ IEEE Access, vol. 7, pp. 130530–130551, 2019.

[6] J. Ziegler, P. Bender, T. Dang, and C. Stiller, ‘‘Trajectory planning for
Bertha—A local, continuous method,’’ in Proc. IEEE Intell. Vehicles
Symp., Jun. 2014, pp. 450–457.

[7] Z. W. Geem, Recent Advances in Harmony Search Algorithm, vol. 270.
Cham, Switzerland: Springer, 2010.

[8] J. Chen, W. Zhan, and M. Tomizuka, ‘‘Autonomous driving motion plan-
ningwith constrained iterative LQR,’’ IEEE Trans. Intell. Veh., vol. 4, no. 2,
pp. 244–254, Jun. 2019.

[9] J. Ziegler and C. Stiller, ‘‘Spatiotemporal state lattices for fast trajectory
planning in dynamic on-road driving scenarios,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Oct. 2009, pp. 1879–1884.

[10] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, ‘‘Motion plan-
ning for autonomous driving with a conformal spatiotemporal lattice,’’ in
Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 4889–4895.

[11] S. V. Dorff, M. Kneissl, and M. Franzle, ‘‘Safe, deterministic trajec-
tory planning for unstructured and partially occluded environments,’’
in Proc. IEEE Int. Intell. Transp. Syst. Conf. (ITSC), Sep. 2021,
pp. 969–975.

[12] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, ‘‘Path planning for
autonomous vehicles usingmodel predictive control,’’ inProc. IEEE Intell.
Vehicles Symp. (IV), Jun. 2017, pp. 174–179.

[13] D. Madas, M. Nosratinia, M. Keshavarz, P. Sundstrom, R. Philippsen,
A. Eidehall, and K.-M. Dahlen, ‘‘On path planningmethods for automotive
collision avoidance,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2013,
pp. 931–937.

[14] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, ‘‘Optimal trajectory
generation for dynamic street scenarios in a Frenét frame,’’ in Proc. IEEE
Int. Conf. Robot. Autom., May 2010, pp. 987–993.

[15] X. Li, Z. Sun, D. Cao, Z. He, and Q. Zhu, ‘‘Real-time trajectory plan-
ning for autonomous urban driving: Framework, algorithms, and verifi-
cations,’’ IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 740–753,
Apr. 2016.

[16] X. Li, Z. Sun, D. Cao, D. Liu, andH. He, ‘‘Development of a new integrated
local trajectory planning and tracking control framework for autonomous
ground vehicles,’’ Mech. Syst. Signal Process., vol. 87, pp. 118–137,
Mar. 2017.

[17] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li,W. Zhu, J. Hu, H. Li, and
Q. Kong, ‘‘Baidu Apollo EM motion planner,’’ 2018, arXiv:1807.08048.

[18] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, ‘‘A real-time motion
planner with trajectory optimization for autonomous vehicles,’’ in Proc.
IEEE Int. Conf. Robot. Autom., May 2012, pp. 2061–2067.

[19] Y. Zhang, H. Sun, J. Zhou, J. Pan, J. Hu, and J.Miao, ‘‘Optimal vehicle path
planning using quadratic optimization for Baidu Apollo open platform,’’ in
Proc. IEEE Intell. Vehicles Symp. (IV), Oct. 2020, pp. 978–984.

[20] H. Li, G. Yu, B. Zhou, P. Chen, Y. Liao, and D. Li, ‘‘Semantic-level
maneuver sampling and trajectory planning for on-road autonomous driv-
ing in dynamic scenarios,’’ IEEE Trans. Veh. Technol., vol. 70, no. 2,
pp. 1122–1134, Feb. 2021.

[21] Y. Zhang, H. Chen, S. L. Waslander, J. Gong, G. Xiong, T. Yang, and
K. Liu, ‘‘Hybrid trajectory planning for autonomous driving in highly
constrained environments,’’ IEEE Access, vol. 6, pp. 32800–32819, 2018.

[22] W. Lim, S. Lee, M. Sunwoo, and K. Jo, ‘‘Hierarchical trajectory planning
of an autonomous car based on the integration of a sampling and an
optimization method,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 2,
pp. 613–626, Feb. 2018.

[23] X. Jin, Z. Yan, G. Yin, S. Li, and C. Wei, ‘‘An adaptive motion plan-
ning technique for on-road autonomous driving,’’ IEEE Access, vol. 9,
pp. 2655–2664, 2021.

[24] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller,
T. Dang, U. Franke, N. Appenrodt, C. G. Keller, and E. Kaus, ‘‘Making
Bertha drive—An autonomous journey on a historic route,’’ IEEE Intell.
Transp. Syst. Mag., vol. 6, no. 2, pp. 8–20, 2014.

[25] C. Hubmann, M. Aeberhard, and C. Stiller, ‘‘A generic driving strategy for
urban environments,’’ in Proc. IEEE 19th Int. Conf. Intell. Transp. Syst.
(ITSC), Nov. 2016, pp. 1010–1016.

[26] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, and M. Gittleman,
‘‘Autonomous driving in urban environments: Boss and the
urban challenge,’’ J. Field Robot. vol. 25, no. 8, pp. 425–466,
Aug. 2008.

[27] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher,
E. Frazzoli, A. Huang, S. Karaman, and O. Koch, ‘‘A perception-driven
autonomous urban vehicle,’’ J. Field Robot., vol. 25, no. 10, pp. 727–774,
2008.

[28] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, andD. Johnston, ‘‘Junior:
The Stanford entry in the urban challenge,’’ J. Field Robot., vol. 25, no. 9,
pp. 569–597, 2008.

[29] M. Olsson, ‘‘Behavior trees for decision-making in autonomous driving,’’
Tech. Rep., 2016.

[30] H. Kim, D. Kim, and K. Huh, ‘‘Intention aware motion planning with
model predictive control in highway merge scenario,’’ SAE, Warrendale,
PA, USA, Tech. Rep., 2019.

[31] C. Hubmann, ‘‘Belief state planning for autonomous driving: Plan-
ning with interaction, uncertain prediction and uncertain perception,’’
Tech. Rep., 2020.

[32] D. D. Harabor and A. Grastien, ‘‘Online graph pruning for pathfinding on
grid maps,’’ in Proc. 25th AAAI Conf. Artif. Intell., 2011, pp. 1–6.

[33] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[34] Y. Shi and R. C. Eberhart, ‘‘Empirical study of particle swarm opti-
mization,’’ in Proc. Congr. Evol. Comput. (CEC), vol. 3, Jan. 2003,
pp. 1945–1950.

[35] N. SinghPal and S. Sharma, ‘‘Robot path planning using swarm intel-
ligence: A survey,’’ Int. J. Comput. Appl., vol. 83, no. 12, pp. 5–12,
Dec. 2013.

[36] H. I. Kang, B. Lee, and K. Kim, ‘‘Path planning algorithm using the
particle swarm optimization and the improved Dijkstra algorithm,’’ in
Proc. Pacific–Asia Workshop Comput. Intell. Ind. Appl. (PACII), vol. 2,
Dec. 2008, pp. 1002–1004.

[37] Y. Guo, W. Wang, and S. Wu, ‘‘Research on robot path plan-
ning based on fuzzy neural network and particle swarm optimiza-
tion,’’ in Proc. 29th Chin. Control Decis. Conf. (CCDC), May 2017,
pp. 2146–2150.

[38] S. Thabit and A. Mohades, ‘‘Multi-robot path planning based on
multi-objective particle swarm optimization,’’ IEEE Access, vol. 7,
pp. 2138–2147, 2018.

[39] U. Schwesinger, M. Rufli, P. Furgale, and R. Siegwart, ‘‘A sampling-based
partial motion planning framework for system-compliant navigation along
a reference path,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2013,
pp. 391–396.

[40] B. Li, Y. Zhang, and Z. Shao, ‘‘Spatio-temporal decomposition: A
knowledge-based initialization strategy for parallel parking motion opti-
mization,’’ Knowl.-Based Syst., vol. 107, pp. 179–196, Sep. 2016.

[41] H. Pacejka, Tire and Vehicle Dynamics. Amsterdam, The Netherlands:
Elsevier, 2005.

[42] M. Butenuth, R. Kallweit, and P. Prescher, ‘‘Vehicle-in-the-loop real-world
vehicle tests combined with virtual scenarios,’’ ATZ Worldwide, vol. 119,
no. 9, pp. 52–55, Sep. 2017.

[43] X. Che, C. Li, and Z. Zhang, ‘‘An open vehicle-in-the-loop test method for
autonomous vehicle,’’ EasyChair, Tech. Rep., 2019.

[44] T. Toledo and D. Zohar, ‘‘Modeling duration of lane changes,’’
Transp. Res. Rec., J. Transp. Res. Board, vol. 1999, no. 1, pp. 71–78,
Jan. 2007.

[45] H. Ma, J. Li, W. Zhan, and M. Tomizuka, ‘‘Wasserstein generative learn-
ing with kinematic constraints for probabilistic interactive driving behav-
ior prediction,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2019,
pp. 2477–2483.

20116 VOLUME 10, 2022



D. Kim et al.: Hierarchical Motion Planning Framework for Autonomous Driving

[46] C. Dong, Y. Chen, and J. M. Dolan, ‘‘Interactive trajectory pre-
diction for autonomous driving via recurrent meta induction neu-
ral network,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 1212–1217.

[47] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, ‘‘Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data,’’
2020, arXiv:2001.03093.

[48] H. Kim, D. Kim, G. Kim, J. Cho, and K. Huh, ‘‘Multi-head attention based
probabilistic vehicle trajectory prediction,’’ 2020, arXiv:2004.03842.

DONGCHAN KIM received the B.S. degree in
automotive engineering from Hanyang University,
Seoul, Republic of Korea, in 2015. He is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Automotive Engineering. His research
interests include motion planning, trajectory
prediction, vehicle state estimation, reinforce-
ment learning, and deep learning applications to
autonomous vehicle.

GIHOON KIM received the B.S. degree in auto-
motive engineering from Hanyang University,
Seoul, Republic of Korea, in 2017. He is currently
pursuing the Ph.D. degree with the Department
of Automotive Engineering. His research interests
include interaction-aware driving, which is plan-
ning the path considering effects to other vehicles
from ego vehicle’s movement and development
of control system for collision avoidance using
aggressive-maneuver driving like drift control.

HAYOUNG KIM received the B.S. degree in
mechanical engineering fromHanyang University,
Seoul, Republic of Korea, in 2014, where he is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Automotive Engineering. His research
interests include interaction-aware motion plan-
ning, predictions, deep learning, andmodel predic-
tive control for automated vehicle.

KUNSOO HUH (Member, IEEE) received the
Ph.D. degree from the University of Michigan,
Ann Arbor, MI, USA, in 1992. He is currently
a Professor with the Department of Automo-
tive Engineering, Hanyang University, Seoul,
South Korea. His research interests include
machine monitoring and control, with empha-
sis on their applications to vehicular systems,
sensor-based active safety systems, V2X-based
safety systems, autonomous vehicle control, and
AI applications in autonomous vehicle.

VOLUME 10, 2022 20117


