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Abstract: In this paper, we are interested in an inverse geometric problem for the three-dimensional
Laplace equation to recover an inner boundary of an annular domain. This work is based on
the method of fundamental solutions (MFS) by imposing the boundary Cauchy data in a least-
square sense and minimisation of the objective function. This approach can also be considered with
noisy boundary Cauchy data. The simplicity and efficiency of this method is illustrated in several
numerical examples.
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1. Introduction

The inverse geometry problems, as an important subclass of inverse problems, can
be subdivided into two subclasses, depending on the location of the unknown boundary.
In the first kind, the portion of the outer boundary of the solution domain is unknown,
whilst in the second kind, the inner boundary is unknown.

There are many methods for solving the inverse geometry problems, such as the
boundary element regularisation method by Lesnic et al. [1], the method of fundamental
solutions and moving pseudo-boundary method by Karageorghis et al. [2–4], the boundary
function method by Wang et al. [5], the conjugate gradient method (CGM) and the boundary
element technique by Huang et al. [6,7].

Bin-Mohsin and Lesnic in 2012 utilised the method of fundamental solutions (MFS) to
the modified Helmholtz inverse geometry problem on an annular domain [8].
The purpose of this paper is to extend the aforementioned current approach to the three-
dimensional Laplace equation based on the method of fundamental solutions. Finally, two
examples are presented to show the simplicity and efficiency of this method.

2. Formulation of the Inverse Geometric Problem

Let D ⊂ R3 be a simply connected domain with an unknown boundary ∂D which is
compactly contained in a simply connected domain Ω ⊂ R3 with the boundary ∂Ω.
Let us consider the following inverse problem:

∆u = 0 in Ω \ D, (1)
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subject to the boundary conditions,

u = f on ∂Ω, (2)
∂u
∂n

= g on ∂Ω, (3)

u = h on ∂D, (4)

where f ∈ H1/2(∂Ω) and g ∈ H−1/2(∂Ω) are given functions and n is an outward unit
normal vector on ∂Ω. Moreover, the function h ∈ H1/2(∂D) is given on the unknown
boundary ∂D. Without loss of generality, we can suppose that Ω is the unit disk B(0; 1);
otherwise we can conformally map the exterior of the simply connected domain Ω onto
the exterior of the unit disk.

The unknown boundary ∂D can be expressed in spherical coordinates as

∂D = { r(θ, ϕ)(cos θ sin ϕ, sin θ sin ϕ, cos ϕ); θ ∈ [0, 2π), ϕ ∈ [0, π] }

where r(θ, ϕ) is a 2π-periodic and π-periodic smooth function with respect to θ and ϕ,
respectively, with values in the interval (0, 1).

The inverse problem we are concerned with is to determine geometrically the domain
boundary ∂D by utilising the method of fundamental solutions.

3. The Least-Square Problem Based on the MFS

In the classic MFS, the solution of a homogeneous linear partial differential equation
(PDE) is approximated by a linear combination of the fundamental solutions with the set of
sources located outside the problem domain and a set of points on the domain boundary.
The linear combination coefficients are determined by collocation or, alternatively, with a
least-squares fit of the boundary conditions.

Based on the MFS, one can approximate the solution of (1) by a linear combination of
its fundamental solutions, which is given by [9]

U(z, s) =
1

4πr
; r = ‖z− s‖. (5)

i.e.,

u(z) =
ns

∑
j=1

cjU(z, sj), (6)

where the collocation points zi and zi+M are uniformly located on ∂Ω and ∂D, respec-
tively, i.e.,

zi = (cos θ̂i sin ϕ̂i, sin θ̂i sin ϕ̂i, cos ϕ̂i), i = 1, M (7)

zi+M = ri(cos θi sin ϕi, sin θi sin ϕi, cos ϕi), i = 1, N (8)

Further, the ns := M + N source points sj and sj+M are uniformly located on the
outside of Ω and the inside of D, respectively, i.e.,

sj = R1(cos θ̂j sin ϕ̂j, sin θ̂j sin ϕ̂j, cos ϕ̂j), j = 1, M (9)

sj+M =
rj

R2
(cos θj sin ϕj, sin θj sin ϕj, cos ϕj), j = 1, N (10)

where R1, R2 > 1.
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The coefficients vector c = (cj)j=1,M+N in linear combination (6) and also, the radial
vector r = (rj)j=1,N can be determined by imposing the boundary conditions (2)–(4) in a
least-square sense, which recasts into minimising the objective function

T(c, r) = ‖u− f ‖2
L2(∂Ω) + ‖

∂u
∂n
− g‖2

L2(∂Ω) + ‖u− h‖2
L2(∂D). (11)

Upon discretisation, Equation (11) yields

T(c, r) =
M

∑
i=1

[
M+N

∑
j=1

cjU(zi, sj)− f (zi)

]2

+
2M

∑
i=M+1

[
M+N

∑
j=1

cj
∂U
∂n

(zi−M, sj)− g(zi−M)

]2

+
2M+N

∑
i=2M+1

[
M+N

∑
j=1

cjU(zi−M, sj)− h(zi−M)

]2

. (12)

In general, the boundary data F ∈ { f , g, h} are measured noisy data satisfying

Fδ
i = Fi + δ rand(i) Fi, (13)

where δ is the percentage noise and the number rand(i) is a random number drawn from
the standard uniform distribution on the interval [−1, 1] generated by the MATLAB code
−1 + 2rand(i).

Imposing noise on all measured data implies

Tδ(c, r) =
M

∑
i=1

[
M+N

∑
j=1

cjU(zi, sj)− f δ(zi)

]2

+
2M

∑
i=M+1

[
M+N

∑
j=1

cj
∂U
∂n

(zi−M, sj)− gδ(zi−M)

]2

+
2M+N

∑
i=2M+1

[
M+N

∑
j=1

cjU(zi−M, sj)− hδ(zi−M)

]2

. (14)

The minimisation of (12) or (14) imposes 2M + N nonlinear equations for the 2N + M
unknowns (c, r), and for a unique solution, it is necessary that M ≥ N.

4. Error Analysis and the Regularisation

The accuracy of the presented method is evaluated by the normalised relative root
mean square error (RMSE) and L∞-error:

RMSE =

{
1
N

N

∑
i=1
|r(an)

i − r(num)
i |2

} 1
2

max
1≤i≤N

|r(an)
i |

, L∞-error = max
1≤i≤N

|r(an)
i − r(num)

i |

where r(an)
i and r(num)

i denote the analytical and numerical radial vectors, respectively, at
the ith collocation point on the boundary ∂D.

The obtained numerical radial vectors from the presented method are unstable, espe-
cially when noise is added to the boundary data, and so the regularisation is needed. For
this, we can add the following regularisation terms via standard zeroth- and first-order
Tikhonov’s regularisation with parameters λ1, λ2 ≥ 0 to the functional (14), i.e.,

Reg(a, r) =
3M+2N

∑
j=2M+N+1

(√
λ1aj−2M−N

)2
+

3M+3N−1

∑
j=3M+2N+1

(√
λ2(rj−3M−2N+1 − rj−3M−2N)

)2
, (15)
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5. Numerical Examples

In this section, we give some examples to check the effectiveness of the presented
method. We consider a three-dimensional annular domain with an outer boundary as the
unit sphere ∂Ω = B(0; 1), R1 = R2 = 2 and M = N ∈ {25, 50} in (7)–(10). Moreover, the
percentage noise δ = 5% is added to every measured boundary data.

The minimisation of functional (12) or (14) is carried out using the MATLAB optimisa-
tion toolbox routine lsqnonlin, which solves nonlinear least-squares problems.

Example 1. Consider a three-dimensional annular domain with an unknown inner boundary
∂D = B(0; r(an)) of radius r(an) = 0.7. The boundary data are given as follows:

u|∂Ω = f (θ, ϕ) =
1
2

{
sin 2ϕ (cos θ + sin θ) + sin 2θ sin2 ϕ

}
,

∂u
∂n
|∂Ω = g(θ, ϕ) = sin 2ϕ (cos θ + sin θ) + sin 2θ sin2 ϕ,

u|∂D = h(θ, ϕ) =
49

200

{
sin 2ϕ (cos θ + sin θ) + sin 2θ sin2 ϕ

}
.

The exact solution for these input boundary data is u(x) = x1x2 + x1x3 + x2x3.
Table 1 gives the values of the objective functions and the corresponding errors obtained using

the optimal initial guess r0 and M = N ∈ {25, 50} without using regularisation parameters. It
can be seen that the values of the corresponding errors increase with the number of collocation points
and so regularisation is needed.

Table 1. The values of the optimal initial guess, r0 , objective functions and the corresponding errors
with M = N ∈ {25, 50} and no regularisation parameters for Example 1.

M = N r0 Objective Functions L∞-Error RMSE

Without noise 25 0.5 4.9013× 10−3 4.3884 1.4418
50 0.6 6.1682 5.0114 1.7985

With noise 5% 25 0.6 2.1799 2.1210 7.1903× 10−1

50 0.6 1.8326× 101 1.0113 9.1243× 10−1

In Tables 2 and 3, we present the values of the objective functions and the corresponding errors
with initial guess, r0, obtained using the regularisation parameters λ1, λ2 ∈ {0, 10−6, 10−3, 10−1}
with M = N ∈ {25, 50} and so, in Table 4, we give the minimal objective functions and the
corresponding errors with initial guess r0.

Table 2. The values of the optimal initial guess, r0 , objective functions and the corresponding errors
using the regularisation parameters λ1, λ2 with M = N = 25 for Example 1.

r0 Objective Functions L∞-Error RMSE

W
it

ho
ut

no
is

e λ2 = 10−6 0.7 1.8102× 10−2 2.6100 1.0249
λ1 = 0 λ2 = 10−3 0.5 2.5783× 10−3 1.2932× 10−1 1.3835× 10−1

λ2 = 10−1 0.3 2.2118× 10−3 1.0442× 10−1 1.3354× 10−1

λ1 = 10−6 0.6 5.8822× 10−3 2.9436× 10−1 1.5451× 10−1

λ1 = 10−3 λ2 = 0 0.5 1.2470 2.8593 8.8216× 10−1

λ1 = 10−1 0.7 5.8688 5.1408× 103 1.4688× 10−3

W
it

h
no

is
e

5%

λ2 = 10−6 0.9 4.1621× 10−2 3.5650× 10−1 1.1951× 10−1

λ1 = 0 λ2 = 10−3 0.6 1.3166× 10−2 1.6224× 10−1 1.3880× 10−1

λ2 = 10−1 0.5 1.2386× 10−2 1.0866× 10−1 1.1611× 10−1

λ1 = 10−6 0.4 3.1242× 10−2 6.5845× 10−1 2.8637× 10−1

λ1 = 10−3 λ2 = 0 0.2 1.2775 8.0410× 10−1 3.8164× 10−1

λ1 = 10−1 0.2 5.9897 3.3646 2.0861



Fractal Fract. 2022, 6, 66 5 of 7

Table 3. The values of the optimal initial guess, r0 , objective functions and the corresponding errors
using the regularisation parameters λ1, λ2 with M = N = 50 for Example 1.

r0 Objective Functions L∞-Error RMSE

W
it

ho
ut

no
is

e λ2 = 10−6 0.6 3.4092 4.6998 1.726
λ1 = 0 λ2 = 10−3 0.7 2.4650 8.8865× 10−1 4.5447× 10−1

λ2 = 10−1 0.7 1.6998× 10−5 9.8441× 10−3 1.1249× 10−2

λ1 = 10−6 0.6 4.3927× 10−2 4.7363 1.8483
λ1 = 10−3 λ2 = 0 0.5 9.7102× 10−1 4.6546 1.9311
λ1 = 10−1 0.2 1.4145× 101 1.2983 1.5821

W
it

h
no

is
e

5%

λ2 = 10−6 0.6 1.2600 1.5259 4.6191× 10−1

λ1 = 0 λ2 = 10−3 0.8 1.2761× 10−2 1.0640 4.4252× 10−1

λ2 = 10−1 0.6 6.2499× 10−3 6.2367× 10−2 3.1760× 10−2

λ1 = 10−6 0.6 1.1694 4.8164 1.6659
λ1 = 10−3 λ2 = 0 0.7 9.7398× 10−1 3.2081 1.0049
λ1 = 10−1 0.6 1.0836× 101 4.4080 1.9817

Example 2. Consider a three-dimensional annular domain with an unknown inner boundary of
radius r(an) = 1

4 (1 + cos θ sin 2ϕ). The boundary data are given as follows:

u|∂Ω = f (θ, ϕ) = 3 sin2 ϕ− 2,
∂u
∂n
|∂Ω = g(θ, ϕ) = 6 sin2 ϕ− 4,

u|∂D = h(θ, ϕ) =
1

16
(3 sin2 ϕ− 2)(sin 2ϕ cos θ + 1)2.

The exact solution for these input boundary data is u(x) = x2
1 + x2

2 − 2x2
3.

Table 4. The values of the minimal objective functions and the corresponding errors with initial guess
r0, obtained (with/no) selecting the optimal regularisation parameters with M = N ∈ {25, 50} for
Example 1 .

M = N With/No
Noise

With/No
Regularisation λ1 λ2 r0

Objective
Function L∞-Error RMSE

25
no no 0.5 4.9013× 10−3 4.3884 1.4418

with 0 10−1 0.3 2.2118× 10−3 1.0442× 10−1 1.3354× 10−1

with no 0.6 2.1799 2.1210 7.1903× 10−1

with 0 10−1 0.5 1.2386× 10−2 1.0866× 10−1 1.1611× 10−1

50
no no 0.6 6.1682 5.0114 1.7985

with 0 10−1 0.7 1.6998× 10−5 9.8441× 10−3 1.1249× 10−2

with no 0.6 1.8326× 101 1.0113 9.1243× 10−1

with 0 10−1 0.6 6.2499× 10−3 6.2367× 10−2 3.1760× 10−2

Table 5 gives the values of the objective functions and the corresponding errors obtained using
the optimal initial guess r0, M = N ∈ {25, 50} without using regularisation parameters, whilst
Tables 6 and 7 are obtained using the regularisation parameters λ1, λ2 and so, in Table 8 we give the
minimal objective functions and the corresponding errors with initial guess r0.

Table 5. The values of the optimal initial guess, r0 , objective functions and the corresponding errors
for Example 2 with M = N ∈ {25, 50} and no regularisation parameters .

M = N r0 Objective Functions L∞-Error RMSE

Without noise 25 0.5 5.0884× 101 4.1355× 10−1 6.0305× 10−1

50 0.6 1.0837× 102 8.1024× 10−1 1.2263

With noise 5% 25 0.8 3.2489× 101 1.9251 1.9305
50 0.7 5.4166× 101 4.5130 1.8355
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Table 6. The values of the optimal initial guess, r0 , objective functions and the corresponding errors using the
regularisation parameters λ1, λ2 ∈ {0, 10−6, 10−3, 10−1} with M = N = 25 for Example 2.

r0 Objective Functions L∞-Error RMSE

W
it

ho
ut

no
is

e λ2 = 10−6 0.5 5.3972× 101 5.0754× 10−1 6.3467× 10−1

λ1 = 0 λ2 = 10−3 0.4 4.1825× 101 4.0134× 10−1 4.7861× 10−1

λ2 = 10−1 0.8 2.0433× 10−1 4.0078× 10−1 4.5618× 10−1

λ1 = 10−6 0.6 4.0430× 101 1.5634 1.3413
λ1 = 10−3 λ2 = 0 0.1 5.9128 4.9809× 10−1 5.6395× 10−1

λ1 = 10−1 0.4 2.5867× 101 1.9664 2.9192

W
it

h
no

is
e

5%

λ2 = 10−6 0.8 3.3672× 101 1.9251 1.9396
λ1 = 0 λ2 = 10−3 0.2 5.4494 5.3183× 10−1 4.8568× 10−1

λ2 = 10−1 0.1 1.9182× 10−1 4.3568× 10−1 4.7239× 10−1

λ1 = 10−6 0.8 3.4257 4.6055 2.1547
λ1 = 10−3 λ2 = 0 0.2 5.9130 6.4875× 10−1 6.2476× 10−1

λ1 = 10−1 0.4 2.5843× 101 1.9654 2.9119

Table 7. The values of the optimal initial guess, r0 , objective functions and the corresponding errors
using the regularisation parameters λ1, λ2 ∈ {0, 10−6, 10−3, 10−1} with M = N = 50 for Example 2.

r0 Objective Functions L∞-Error RMSE

W
it

ho
ut

no
is

e λ2 = 10−6 0.4 8.3494× 101 8.2159× 10−1 1.2749
λ1 = 0 λ2 = 10−3 0.2 1.4682× 10−4 8.0200× 10−1 1.0192

λ2 = 10−1 0.8 3.8174 9.5145× 10−1 1.3288

λ1 = 10−6 0.5 2.0732 6.4408 2.9474
λ1 = 10−3 λ2 = 0 0.7 3.6352 5.2101 3.879
λ1 = 10−1 0.4 4.7401× 101 1.1726× 101 7.6963

W
it

h
no

is
e

5%

λ2 = 10−6 0.8 3.6080× 101 8.5674× 10−1 1.1744
λ1 = 0 λ2 = 10−3 0.9 2.1617× 10−1 5.2427× 10−1 6.5482× 10−1

λ2 = 10−1 0.7 3.2234× 10−2 4.7546× 10−1 4.9726× 10−1

λ1 = 10−6 0.6 1.0459× 101 6.7322× 10−1 6.447× 10−1

λ1 = 10−3 λ2 = 0 0.6 7.0388 9.6421× 10−1 1.1551
λ1 = 10−1 0.7 7.5548× 101 3.4477× 103 1.2448× 103

Table 8. The values of the minimal objective functions and the corresponding errors with initial guess,
r0, obtained (with/no) selecting the optimal regularisation parameters λ1, λ2 with M = N ∈ {25, 50}
for Example 2.

M = N With/No
Noise

With/No
Regularisation λ1 λ2 r0

Objective
Function L∞-Error RMSE

25
no no 0.5 5.0884× 101 4.1355× 10−1 6.0305× 10−1

with 0 10−1 0.8 2.0433× 10−1 4.0078× 10−1 4.5618× 10−1

with no 0.8 3.2489× 101 1.9251 1.9305
with 0 10−1 0.1 1.9182× 10−1 4.3568× 10−1 4.7239× 10−1

50
no no 0.6 1.0837× 102 8.1024× 10−1 1.2263

with 0 10−3 0.2 1.4682× 10−4 8.0200× 10−1 1.0192

with no 0.7 5.4166× 101 4.5130 1.8355
with 0 10−1 0.7 3.2234× 10−2 4.7546× 10−1 4.9726× 10−1

6. Conclusions

In this paper, we extended the aforementioned method presented in [8], based on the
method of fundamental solutions to solve numerically the three-dimensional inverse geom-
etry problem on an annular domain. To obtain the stable and accuracy results, Tikhonov’s
regularisation parameters were used combined with the problem of the minimising an
objective function. From the examples, we can see that our proposed method is effective
and stable, even for the boundary data added with noise.
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