and Interaction

fil

Multimodal Technologies

Article

Exploring Data-Driven Components of Socially Intelligent Al
through Cooperative Game Paradigms

Casey Bennett 1'2*(0), Benjamin Weiss 3, Jaeyoung Suh !, Eunseo Yoon 1, Jihong Jeong ! and Yejin Chae !

check for
updates

Citation: Bennett, C.; Weiss, B.; Suh,
J.; Yoon, E; Jeong, J.; Chae, Y.
Exploring Data-Driven Components
of Socially Intelligent AI through
Cooperative Game Paradigms.
Multimodal Technol. Interact. 2022, 6,
16. https://doi.org/10.3390/
mti6020016

Academic Editor: Roger K. Moore

Received: 21 January 2022
Accepted: 15 February 2022
Published: 17 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Data Science, Hanyang University, Seoul 04763, Korea; donddog@hanyang.ac.kr (J.S.);
hanid99@hanyang.ac.kr (E.Y.); jjh103@hanyang.ac.kr (J.J.); truthO1@hanyang.ac.kr (Y.C.)

2 College of Computing and Digital Media, DePaul University, Chicago 60601, IL, USA

Quality and Usability Lab, Technische Universitit, 10623 Berlin, Germany; benjamin.weiss@tu-berlin.de
Correspondence: cabennet@hanyang.ac.kr

Abstract: The development of new approaches for creating more “life-like” artificial intelligence (AI)
capable of natural social interaction is of interest to a number of scientific fields, from virtual reality to
human-robot interaction to natural language speech systems. Yet how such “Social AIl” agents might
be manifested remains an open question. Previous research has shown that both behavioral factors
related to the artificial agent itself as well as contextual factors beyond the agent (i.e., interaction
context) play a critical role in how people perceive interactions with interactive technology. As such,
there is a need for customizable agents and customizable environments that allow us to explore both
sides in a simultaneous manner. To that end, we describe here the development of a cooperative
game environment and Social Al using a data-driven approach, which allows us to simultaneously
manipulate different components of the social interaction (both behavioral and contextual). We
conducted multiple human-human and human-Al interaction experiments to better understand the
components necessary for creation of a Social Al virtual avatar capable of autonomously speaking
and interacting with humans in multiple languages during cooperative gameplay (in this case, a
social survival video game) in context-relevant ways.

Keywords: human-robot interaction; social cognition; cooperative games; speech systems; virtual
avatar; autonomous agents

1. Introduction

There are many ways in which two agents (whether artificial or human) can interact,
from cooperatively to competitively and many variations in between. At the same time,
there is a growing interest in understanding how we can create artificial intelligence
(Al) that emulates natural human social behavior in diverse settings to produce better
interactive technology [1]. Those various types of interactions provide different arenas
to explore that question, such as through competitive or cooperative game play. One
advantage of cooperative game paradigms is that they expose the constraints between the
designer’s conception of sociality in Al and the user’s embedded expectations, since in
a cooperative game environment, the Al agent and human user must work together to
achieve some goal in a “coordinated” fashion [2]. In particular, those constraints include
indirect non-verbal aspects of the otherwise direct verbal interactions that form a core part
of the interaction context within which the communication content must be understood.
Indeed, a misalignment between context and content is often the basis for communication
breakdown [3].

Many of us have had this experience when speaking a second language which is
not our mother tongue. There are a host of subtle cues that create social fluidity which
go beyond simply making the appropriate response in terms of verbal content, such as
timing, cadence, appropriate social pauses, and spatial behavior during the communicative
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context [4,5]. In addition, non-verbal behavior can be considered as a communicative signal
itself, and should be regarded as such in conjunction with verbal actions, since verbal and
non-verbal action may be expected to co-occur and at times replace each other [6,7]. There
also exists a need for a delicate balance between predictability and unpredictability as it
relates to the mental model of one interaction partner toward the other [8]. As shown
via the Turing-test-based Loebner Prize competition, an agent that does the same thing
over and over is not perceived as “alive” versus an agent that behaves unpredictably at
times [9,10]. However, we know from social psychology as well as work on social robots
that a certain amount of predictable structure is necessary in social interactions, particularly
when there are failures or miscommunication [11].

Previous work has focused on understanding how such fluidity arises from the con-
struct of social presence, a sense of being there with a “real person” in artificial environ-
ments [12]. Such previous research has shown that both behavioral factors related to the
artificial agent itself as well as contextual factors beyond the agent (i.e., interaction context)
play a critical role in how people perceive interactions with interactive technology [13].
Cooperative game paradigms offer us an opportunity to expand upon this by manipulating
the interaction context in specific ways, particularly if we develop a “Social AI” with
components that we can modify on demand. By simultaneously manipulating both the
game environment and the Social Al, we can explore a fuller range of questions around
which components of social interaction—both behavioral and contextual—are relevant
to producing the social fluidity necessary for humans to perceive an interaction as “life
like”. These questions also tie back to Dennett’s work on intentional stance as it relates to
attributions of agency in artificial agents, i.e., an agent that is perceived to have its own
self-driven goals and intentions (averse to a machine) [14].

In order to do this effectively, however, requires us to develop methods for designing
the Al agent and cooperative game play environment based on relevant data about interac-
tions within said environment. Here, we describe an approach for data-driven development
of a Social Al and cooperative game environment along those lines, utilizing both human-—
human interaction data and human-AlI interaction data. In this case, the Social Al took
the form of a virtual avatar capable of autonomous speech based on its perceptions of the
social environment, which was a customizable social survival video game.

This paper is organized as follows. Section 2 describes prior related work in the
existing scientific literature. Section 3 describes the methods, cooperative game paradigm,
and experimental design for the current research. Section 4 details the results of those
experiments. Section 5 discusses the implications of those results and potential future
research avenues.

2. Prior Work
2.1. Social Al in Human—Robot Interaction

For the case of embodied agents, the interaction context is typically a physical envi-
ronment that generates multi-modal data, including motion, sound, and touch. One useful
source of evidence for how agents should interact socially in this multi-modal sense can
be drawn from the existing literature on human-robot interaction (HRI) [15]. For instance,
evidence from robotic faces has shown that different interaction components, such as visual
appearance and sound, can have a significant impact on human perceptions of the interac-
tion [16]. External context outside the face itself (such as simultaneously occurring movie
clips) can alter the perception of the robot’s facial expression to the point that the human
“sees” completely different expressions due to the context even when the expression itself
is the exact same [17]. Moreover, users have specific preferences for the capabilities a social
robot should have [18], both in terms of the robot’s behavior and responses to human
actions in certain situations [19].

Other research has shown similar context effects during studies of robots engaged in
physical game playing [20,21], as well as effects from robot group size [22]. The contextual
factors in those cases included not only the physical embodied form of the robots, but
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also their behaviors and ability to elicit trust/empathy from human interactors in order to
accomplish shared goals. In these embodied paradigms, we can see the impact of many
different types of interaction components, although the ability to rapidly alter the physical
agent and/or physical environment is a limiting factor in exploring variations of those
components in embodied settings. Hence, there is a need for other research paradigms to
expand upon such findings.

2.2. Interactive Speech Systems

There is also significant research relevant to Social Al that can be drawn from inter-
active speech systems, which seek to interactively engage users conversationally in order
to accomplish some task or goal. Task-oriented speech systems thus have, by definition,
a topic or domain to converse about. Therefore, designers try to consider most of the
technically available information within that domain in order to mimic human speech,
such as location, dialog history, user identity, and other contextual information [23]. On
the one hand, this aim is to facilitate users resolving underspecified references that may
have multiple meanings depending on context (‘it’, ‘there’, ‘the second’, ‘tomorrow’). On
the other hand, a secondary aim is to enable the design of agents that can utilize shorter,
more natural dialog. This comprises the reverse, where the agent infers information not
explicitly stated by the user, such as the current status of the world, situational facts, or
user preferences, in order to establish a dialogue state within which it can appropriately act
and fluidly respond, e.g., recovering from repeated conversation errors and/or adapting to
linguistic conformations. Such established design aspects affect user experience in terms of
perceived cooperativity and appropriateness of the conversational agent [24,25].

However, the interplay of an agent’s spatial actions and its speech in 3D cooperative
environments has not thus far been a big topic in interactive speech systems, apart from
some work on multi-modal systems, for which it has yet to be determined whether certain
confirmations (‘the light [it] is switched on’, where the word light could be omitted) or
explicit references need to be produced by voice at all rather than non-verbal cues [26]. What
is known is that both linguistic (e.g., word choice) and para-linguistic aspects of an agent’s
behavior may support or hinder the interactive flow, success, and even rapport [27-29].
While non-natural behavior in early task-driven interactive systems mainly affected its
user-attributed quality from a physical artifact standpoint [30], modern systems may cause
the attribution of intelligence by users so that divergent behavior might be interpreted
differently as in during human-human interaction [31]. For example, in humans, a long
delay before a positive response can result in the impression of being doubtful [4]. One such
established cooperative game-like scenario for spoken interaction is the MAP task, which
can identify relations between interaction fluidity and verbal and non-verbal behavior.
In this scenario, two players need to solve a navigation task by sharing complementary
information [32]. However, since speech-only and, more so, text-only interaction is rather
limited in terms of social signals and coordinated actions, speech-based virtual agents hold
promise for expanding the study of social fluidity and attributed intentionality.

2.3. Virtual Agents and Virtual Reality

As mentioned in Section 1, the concept of social presence is an important one when
dealing with virtual agents, in the sense of “being there” with another intelligent entity [1].
Much prior research has explored this notion by looking at interactions in virtual reality
environments. For instance, Slater (2009) has attempted to disentangle what constitutes
social presence by separating a human'’s sense of being in a particular place (place illusion)
from the sense that the events are actually occurring regardless of one’s own actions
(plausibility illusion) [33]. These represent different levels of immersion in the interactive
experience, with plausibility illusion generally being a higher threshold to achieve. Others
have attempted to further explain these constructs by examining the dividing line between
what humans perceive as illusion versus reality [34]. Recent research has also explored how
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such virtual agents can take on a “social identity” during human-agent interaction, which
appears capable of triggering users’ self-conceptualization of group social expectations [35].

Critically, we note that the perception of these aspects of social presence with virtual
and physical agents has not been found to correlate with physical realism [36], but rather
to correlate with perceived social rewards due to the interaction via specific neural path-
ways [37], or even anxiety about failing to obtain such rewards [38]. To put it more simply,
there is an emotional aspect to this, which can often override other cognitive processes.
Interestingly, recent research has found that given appropriate contextual factors and agent
behaviors, social presence in virtual reality environments can be the same in completely
implausible environments as in more realistically plausible ones [39], further indicating the
importance of considering the design of both the agent itself as well the interaction context.

2.4. Mental Models of Al and Game Theory

There are other lines of research that can contribute to our understanding of contextual
factors on human perceptions of interactions with Al agents. For instance, Gero (2020)
explored the mental models human users develop during interactions with Al during
cooperative word games. Their findings suggest that understanding these mental mod-
els is key to developing more self-explanatory Al systems, rather than just having some
opaque reinforcement learning or deep learning model controlling the Al [2]. Similarly the
emerging field of explainable Al seeks to develop methods to provide cognitive scaffolding
that more closely aligns human thought processes with the inner workings of Al mod-
els [40]. More broadly, game theory in the field of economics has long sought to explain the
emergence of optimal behavior given different contexts, including the differences between
cooperative and competitive scenarios [41]. In short, that research underscored how differ-
ent contexts demand different agent behavior, as well as how the interplay between the
two (agent behavior and interaction context) plays a critical role in human perceptions of
the situation [42,43].

The challenge remains to integrate these seemingly disparate lines of research de-
scribed here in Section 2 into flexible paradigms to explore different possible explanations
for social interaction with Al in terms of both the Al agent and the interaction context.
Such research paradigms can supplement the above approaches, as well as potentially
address some of their limitations. Hence, that need is the motivation for the work described
in this paper.

3. Methods
3.1. Cooperative Game Environment

In the current work, we utilized a video game called Don’t Starve Together for our
cooperative game environment (https://www.klei.com/games/dont-starve-together,
accessed on 20 January 2022) which can be downloaded from online sources such as Steam.
The Don’t Starve Together game is a social survival game where players need to collect
resources, make tools, fight monsters, and cooperate with each other to survive longer
(visual examples can be seen in Section 3.2 below). Much like other “crafting games” such
as the popular Minecraft game, Don’t Starve requires players to collect specific combinations
of resources in order to build things, without which they will be vulnerable to various
dangers and likely lose the game via player death. The pressure to accomplish those
tasks is under time constraints, as the level of dangers gradually increases over time. The
game is heavily customizable through the use of game modification tools (henceforth
referred to as the “Game Mod”), which allow users to alter the mechanics of the in-game
environment and non-player character (NPC) behaviors through the LUA programming
language. Additionally game mods can be shared by users through an online, open-
source community. As such, the game provides an ideal environment to experiment with
interactive behavior during cooperative goal-oriented tasks [44,45].

The game can function in single-player or multi-player mode (up to 6 players simulta-
neously), though there were always only 2 players (the avatar player and human player) in
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the experiments described here. Experiment game sessions were conducted via a secure
“friends only” room on the Don't Starve online servers to prevent any interruption in the test,
allowing for uninterrupted 30 min one-on-one gameplay sessions. Sessions were conducted
from two separate computers in separate locations both running the game through the
same server, henceforth referred to as the “confederate” computer and the “participant”
computer. The avatar player was controlled from the confederate computer, while the
participant computer was used for the human player. This is described in more detail
in Section 3.2.

For our experiments, a custom Game Mod was developed with two purposes in mind.
First, we wanted to create “game data writing” functionality, so that we could collect
real-time data about the game state at every moment. This included information about
player status, inventory, movement, items equipped, attacking/fighting, time of day, and
entities in the players’ immediate environment (e.g., monsters, structures). Such data
was fundamental to our various analysis of social interactions during the game and the
results described in Section 4. Second, we wanted to create custom game environments in
order to be able to conduct controlled experiments. For instance, this included creating a
fixed starting position with various resources immediately available (“advanced starting
position”), providing a constant source of light at that starting position in order to encourage
players to return to it periodically to encourage more social interaction (“base camp”), and
setting the minimum health level at 10% so that players could not die, guaranteeing every
experiment game session could last approximately the same amount of time, e.g., 30 min
(“partial invincibility”). However, for our experimental design, human players were
given some general directions on how gameplay works, but not informed of these Game
Mod features.

We did make additional use of a few community game mods. This included mods
allowing us to pause the game to control the start of the session, as well as the use of
the FATIMA toolkit to experiment with Al development so that the game can be played
autonomously by an Al agent in the future. We describe this latter Al component in more
detail in Section 4.1.

3.2. Experiments

In order to collect data for our data-driven development of the Social Al, we conducted
a series of focused experiments to progressively test components. This included a first
experiment (n = 6) and a second experiment (n = 8), comprising 6 males and 2 females
(only 4 of the males participated in the first experiment). A total of 14 game sessions were
conducted with two players at a time, each approximately 30 min in duration. Additionally,
these participants were split into 4 from Western countries (from the US and Germany)
and 4 from East Asian countries (from Korea), as part of our long-term goal here is to
conduct cross-cultural comparisons of Social Al interactions. Likewise, the speech systems
developed for the Social Al are multi-lingual, capable of understanding and speaking in
both English and Korean languages. These were part of a series of experiments (approved
by the Hanyang University IRB, #1YU-2021-138).

For the first experiment, the goal was to collect data about naturalistic human vs.
human gameplay. In this scenario, we setup a Zoom meeting to allow direct audio—
visual communication between the humans while playing the game, in a side-by-side
configuration. We then used OBS Studio (https:/ /obsproject.com/, accessed on 20 January
2022) to record the entire screen during gameplay, including the game window itself as
well as the Zoom window of simultaneous social interactions. An example of this can be
seen in Figure 1. For the second experiment, the human on the “confederate” computer
side (see Section 3.1) was replaced by a virtual avatar. For this, we linked the written game
data from the Game Mod to a Social Al, capable of reacting to in-game events through
autonomously generated speech. This Social Al was based on data collected in the first
experiment, written in the Python programming language. We used locally-installed
(Window or Mac) voice packages as part of the Text-to-Speech (TTS) module, with the
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audio output redirected to an internal “virtual” microphone jack, and then used the Loomie
application (https:/ /www.loomielive.com/, accessed on 20 January 2022) as a visual avatar
capable of moving its lips synchronously with the speech. The second experiment was then
conducted using a Wizard-of-Oz (WoZ) design, where the virtual avatar socially interacted
in an autonomous manner with the human player during gameplay, but its in-game actions
were still controlled by a human from the confederate computer. In the future, we plan
on replacing this WoZ setup with an Al agent to control the in-game actions as well (see
Discussion section). Otherwise, the experiment was the same as the first, with the avatar
player and human player interacting through a Zoom window, and the entire screen being
recorded via OBS. An example of this can be seen in Figure 2. We also include a brief
1 min video of human-agent autonomous speech interactions between the Al agent and
participants during gameplay in Supplementary Video S1, with several simple examples.

"HIE- A AEEEEEEEED ..

Figure 2. Gameplay example during the second experiment (human vs. avatar).

During each experiment, several types of data were collected. This included audio-
video recordings from OBS studio, which were used to create speech annotations and for
facial /gestural recognition analysis. We also collected the written game data, which was
generated approximately twice per second and timestamped so that it could be matched to
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the audio-video recordings for further analysis. This allowed us to connect in-game events
to social interactions occurring around the same time frame. Finally, we also collected
qualitative data about the participant experience using a questionnaire (available from the
main author’s website), which included questions about when they felt like the Social Al
speech matched the gameplay (or did not), what they found annoying, and issues with
the Game Mod and/or social environment. This allowed us to identify components that
needed to be augmented in the future, from the participant’s perspective.

4. Results
4.1. Speech Hierarchy Development

One critical component for interaction with a Social Al is development of speech
systems, so that an autonomous agent can interact verbally with human participants [46].
In order to accomplish this, it is necessary to create context-specific content geared toward the
task (as mentioned in Section 2), which in our case is a cooperative game scenario. This was
accomplished by generating speech annotations from the first experiment (human-human),
which were then augmented after the second experiment (human-avatar). The process was
as follows.

First, the audio-visual recordings were analyzed to produce a list of common player
utterances (occurring more than once), linked to the game situation in which the commu-
nication occurred. The situations comprised various aspects related to the game, such
as game events changing the status of resources, monsters in the vicinity, and activities
such as making tools. Based on these annotations, a hierarchy diagram was derived to
specify each situation and co-occurring speech utterances. The hierarchy was derived by
four separate human coders, who first categorized the utterances independently for both
English-language and Korean-language videos, and then worked during a focus group to
align those categories into a hierarchy. The full hierarchy is too large to present here, but an
example of one part of the hierarchy (Monster-related) can be seen in Figure 3, with some
example utterances in the leaf nodes.

aking Fire/Light

A

o) (o) (DD

ho's tun? We have to [

put more fuel
to this fire.
Social
i Collecting
Informing the
existence of
resources

Hereis ()

Informing
Asking for help neeq

Asking if my help
is needed

Do you need
help?

Informing the
situation or health

Health status

b My( ) fs getting
() is attacking worse
me!

Help me!

I'm attacking ( )

rejecting fighting
teach how to .
attack

Try to set the trap
here

I need some (

I'm sofry but!
have nothing to
attack () with

Being attacked

Figure 3. Part of the speech hierarchy (using “Monsters” section as an example).

At a high level, these events were categorized into various game states: Build Stuff,
External Events, Monsters, Resources, Social Interaction, and Night. Each of these high-
level game states (6 total) were comprised of various sub-categories (18 total), which were
then further broken down into various branches. Interrater reliability (Cohen’s Kappa) for
these video annotations by different coders was calculated as 0.718, which indicates strong
agreement among the coders even across the different languages. Given the similarities,
the developed hierarchy was identical for both English and Korean speech systems, so
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that the content matched on both sides though there were some differences in phrasings of
specific utterances (due to linguistic differences). An initial version of this was developed
after the first experiment and then tested during the second experiment. The findings from
the second experiment led to the results described in Sections 4.2 and 4.3 below.

We also note that this hierarchy was used as the basis for development of an Al agent
to control in-game actions for fully autonomous gameplay via the FATIMA toolkit. Each
category and/or sub-category in the hierarchy became the basis of various “use cases” that
we can use to define capabilities and goals for the Al agent, so that the autonomous social
interaction of the virtual avatar and in-game actions are aligned, without the need for a
WoZ experimental design. During the experiments described in this paper, this component
was not yet implemented, but we return to this topic in the Discussion section.

4.2. Interaction Component Development

During the second experiment, we focused on identification of missing interaction
components beyond the speech system content itself. In particular, the goal was to generate
data for designing these components in a data-driven manner, rather than based on pre-
conceived notions from a “designer’s perspective”. These components were first identified
by analyzing interaction questionnaires collected during the experiments, from which
we extracted lists of participants’ frequent statements about missing and /or important
“components” during interaction with the Social AL These items include:

Responsiveness to human player communication (including direct questions);

More natural sentence variation;

Al awareness of own recent speech (e.g., not repeating itself too often);

Al commentary about direct player interactions (e.g., sharing food), rather than just
game environment;

e  More suggestive speech from the Al (e.g., talking about future plans).

After identifying these items, we utilized the collected gameplay video recordings
and written game data to generate a number of interaction components to address them.
First, we implemented an automatic speech recognition (ASR) system to create more
responsiveness, using the Microsoft Azure speech-to-text API. The ASR was setup to
recognize common keywords and phrases spoken by humans, which were extracted from
the list of player utterances from the gameplay videos. This included single keywords (such
as “monsters” or “food”), as well as combinations of keywords co-occurring anywhere
within the same utterance (e.g., “where” and “go”, or “monster” and “near”). We then
generated a list of 3-5 responses the Social Al could make for each of those keywords. The
Social Al could then randomly choose from those responses, if the ASR was triggered. For
instance, in the case of the “where/go” keyword combination, the Social Al might say “Lead
on, I'll follow you” or “Let’s just wander around”. This system was implemented so as to
match on the English and Korean side, in order to facilitate future cross-linguistic studies.

Along with those ASR responses, there was a need to create more sentence variation
in the Social Al’s self-generated speech, when it is talking about the game environment
on its own rather than responding to a human player. This followed a similar process as
the ASR above, but was based on the speech hierarchy utterances (see Section 4.1) rather
than keyword responses. Combining both the self-generated utterances from the hierarchy
and the ASR response utterances, this resulted in 46 different utterance categories, with
a total of approximately 160 different Social AI responses to those categories based on
the annotated gameplay videos.

In order to create more “speech awareness” in the Social AI and reduce repetitiveness,
we adopted an approach utilizing Social Inhibition of Return (social IOR), which is based
on JOR models from various human sensory functions such as vision [47]. The basic idea
here is that there are mechanisms in the brains of naturally intelligent organisms (including
humans) that inhibit us from repeating the same behavior in a short period of time (e.g.,
2-3 s) in order to maximize task efficiency (e.g., during visual “information foraging”) [48].
A failure in these mechanisms is thought to play a role in human mental illness, such as
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obsessive-compulsive disorder. In the context of social IOR, these mechanisms are also im-
portant to produce fluid natural behavior, rather than repetitive “robot-like behavior” [47].
In order to implement this in our case, we utilized the top-level utterance categories from
the speech hierarchy so that the Social Al maintained an internal array to keep track of re-
cently spoken categories, with a “counter” that counted down a certain number of seconds
during which any further utterances within that same category were suppressed (though
the Al could still make utterances from other categories). Initially, this counter was set
to 3 s, based on prior research on social IOR in humans, though whether it should be for
shorter/longer time lengths in Social Al needs further research.

Another interaction component derived from the experiment data was “priority levels
for the utterance categories, in order to create a mechanism for controlling the chattiness
of the Social Al. The most common participant statement on the questionnaires after the
second experiment (8 out of §, i.e., 100% of participants) was that the avatar sometimes
spoke too frequently, even making statements about topics/events not relevant to the task
at hand. The priority levels were thus aimed at providing a “dial” to control this, which
could be turned up or down like a volume control dial. To do this, we had 6 independent
coders who were familiar with the Don’t Starve video game evaluate a spreadsheet of the
utterances and the Al responses to them, assigning each utterance a priority level of either
1 (high), 2 (medium), or 3 (low). These levels were defined for the coders, so:

”

1. Priority 1:

a. Direct human questions: any ASR response to those, and
b. Any “critical” speech that cannot be omitted based on social norms (not reply-
ing to “hello”).
2. Priority 2:

a. Fight-related content (attacking, defending), and
b. Existence-related content (e.g., dying and starving).
3. Priority 3:
a. Any non-answer ASR response to human speech (i.e., comment not a direct
question),
b. Situational content not related to fighting or existence, and
c. Anything else that does not fit in priority 1 or 2.

The interrater reliability across coders for when they assigned the same level to each
utterance category was calculated as 0.54 (pairwise average Cohen’s Kappa) and 0.30 (Fleiss’
Kappa for multiple raters), indicating moderate agreement. Meanwhile, Cronbach’s Alpha
was calculated as 0.789, indicating strong internal reliability for the coding scheme. After
coding, we then calculated the average and median of those values for each utterance
category, with the resulting values forming the basis of our priority control system by
establishing a threshold. Any utterances below that threshold are spoken, while those
above are not. Hence, reducing the threshold reduces the chattiness of the Social Al, and
vice versa. An example of this for a few of the utterance categories can be seen in Table 1,
with each category having 3-5 different responses (not shown for brevity). It remains to
be seen via future research whether the average or median produces better performance
from the user perspective, but at the time of writing we are utilizing the median. This
resulted in 14 utterance categories being identified as higher priority, 16 as medium, and
16 a lower priority.
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Table 1. Priority Level Coding (examples).

Type Utterance Category Average Median
ASR “hello.*”: [ 1.67 1
ASR “ *food.*”: [ 1.83 1.5
ASR “* monster.*near.*”: [ 2.33 25
ASR “ *attack.*”: [ 1.67 2
ASR “ *where.*go.*”: [ 1.17 1
ASR “Fnight*”: [ 2.67 3
ASR “ *campfire.*”: [ 2.50 3
ASR “*help.*”: [ 1.17 1
Self-Generated “inform_morning”: [ 3.00 3
Self-Generated “inform_starving”: [ 1.50 1.5
Self-Generated “inform_defense”: [ 1.67 2
Self-Generated “inform_torch”: [ 2.83 3
Self-Generated “inform_near_light”: [ 2.50 3
Self-Generated “inform_only_axe”: [ 2.67 3
Self-Generated “inform_a_few_monsters”: [ 2.33 2.5
Self-Generated “inform_generic_expression”: [ 2.83 3

4.3. Deep Learning Models for Interaction Planning

As noted in Section 4.2, one of the findings from the second experiment was that
participants reported a need for “planned speech”. In other words, one thing a flexible
Social Al needs to have is the ability to plan for future interactions, rather than just respond
to events that have already occurred. To tackle this challenge, we took the written game
data from the second experiment and lined it up with gameplay videos using the ELAN
video annotation software (https://archive.mpi.nl/tla/elan, accessed on 20 January 2022).
We then matched the timestamps between speech events in the videos related to different
game states (see Section 4.1) and the corresponding point in time in the written game data,
after which we extracted the game data for the 15 frames prior to the event. As the game
data was recorded approximately twice per second, the result was a dataset containing
the game data for the 7-8 s leading up to each event. We then filtered that data to remove
overlapping speech events, so as to only include isolated events clearly related to the six
high-level game states. This resulted in a dataset of 156 game state events based on the
speech hierarchy, each with 15 rows of feature data, totaling 2340 total rows. This data
can be visualized as a multi-dimensional array, as shown in Figure 4. The goal was to
predict utterance categories before they occurred, using a data-driven approach rather than
a rule-based expectation, so as to allow the Social Al to speak about impending events
likely to occur in the immediate future (i.e., planned speech).

Features

v

Game State
Events

Game Data
Frames
(0.5 sec each)

Figure 4. Keras input example for predicting game events.
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To model this data, we utilized both deep learning (DL) and standard machine learning
(ML) approaches. DL was performed using the Python package Keras (https:/ /keras.io/,
accessed on 20 January 2022), which is a deep learning library based on TensorFlow. The
game state events became the targets, while the game data was used as the features.
The resulting data was then fed into a deep learning model consisting of a single 1D
convolutional neural network layer (CNN) with kernel size set to 1 and using a ReLU
activation function, followed by a single recurrent layer (LSTM) with 30 units [49]. The
idea was that the CNN could parse out “invariant representations” of pattern signatures
occurring anywhere in the interaction, followed by the LSTM detecting critical “sequences”
of those patterns over time. A final fully connected “Dense” layer using a sigmoidal
activation function was used to make the final binary classification predictions. To evaluate
performance, 20% of the data was held out as a “test set” for each classification run. Due to
target class imbalance, training data was re-balanced using SMOTE [50].

We also attempted standard ML models using the Python package Scikit-Learn
(https:/ /scikit-learn.org, accessed on 20 January 2022). Multiple modeling methods were
attempted: random forest, gradient boosting, and support vector machines. Models were
generally run using the default parameters in Scikit. Performance was estimated using
multiple performance metrics (e.g., accuracy and AUC), based on 5-fold cross validation,
following standard machine learning guidelines [51,52]. In order to predict the game state
target using the standard ML approach, feature data was “collapsed” into aggregated data
across each 15 min interaction by calculating averages/percentages for each feature across
the entire window, resulting in a single row of data for each game state target.

Results can be seen in Table 2 for both the DL and ML models (RF = random forests,
GB = gradient boosting, SVM = support vector machines, and DL = deep learning). In
general, predictions worked for some game states, but not others. In particular, it was
difficult to predict a social interaction (e.g., random banter) before the social interaction
occurred, unless it was tied to some specific game situation (e.g., monsters). Likewise,
resource collection was also difficult to predict. The ML models using collapsed data
had lower performance than the DL models, though the average differences were small,
particularly in terms of AUC. This may indicate that there were no significant temporal
sequences in the data leading up to the event that were detectable via recurrent models.
However, it is also possible that we did not have the correct data fields in our dataset for
that to work properly, given that there are potentially thousands of variables that could be
included from the game environment while we focused on only 30 of them here. This is an
area that needs further research, but these initial results suggest that planned speech may
be possible in such cooperative game environments.

Table 2. Planned Speech Prediction Results.

RF GB SVM DL
Type Acc AUC Acc AUC Acc AUC Acc AUC
Night 0.81 0.9753 0.78 0.9182 0.75 0.7697 0.87 0.9224
Resources 0.42 0.5117 0.46 0.5175 0.47 0.4792 0.59 0.6446
Monster 0.79 0.8980 0.75 0.8562 0.69 0.7907 0.85 0.9214
Build Stuff 0.89 0.9561 0.83 0.9539 0.82 0.9621 0.88 0.9033
Social 0.52 0.5080 0.52 0.4844 0.55 0.6565 0.50 0.5015
Interaction
External 0.86 0.9656 0.81 0.9604 0.81 0.9632 0.84 0.9546
Events
Average 0.72 0.8025 0.69 0.7818 0.68 0.7702 0.76 0.8080

4.4. Facial and Gestural Recognition

Another aspect of Social Al development is utilization of multi-modal cues, such
as facial expression and gestural recognition. To that end, we analyzed the data from
the second experiment to evaluate the potential for identifying participant facial expres-
sions while interacting with the avatar during gameplay for the seven basic Ekman facial
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expressions: Happy, Sad, Surprising, Angry, Fearful, Disgusting, and Neutral [53]. To
do so, we first used the same ELAN annotation software as in Section 4.3 to annotate
facial expressions during gameplay videos using a human coder. After that, we used the
Python package OpenCV (https://opencv.org/, accessed on 20 January 2022) to detect
human faces anywhere in the scene via Haar Cascades. We then utilized a pre-built CNN
model for facial expression recognition from Keras (see Section 4.3) and applied that to our
videos to produce a probability value of each of those seven facial expressions for a given
video frame.

Based on the video annotations, we can see that most of the time users displayed a
“neutral” facial expression (Figure 5), which is not surprising since they were focused on
the game itself. A small minority of the time they displayed other facial expressions such
happy, sad, and surprise. As such, we attempted several types of criteria to obtain accurate
recognition. This involved calculating a predicted probability for each facial expression for
every video frame from the CNN, looking across multiple frames comprising each second
(typically about 30 frames per second) in order to smooth performance, and then choos-
ing the most frequently detected expression within that one-second window. However,
expressions were only considered as detected if they fit the criteria conditions, e.g., having
probability above some threshold. The idea was to minimize false positives, and simply
assume a neutral facial expression unless we were reasonably certain otherwise.

# of actual labels

1200 A

1000 1

800 1

count

600 1

400 A1

200 4

label

Figure 5. Average distribution of facial expressions per video.

The analysis evaluated a number of different criteria conditions in order to compare
performance (Table 3). This included simply choosing the facial expression with the
maximum probability, regardless whether that was 30% or 90% (Criterion 1). We also tried
only choosing the maximum expression above a certain set probability threshold, otherwise
defaulting to predicting the facial expression as neutral if none exceeded the threshold
(Criterion 2). We then added a restriction to the first two criteria so that the prediction of
the first and last frame of the window had to match (Criteria 3 and 4). For criteria 1-4, we
also evaluated weighting the predicted probabilities by the overall average frequency of
each expression (as shown in Figure 5), so that expressions that occurred more frequently
in general (e.g., happy, surprising) were given more weight when determining the highest
probability for a particular window. Finally, we created another criterion that utilized the
predictions from all the previous criteria (1-4) as features, and then attempted to predict the
facial expression target via a random forest model (Criterion 5). In short, this final criterion
attempted to combine different thresholds and weighting schemes into a single prediction,
akin to how multiple filters might be used in a CNN deep learning model.
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Table 3. Facial expression recognition by criteria (o = weighted, x = unweighted).

Name Description Weighted  Threshold  Accuracy
Criterion 1 Choose Max Probability X - 9.2
o) - 29.7
Criterion 2 Choose Max above Threshold X 60 13.7
X 70 19.0
X 80 24.5
o 60 429
o) 70 43.0
o) 80 34.7
Criterion 3 Crit. #1 + First/Last Frame Match X - 34.7
o - 62.8
Criterion 4 Crit. #2 + First/Last Frame Match X 60 449
X 70 50.7
X 80 56.5
o) 60 70.2
o 70 70.2
o 80 66.1
Criterion 5 Combined Criteria Pred Model - - 80.1

The maximal performance of this approach was 80.1% accuracy using Criterion 5,
which is significantly above random chance (14.4%, or 1/7) but perhaps not optimal. Others
have reported performance in the mid-80 percent range during video game play [54,55].
There were a number of challenges we observed which potentially contributed to this. In
particular, during cooperative game play in these virtual “social survival” games, users are
often focusing on survival and so have a look of “concentration” that resembles a neutral
expression. Direct face-to-face interactions seem to be sparse and linked to sporadic game
events. This seems to be a positive in one sense, in that it allows us to focus on speech and
other non-verbal cues, rather than facial expressions. However, at the same time, it can be
seen as a weakness, whereas in-person interactions with embodied agents may be different
from these virtual interactions in substantive ways [33]. A question remains as to whether
this is reflective of virtual technology interactions in general or just our experimental
paradigm. It is also possible that developing a customized Keras CNN model for our
specific game scenario may work better than a generalized pre-trained model we used for
this work, but such development would require the creation of a large task-specific corpus
for training as is typical with many deep learning models, which would then be limited to
only this specific task environment. Along with gestural recognition, this functionality is
still being explored and will likely be part of further future work (see Discussion).

5. Discussion
5.1. Main Summary

This paper explored the use of cooperative game paradigms to better understand how
we can create more life-like Social Al in time-constrained, task-oriented environments [2].
Cooperative game paradigms offer an ideal environment to explore the interplay of the
interaction context with agent behavior during human-agent interaction [13], since both are
interdependent, particularly when the human and agent must collaborate to achieve some
goal under time pressure [1]. To this end, we focused here on the exploration of methods
for developing modifiable components of a Social Al and game environment to enable
the simultaneous manipulation of both the agent and the game environment. In particular,
we evaluated how a data-driven approach could be used to develop various components,
utilizing both human-human interaction data and human-Al interaction data.

Results showed successes as well as areas of improvement for different components.
We were able to develop a multi-lingual content-specific speech hierarchy for the Social
Al based on human-human gameplay (Section 4.1), representing dozens of high-level
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game states and various sub-states, with high reliability (Cohen’s Kappa, 0.72). The
speech hierarchy became the basis for the agent’s autonomous speech system during
social interaction (in both English and Korean), as well as “use cases” for an Al controller
for autonomous gameplay. Subsequent human-agent gameplay experiments using this
system revealed a number of missing “interaction components”, such as responsiveness
to human player communication and Al self-awareness, which were then addressed via
various data analyses (Section 4.2). For instance, analysis of human utterances to the
agent during gameplay led to the creation of an ASR system to respond directly to human
questions/comments. Other needed components included one based on the principle
of social IOR, utilizing the neuroscientific concept of “inhibition of return” in natural
intelligence, to limit repetitive social interaction [47], as well as a “priority system” to
control the level of interaction (e.g., chattiness of the agent). Analysis of these components
showed strong internal consistency and reasonable reliability (Cronbach’s Alpha 0.79,
Cohen’s Kappa 0.54).

Along with the above, additional data analysis was undertaken to create “planned
speech” based on machine learning models using game data to predict events likely to occur
in the immediate future (Section 4.3), so that the Social Al could engage in anticipatory talk
about impending events rather than only what has already occurred in the past or current
situation. To enhance speech interactions, we also undertook facial expression recogni-
tion analysis of human participants during gameplay in order to detect emotions during
gameplay (Section 4.4), combining several different threshold and weighting schemes
together to achieve 80% accuracy without the need for a task-specific corpus. Meanwhile,
we implemented “Game Mod” functionality that allowed us to create a customized social
environment and interaction scenarios, in order to conduct controlled experiments around
different hypotheses related to these components of Social AL

Critically, we note that many of the components explored here (e.g., planned speech
and social IOR) are geared toward expanding the multi-modal nature of Social Al in-
teraction, both in a verbal/non-verbal and temporal sense. These components have not
been identified with the traditional aim of optimizing usability or user experience of an
interactive spoken device [56], but rather with the goal of fostering intentionality attribution
in an autonomous agent. While these aims do not exclude each other, our approach resulted
in a specific focus on appropriateness and agency, rather than effectiveness or efficiency.
Moreover, many of the components are directly tied to the cooperative nature of the social
environment as well, which underscores the interplay of the Al behavior and contextual
factors [2]. Indeed, the component capabilities are deeply interlinked to the characters’
cooperative actions and game session evolvement—a known pre-requisite for creating a
successful interactive conversational agent [57]. This situatedness demands an empirical
(in our case data-driven) design approach, which aligns with best practices for designing
immersive voice interaction [21]. It also highlights how that same process can be used to
create customizable social environments to explore a broad range of hypotheses related to
how contextual factors relate to people’s perceptions of interactive technology.

5.2. Future Work and Broader Impact

The work here highlights how different components of a social agent (whether virtual
or physically embodied) and its interaction context can impact the fluidity of the social
interaction and the subsequent sense of social presence, i.e., the sense of “being there” with a
real person in a given environment [12]. Future work is needed though to understand the
specific effects of individual components of both the agent and context, and moreover how
they might affect each other. We are currently conducting large-scale trials of hundreds
of participants to answer some of those questions, by meticulously turning individual
components on and off. However, potential questions in that regard are vast, and will
likely go beyond any individual research group’s work or interaction modality (speech,
facial expressions, non-verbal cues, etc.). Furthermore, there is additional technical work
to be carried out, such as replacing the current ASR keyword implementation with more
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sophisticated information extraction techniques (e.g., intent and entity recognition) [58]. Be-
yond the facial expression recognition lies an opportunity to integrate gestural recognition
and other types of multi-modal affective interaction which were not addressed here [59].
There is also a need to further develop the Al for autonomous gameplay to control in-game
actions alongside the autonomous interaction components to get away from the limitations
of WoZ experimental designs [60]. This may allow for a closer exploration of how the
agent’s in-game actions and its social interaction behaviors might best be aligned with the
interaction context, in a triadic sense.

Such questions have a direct bearing on the shape of future interactive technology
in society, in particular how we might best utilize the data from those interactions. Often
times, such data is seen as a closed-form solution to solve an individual design problem;
however, the impacts can go beyond the specific design problem itself. For instance, one
particular impact may be technology accessibility. Many of the ideas explored in this paper
are geared toward creating greater fluidity in the interactions between agents and human
users, but the ultimate goal in reality is to lower the threshold for such technology to
integrate into people’s lives in the same way that people naturally interact with each other
in a social sense. This approach may make it easier for some groups (such as older adult
populations or school children) to make use of the technology, but it depends on the setting
and intended use. We must think carefully about the situated context of use for different
technologies. Indeed, what may make sense in one context may make zero sense another.

To put it another way, the interaction context is neither a blank canvas nor one mono-
lithic construct. Rather, there are contextual boundaries that extend into the socio-technical
systems we inhabit, and which are heavily influenced by cultural factors [61]. If one does
something in Korea and the same thing in the United States, the response from others may
be quite different, for a variety of reasons. Thus, while attempting to make things easier
and more fluid for some groups, we may inadvertently be making things more difficult for
other groups.

These challenges can also be expanded to apply to other multi-modal interaction
contexts, such as conversational interfaces integrated into a wearable device or internet-
of-things (IOT)-enabled HRI scenarios with interactive physical robots embedded into
people’s homes and work spaces [62]. Dealing with these broader societal impacts (and
their potential challenges) will likely entail more research with diverse groups and settings
in the future. Other approaches, such as participatory design, may also be critical in this for
directly integrating user perspectives into our understanding of interaction components
as another form of data [63]. Part of our motivation for creating the Social Al here as a
multi-lingual system (capable of interacting in both English and Korean) is to explore some
of these challenges in future work, but there are many potential avenues of research toward
these issues.
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