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In this work, the model equation with space fractional-order (FO) is used to investigate the
nonlinear ion acoustic shock wave excitations (NIASWEs) in an unmagnetized collisionless
weakly relativistic plasma having inertial relativistic ions fluid with viscous effects, inertial-
less non-thermal electrons and inertial-less Boltzmann positrons. To do it, the Korteweg-
de Vries Burgers equation (KdVBE) is derived from the considered fluid model equations by
implementing the standard reductive perturbation method. Accordingly, such equation is
converted to space fractional KdVBE via Agrawal’s variational principle with the help of the
beta fractional derivative and its properties. The exact analytical solutions of KdVBE with
space FO are determined via the modified Kudryashov method. The influence of space
fractional and other related plasma parameters on NIASWEs are investigated. The
outcomes would be useful to understand the nature of shocks with the presence of
non-local or local space in many astrophysical and space environments (especially in the
relativistic wind of pulsar magnetosphere, polar regions of neutron stars, etc.) and further
laboratory verification.

Keywords: beta fractional nonlinear evolution equation, the standard reductive perturbation method, agrawal’s
method, the modified Kudryashov method, shock wave, weakly relativistic plasma

INTRODUCTION

It is well established that the relativistic electron-positron-ion (REPI) plasmas are not only existed in
the evolution of the early Universe [1, 2] but also in many astrophysical and space environments
(ASEs), especially in the relativistic wind of pulsar magnetosphere [3], polar regions of neutron stars
[4], pulsar magnetospheres [5], inner regions of the accretion disks surrounding the central black
holes [6], active galactic nuclei [7], the center of the Milky Way galaxy [8], laser–plasma interaction
[9, 10], and so on. The production of electron-positron pair along with massive ions is confirmed in
peculiar ASEs by Advanced Satellite for Cosmology and Astrophysics. When the oscillatory electron
exceeds an energy of 2moc

2, the electron-positron pair along with the positive ions is also produced in
such environments. Most of the physical issues in such plasmas are still not possible to examine in
laboratories. But, it may easily describe by the tedious mathematical techniques [11–21]. On the
other hand, the shock wave excitation (SWE) is one of the most credible structures based on the
outward propagating in various ASEs. For instance, a shock wave is basically produced in some
pulsar and magneto-sphere due to the relativistically spreading pulsar wind hits the sub-
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relativistically moving ejecta. REPI plasmas are also produced
into radiation in gamma-ray bursts with the presence of
relativistic kinetic energies with their arbitrary concentrations.
In such a situation, the framework plasma with relativistic flows is
produced the SWEs and pulsar wind nebulae due to the
interactions of relativistic shells. Some of the basic features of
physical scenarios in such plasmas have reported experimentally
by a few authors [22, 23]. But, their growth rate mechanism is still
now unfamiliar due to the limitation of laboratory studies. SWEs
with the presence of heavy elements in the REPI plasmas have
already reported theoretically by Atteya et al. [24], Hafez et. al [13,
16, 25, 26]. and Pakzad and Tribeche [27]. They have mentioned
that SWEs are produced in such plasmas. Actually, SWEs are not
generally occurred within the fluid description in collisionless
regimes since the dissipative effects cannot be rationalized by the
state of macroscopic change. But, it is possible to examine SWEs
with the presence of kinetic influence at the shock front. Because,
the kinetic influences are only responsible to examine an effective
dissipation in such environments. Indeed, SWEs can be studied
by balancing between nonlinear and dissipative terms that are
involved in the nonlinear evolution equations (NLEEs). Basically,
the electrostatic SWEs are exited in the collisionless
unmagnetized plasmas when an electrostatic potential has only
mediated at the discontinuity. At this stage, the dissipation
mechanism is relied on the reflection of part of the ion
population and trapping part of the electron population
entering the shock front.

Further, NLEEs are widely applicable for understanding the
formation of wave structures not only in plasma physics but also
in water wave theories, optics, fluid dynamics, etc. Many kinds of
NLEEs have already derived from the considered model
equations by taking distinct ASEs into account [11–20, 25–27].
In all previous studies [16, 18, 24–27], the authors have reported
the influence of plasma parameters on nonlinear ion acoustic
shock wave excitations (NIASWEs) in the relativistic plasmas by
deriving NLEEs of integer order for the case of the locality and
conservative energies of plasma particles. They have reported that
the structure of shock waves is strongly dependent on the
temperature, relativistic streaming factor, density and viscosity
coefficient of charged particles. Hafez et al. [25] have reported the
oblique NIASWEs in REPI plasmas having nonthermal electrons
and positrons with relativistic ions fluid by forming Korteweg-de
Vries Burgers (KdVB) equation. Pakzad and Tribeche [27] have
reported the propagation of NIASWEs in a dissipative relativistic
plasma. Due to the complexity arises in a certain regimes of space
or time for the impact of non-locality as well as non-conservative
energies of plasma particles in such plasmas, it is sometimes not
possible to examine the basic features of wave phenomena by
deriving only integer order NLEEs. At these stages, NLEEs of
fractional-order (FO) are only an arena to examine the physical
issues in such plasmas. It is now fast-growing attention to the
research community that fractional calculus has its huge
applicability to study complex physical behavior in a diverse
field of science and engineering. In another point of view, not only
the model involving fractional-order derivatives (FDs) but also
FO NLEEs abstracted from many physical problems [28–31] are
applicable with the presence of any situations that arise in many

branches of modern physics. The FO NLEEs, when compared to
the integer order NLEEs, can more accurately explain the
dynamic response of the actual system, boost dynamic system
performance, and solve practical difficulties. It is important to
note that NLEEs of FO are not only applicable with the presence
of locality or non–locality but also the conservative or
non–conservative system to study the wave propagation in
ASEs. Recently, Atangana et al. [32] have provided the useful
definition of beta FD for studying both of nonlocal and local
behaviors in the physical system as

A
0D

β
ZF Z( ) � lim

ΔZ→0

F Z + ΔZ Z + 1
Γ β( )( )1−β( ) − F Z( )
ΔZ ,

where one can use 0 < β < 1 and β � 1 as a nonlocal (fractional-
order) and local (integer order) operator, respectively. They have
also provided that the beta FD is followed all the entire
fundamental properties of calculus, whereas some of other
fractional derivatives, especially Riemann–Liouville FD doesn’t
follow all the entire fundamental properties of calculus. Besides,
researchers have devoted their effort to derive only NLEEs of
integer order from the considered model equations for distinct
ASEs. It is therefore necessary to derive the NLEEs of FO for
investigating the basic features of wave dynamics in the plasmas
for both cases of locality or non–locality.

Due to the importance of FDs, a few researchers [33–39]
have concentrated their considerable momentous effort to
study the nonlinear complex wave phenomena that may
exists for a certain regimes of space or time in some plasma
environments by deriving time or space or time-space
fractional NLEEs. For instance, Liu and Chen [34] have
studied the effects of fractional parameter along with the
other plasma parameters on the propagation of electrostatic
wave potential in ultra–relativistic plasmas by deriving (2 + 1)
dimensional time-space fractional cylindrical
Kadomtsev–Petviashvili equation and cylindrical-modified
Kadomtsev–Petviashvili equation. Nazari-Golshan [36, 37]
have investigated the wave propagation described by the
space fractional modified Korteweg-de Vries equation and
the time fractional Schamel equation for different plasma
situations. Very recently, Nazari-Golshan [35] have
investigated the SWEs in REPI plasmas dy deriving sapce
fractional Korteweg-de Vries Burgers equation (KdVBE). In
the aforementioned literatures, researchers have considered the
Riemann–Liouville FD as a nonlocal operator. But, no one has
been derived the NLEE involving beta FD and its useful
solutions for studying the nature of nonlocal wave structures
in the plasmas to best of our knowledge. Thus, the work
explores the mathematical formation of space fractional
KdVBE by using beta FD for examining the effect of
nonlocal along with other plasma parameters on NISAWs in
the REPI plasmas. Such plasma is composed of nonthermal
distributed electrons, Boltzmann distributed positrons and the
speed of ions fluid having kinematic viscosity effect is
comparable to speed of light. The space fractional KdVBE is
derived by forming Euler-Lagrange equation via Agrawal
method [40, 41]. This work is also focused the modified
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Kudryashov method (MKM) [28, 42] for obtaining the
analytical solutions of space fractional KdVBE.

MATHEMATICAL MODEL EQUATIONS

It is confirmed that electrons having sufficient energies and
higher density than positrons are existed in many ASEs by
Freja and Viking satellites [43, 44]. Besides, Yu and Luo [45]
have reported that the plasma species are actually occurred in
different regions of phase space with different temperatures for
constructing quasi-stationary nonlinear structures in the plasmas.
However, electrons can interact with IAWs during its evolution,
and then be trapped. Guo et al. [46] have already reported that the
trapped electrons produce the pattern of phase space hole, where
the trapped electrons are not followed the Maxwellian
distribution. Bettega et al. [47] have also experimentally shown
that the growth rate of ion resonance diocotron instability are
increased exponentially with the trapped electrons kinetic energy.
In addition, the positrons having much higher temperature
cannot be trapped by the wave and they stay free. In such
situations, one can assume the nonthermal distributed
electrons [48] and Boltzmann distributed positrons. Further,
the hot electron-positron pairs are mainly produced in most
of the astrophysical and cosmic plasmas, but the minority cold
electrons and heavy ions are likely to be present, as observed in
the outflows of electron-positron plasmas from the pulsars
entering into interstellar colds. Besides, the ion kinematic
viscosity for collsionless plasmas is widely applicable in many
environments, particularly in pulsar wind, solar wind, etc.
because it is dependent on the ion temperature, ion
gyrofrequency, ion-ion collision time, and ion mass. Indeed, it
is only responsible for the dissipative characteristics of the plasma
under assumption. Very recently, Hafez [21] has been reported
the electrostatic shock wave structures in an unmagnetized
collisonless plasmas by composing of the generalized
distributed electrons, Boltzmann distributed positrons and
relativistic ions fluid having kinetic viscous effects. Hence, an
unmagnetized relativistic plasma system having inertial
relativistic ions fluid having viscous effects, inertial-less non-
thermal electrons and inertial-less Boltzmann positrons is
considered based on Ne0 � Ni0 + Np0, where Ny0, y � e, i and
p are respectively the unperturbed concentrations of electrons,
positrons and ions. The continuity and momentum equations are
obtained [26, 35] to study the nonlinear dynamics of propagating
IAWs in such plasmas, as

zNi

zt
+ z

zx
(NiVi) � 0, (1)

z

zt
+ Vi

z

zx
( ) Viγi( ) + zΦ

zx
� ρi

z2Vi

zx2
, (2)

The aforementioned plasma is bounded via the following
Poisson’s equation:

z2Φ
zx2

� γe 1 − 4αe
1 + 3αe

Φ + 4αe
1 + 3αe

Φ2( )eΦ −Ni − γpe
−TepΦ, (3)

where Ne � Ne0[1 − 4αe
1+3αe (eΦ/Te) + 4αe

1+3αe(eΦ/Te)2]e(eΦ/Te) is the
nonthermal electron density [48](see details in [48]),αe is the
nonthermality index, Np � e−(eΦ/Tp) is the Boltzmann positron
density, Tep � Te/Tp, γe � 1/(1 − Np0/Ne0) and
γp � (Np0/Ne0)/(1 −Np0/Ne0). Eq. 1 and Eq. 2 is normalized
to introduce the scaling as Ni → Ni/Ni0, Ui → Ui/Cs(Cs ������
Ti/mi

√ ), Φ → eΦ/Te, x → xλDe(λDe �
����������
Te/4πNeoe2

√ ) and
t → tωp(ωp � ����������

4πNeoe2/mi

√ ), respectively. Here, Ni, Ui, x, t,
Cs, λDe, ωp and c are the ion density, ion fluid velocity, space
variable, time variable, ion acoustic speed, electron Debye length,
plasma frequency and speed of light, respectively. In addition, the
ion viscosity coefficient ρi is normalized by introducing
ρi → ρiλ

2
DemiNi0/ωi, which is actually obtained for describing

shock wave phenomena in the plasmas. Since, V2
i /c

2 ≪ 1, the
Lorentz relativistic factor γi � 1/

��������
1 − V2

i /c
2

√
can be expanded up

to three terms [21] as

γi � ∑2
N�0

eN
V2

i

c2
( )N

, (4)

where e0 � 1, e1 � 1/2 and e2 � 3/8. The aforementioned plasma
system may also view as an outcome of the interactions of
relativistic ions coming from the relativistic outflows or extra-
galactic jets with interstellar clouds having nonthermal electrons
and Boltzmann positrons.

FORMATION OF SPACE FRACTIONAL
NLEE VIA THE BETA FD

To report for the continuation of nonlinear propagation of IAWs
in the considered unmagnetized plasmas, the stretched
coordinates and expanded perturbed quantities are respectively
defined by implementing the reductive perturbation method [13,
26] as

Z � ϵ x − V0t( ), T � ϵ3t, . (5)

and

Ni � 1 + ϵ2Ni1 + ϵ4Ni2 + . . . ‥,
Vi � Vi0 + ϵ2Vi1 + ϵ4Vi2 + . . . ‥,
Φ � ϵ2Φ1 + ϵ4Φ2 + . . . ‥,

(6)

where 0 < ϵ < 1 and Vi0 is the ion streaming velocity, respectively.
One can also consider ρi � ρ0ϵ for the case of weakly viscous effect.
By implementing Eq 5, Eq 6 and Eqs 1–3 are converted to
different power of ϵ. To the smallest power of ϵ yields

Ni1 � Vi1

V0 − Vi0
, (7)

Vi1 � Φ1

1 + 3
2

V2
i0
c2 + 15

8

V4
i0
c4( ) V0 − Vi0( )

, (8)

Ni1 � 1

1 −Np0/Ne0

1 − αe

1 + 3αe
+ Tep

Np0

Ne0
( )Φ1, (9)

In order to describe the behaviour of linear IAWs in the
considered plasmas, the phase speed is determined as

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7660353

Uddin et al. Effect of Space Fractional Parameter

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


V0 � Vi0 +
���������������������������

1 −Np0/Ne0

1 + 3
2

V2
i0
c2 + 15

8

V4
i0
c4( ) 1−αe

1+3αe + Tep
Np0

Ne0
( )

√√
, (10)

It is observed from Eq. 10 that V0 is strongly dependent on the
related plasma parameter but not on viscosity coefficient of ions,
which is in good agrement with the earlier investigations [25]. In
addition, V0 is stable in the linear regime because of it is a positive
quantity for all values of releated plasma parameters and αe > − 1/
3. After simplification the equations that are obtained by taking
the next higher power of ϵ with the help of Eqs 7–9, the following
NLEE is archived:

zΦ1

zT
+ P1Φ1

zΦ1

zZ
+ P2

z3Φ1

zZ3
− P3

z2Φ1

zZ2
� 0, (11)

which is known as the KdVBE. The nonlinear (P1), dispersive (P2)
and dissipative (P3) coefficients of Eq. 11 are respectively
defined as

P1 � η1 −
η2 V0 − Vi0( )

Vi0
{ } 1

2η21 V0 − Vi0( ) +
1

η1 V0 − Vi0( )
− B

A
V0 − Vi0( ),

P2 � η1 V0 − Vi0( )3
2

, P3 � ρ0
2η1

, η1 � 1 + 3
2
V2

i0

c2
+ 15

8
V4

i0

c4
,

η2 � 3
V2

i0

c2
+ 15

2
V4

i0

c4
,

A � 1

1 −Np0/Ne0

1 − αe
1 + 3αe

+ Tep
Np0

Ne0
( ),

B � 1

2 1 −Np0/Ne0( ) 1 − T2
ep

Np0

Ne0
( ).

Eq. 11 is combined the contribution in the formation of shock
wave excitation from dispersion and dissipation with
nonlinearity. But, when the viscosity coefficient of ions is zero,
Eq. 11 can be converted to the following well known KdVE:

zΦ1

zT
+ P1Φ1

zΦ1

zZ
+ P2

z3Φ1

zZ3
� 0, (12)

which is only responsible for soliton propagation in the
considered plasmas. It is provided that the ions viscosity
coefficient is only responsible for the formation of SWEs in
the plasmas. Now, considering a potential function ϕ(Z, T),
where Φ1(Z, T) � zϕ(Z,T)

zZ , yields Eq. 11 in the following form:

z2ϕ

zTzZ
+ P1

zϕ

zZ

z2ϕ

zZ2
+ P2

z4ϕ

zZ4
− P3

z2Φ
zZ2

� 0, (13)

The functional of Eq. 13 can be defined via the semi-invese
method [40, 41] as

J(ϕ) � ∫
R

dZ∫
T

dTϕ Z, T( )

h1
z2ϕ

zTzZ
+ h2P1

zϕ

zZ

z2ϕ

zZ2
+ h3P2

z4ϕ

zZ4
− h4P3

z2Φ1

zZ2
[ ], (14)

where h1, h2, h3 and h4 are the Lagrange’s multipliers to be
determined later and R is the space. By integrating Eq. 14with the
conditions zϕ

zZ|R � z2ϕ
zZ2|R � z3ϕ

zZ3|R � zϕ
zZ|T � 0 and employing the

variation of this functional with respect to ϕ(Z, T), where z2Φ
zZ2

is considered as a fixed function, yields

δJ(ϕ) � ∫
R

dZ∫
T

dT[ − h1
zϕ

zT

zϕ

zZ
− 1
2
h2P1

zϕ

zZ
( )3

+ h3P2
z2ϕ

zZ2
( )2

− h4P3ϕ
z2Φ1

zZ2
], (15)

Considering the variation of Eq. 15 with integrating each term
by parts and make the variation optimum, that is δJ(ϕ) � 0, one
can easily derive the following equation;

h1
z2ϕ

zTzZ
+ 3h2P1

zϕ

zZ

z2ϕ

zZ2
+ 2h3P2

z4ϕ

zZ4
− h4P3

z2Φ1

zZ2
� 0, (16)

which is must be equivalent to Eq. 13. Comparing Eq 13 and Eq
16, one can obtain the Lagrange’s multipliers as h1 � 1, h2 � 1/3, h3
� 1/2 and h4 � 1. Indeed, the functional as mentioned in Eq. 15
yields directly by taking the values of h1, h2, h3 and h4 into account
in the following Lagrangian form:

fL(ϕT, ϕZ, ϕZZ) � −ϕTϕZ − 1
6
P1ϕ

3
Z + 1

2
P2ϕ

2
ZZ − P3ϕΦ1ZZ. (17)

where, the subscripts denote the partial differentiation of the
function with respect to space (Z) and time (T). Eq. 17 can then
be rewritten by including beta FD as

fL(ϕ, ϕT,
A
0D

β
Zϕ,

A
0D

2β
Z ϕ) � − A

0D
β
Zϕ( )ϕT −

1
6
P1

A
0D

β
Zϕ( )3

+1
2
P2

A
0D

2β
Z ϕ( )2 − P3ϕ

A
0D

2β
Z Φ1( ). (18)

where A
0D

β
Z is denoted the beta FD operator. Based on the

definition of beta FD [32], the derivative properties are
obtained as follows:

(i).A0Dβ
Z mF Z( ) + nG Z( ){ } � mA

0D
β
Z F Z( ){ } + nA0D

β
Z G Z( ){ }

(19)

(ii).A0Dβ
Z μ{ } � 0 (20)

(iii).A0Dβ
Z F Z( ).G Z( ){ } � F Z( )A0Dβ

Z G Z( ){ } + G Z( )A0Dβ
Z F Z( ){ }

(21)

(iv).A0Dβ
Z F Z( )/G Z( ){ } � G Z( )A0Dβ

Z F Z( ){ } − F Z( )A0Dβ
Z G Z( ){ }

G2 Z( )
(22)

where, m, n, μ ∈ R. G ≠ 0 and F are two functions β −
differentiable with β ∈ (0, 1]. By introducing ϵ � (χ + 1

Γ(β))β−1h,
when ϵ → 0, h → 0 in the definition of beta FD, one can derive
another useful property as

A
0D

β
ZF Z( ) � Z + 1

Γ β( )( )1−β
dF Z( )
dZ

(23)
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From Eq. 18, one obtains

zfL

zϕ
� −P3

A
0D

2β
Z Φ1( ), zfL

zϕT

� − A
0D

β
Zϕ,

zfL

zA0D
β
Zϕ

� −1
2
P1

A
0D

β
Zϕ( )2, zfL

zA0D
2β
Z ϕ

� P2z
A
0D

2β
Z ϕ. (24)

Again, J(ϕ) With the Inclusion of Beta FD Becomes

J(ϕ) � ∫
R

dZ∫
τ

dTfL(ϕ, ϕT,
A
0D

β
Zϕ,

A
0D

2β
Z ϕ), (25)

Based on the semi-inverse method [40, 41], the variational
principle, that is, δJ(ϕ) � 0 yields

zfL

zϕ
− z

zT

zfL

zϕT

( )−A
0D

β
Z

zfL

zA0D
β
Zϕ

⎛⎝ ⎞⎠+A
0D

2β
Z

zfL

zA0D
2β
Z ϕ

⎛⎝ ⎞⎠ � 0, (26)

which is known as the Euler—Lagrange equation. Finally, the
following space fractional KdVBE is derived by inserting Eq. 24 in
Eq. 26 along with Φ1�A

0D
β
Zϕ:

zΦ1

zT
+ P1Φ1

A
0D

β
ZΦ1 + P2

A
0D

3β
Z Φ1 − P3

A
0D

2β
Z Φ1 � 0. (27)

In Ref. [35], author has been derived the same equation by
including the Riemann–Liouville (RL) fractional derivative,
where such derivative is defined as

A
0D

β
ZF Z( ) � 1

Γ(λ − β) ×
dλ

dZλ
∫Z
a

dx(Z − x)λ−β−1f(x)⎛⎜⎜⎝ ⎞⎟⎟⎠,

λ − 1< β≤ λ, Z ∈ [a, b].
Besides, the nonlinear, dispersive and dissipative coefficients

are different from Ref. [35] because of the distinct plasma
assumptions. It is noted that this derivative has also some
drawbacks for satisfying the rule of fundamental calculus.

ANALYTICAL SOLUTIONS OF SPACE
FRACTIONAL KDVBE

To obtain the analytical solutions of Eq. 27, the stretched
variables can be combined by introducing traveling wave
transformation ast

Φ1 Z, T( ) � Ξ ζ( ), ζ � 1
Lw

1
β

Z + 1
Γ β( )( )β

− VrT⎡⎣ ⎤⎦, (28)

where Łw and Vr are respectively related to the thickness and
constant speed of moving reference frame with conditionsΦ(1)→
0, dΦ(1)/dχ→ 0, d2Φ(1)/dχ2→ 0, . . . at ζ→∞. It is noted that one
can consider the wave transformation with the presence of RL
derivative as

ζ � 1
Lw

1
Γ(1 + β)Z

β − VrT[ ].
Based on the above assumptions, Eq. 27 can be converted to

−L2
wVrΞ + 1

2
P1L

2
wΞ2 + P2

d2Ξ
dζ2

− P3Lw
dΞ
dζ

� 0. (29)

Now, the analytical solutions of Eq. 29 based on theMKM [28,
42] can be written by taking the homogeneous balance between
Ξ2 and d2Ξ

dζ2
into account as

Ξ ζ( ) � ∑2
n�0

κn Ψ(ζ)( )n, κn ≠ 0, (30)

where Ψ(ζ) � 1/(1 + drζ ), r and d are real constants. Ψ(ζ) is
satisfied the following auxiliary equation:

dΨ(ζ)
dζ

� Ψ2(ζ) − Ψ(ζ)( ) ln r( ), r ≠ 0, 1. (31)

By inserting Eq. 30 into Eq. 29, a set of algebraic equations in
terms of physical and additional parameters by taking the
coefficients of like power of (Ψ(ζ))i, i � 0, 1, . . . , 4 are
obtained (ignored for simplicity). By simplifying the
overlooked algebraic equations, four types of parametric values
of κ0, κ1, κ2, Łw and Vr are archived.

Type 1

κ0 � 0, κ1 � 24
25

P2
3

P1P2
( ), κ2 � −12

25
P2
3

P1P2
( ),

Lw � 5P2 ln(r)
P3

, Vr � 6P2
3

25P2
.

(32)

Therefore, the analytical solution of space fractional KdVBE
based on Type 1 is obtained as

Φ Z, T( ) � 12P2
3

25P1P2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ − 1

1 + dr
P3

5P2 ln(r)
1
β Z+ 1

Γ β( )( )β

− 6P2
3

25P2
T[ ]⎛⎜⎝ ⎞⎟⎠2

+ 2

1 + dr
P3

5P2 ln(r)
1
β Z+ 1

Γ β( )( )β

− 6P2
3

25P2
T[ ]⎛⎜⎝ ⎞⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (33)

Type 2

κ0 � 12
25

P2
3

P1P2
( ), κ1 � 0, κ2 � −12

25
P2
3

P1P2
( ),

Lw � −5P2 ln(r)
P3

, Vr � 6P2
3

25P2
.

(34)

Therefore, the analytical solution of space fractional KdVBE
based on Type 2 is obtained as
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Φ Z, T( ) � 12P2
3

25P1P2
1 − 1

1 + dr
− P3
5P2 ln(r)

1
β Z+ 1

Γ β( )( )β

− 6P2
3

25P2
T[ ]⎛⎜⎝ ⎞⎟⎠2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭,

(35)

Type 3

κ0 � −12
25

P2
3

P1P2
( ), κ1 � 24

25
P2
3

P1P2
( ), κ2 � −12

25
P2
3

P1P2
( ),

Lw � 5P2 ln(r)
P3

, Vr � − 6P2
3

25P2
.

(36)

Therefore, the analytical solution of space fractional KdVBE
based on Type 3 is obtained as

Φ Z, T( ) � 12P2
3

25P1P2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ − 1 − 1

1 + dr
P3

5P2 ln(r)
1
β Z+ 1

Γ β( )( )β

+ 6P2
3

25P2
T[ ]⎛⎜⎝ ⎞⎟⎠2

+ 2

1 + dr
P3

5P2 ln(r)
1
β Z+ 1

Γ β( )( )β

+ 6P2
3

25P2
T[ ]⎛⎜⎝ ⎞⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (37)

Type 4

κ0 � 0, κ1 � 0, κ2 � −12
25

P2
3

P1P2
( ),

Lw � −5P2 ln(r)
P3

, Vr � − 6P2
3

25P2
.

(38)

Finally, the analytical solution of space fractional KdVBE
based on Type 4 is obtained as

Φ Z, T( ) � 12P2
3

25P1P2
− 1

1 + dr
−P3

5P2 ln(r)
1
β Z+ 1

Γ β( )( )β

+ 6P2
3

25P2
T[ ]⎛⎜⎝ ⎞⎟⎠2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭. (39)

PARAMETRIC INVESTIGATIONS

It is well known that fractional partial differential equations
involving real or complex order derivatives have proven to be

a very effective tool in modeling anomalous dynamics of
various physical processes. The immense improvement of
such fractional derivative operator is that one can formulate
models analyzing much-recovered systems with memory
effects. On the other hand, one can consider a gracefully
discretized illustration of the medium. In such nonlocal
media, the complex and spatially connected heterogeneity is
represented via a reformulation of the evolution equation that
provided the related transport physics such that its coefficients
are, instead, smooth but paired with fractional-order space
derivatives. Further, He [49] has been shown that fractal theory
can be adopted to describe various phenomena when space or
time becomes discontinuous. Hence, the space fractional

FIGURE 1 |Contour plot of electrostatic NIASWEswith respect to space
and time for (A) β � 1 and (B) β � 0.1. The remaining parameters are
considered as d � 1, r � e, ρ � 0.96, αe � 0.5, Np0/Ne0 � 0.5, Tep � 1 and Vi0/
c � 0.1.
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FIGURE 2 | Electrostatic NIASWEs for (A) β � 1 and (B) β � 0.8 with the different of ρ0 and T � 150, and (C) β � 1 and (D) β � 0.5 with the different values of T and ρ0 �
0.96. The remaining parameters are considered as d � 1, r � e, αe � 0.5, Np0/Ne0 � 0.5, Tep � 1 and Vi0/c � 0.1.

FIGURE 3 | Electrostatic NIASWEs with respect to space (Z) and fixed time (T � 100) for (A) β � 0.9 and (B) β � 1 with different values of Np0/Ne0. The remaining
parameters are considered as d � 1, r � e, αe � 0.5, ρ0 � 0.96, Tep � 1 and Vi0/c � 0.1.
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KdVBE by introducing the beta fractional derivative has been
derived from the considered plasma system. The analytical
solutions of this equation have evaluated by employing the
MKM and the properties of beta FD. In addition, this work has
also been demonstrated that how the features of shock waves
solutions can be affected by the plasma parameters with the
influence of nonlocal operator. The parametric effects of β, αe,
Np0/Ne0, Vi0/c (relativistic streaming factor), Tep � Te/Tp and ρ0
on the basic features of NIASWEs based on the obtained result
as mentioned in Eq. 33 are displayed graphically along with the
physical interpretations.

Figures 1A,B layouts the contour plots of electrostatic
NIASWEs with respect to space (Z) and time (T) for β � 1
and β � 0.1, respectively by assuming the remaining parameters
constant. It is found from the distinction of Figure 1 that the
SWEs are existed both of positive and negative regions of Z
with the presence of local operator (β � 1), but only existed in
the positive regions of Z with the presence of nonlocal operator

(0 < β < 1). In the physical point of views, the electrostatic
SWEs are significantly changed when the space non-
conservative or space non-locality are occurred in the
plasmas. Figures 2A,B explore the influence of ρ0 on
electrostatic NIASWEs by considering β � 1 and β � 0.8,
whereas Figures 2C,D explore the variation of electrostatic
NIASWEs for different values of T by considering β � 1 and β �
0.5, respectively along with the constant values of the
remaining parameters. It is observed from Figure 2 that the
amplitude of NIASWEs are decreased with the decrease of
weakly viscosity coefficient of ions. In addition, the SWEs are
existed within the range − ∞ < Z < ∞ for only β � 1 but
remarkably modified and existed only within the range of 0 <
Z <∞ for 0 < β < 1. Figure 3 displays the influences of positron
to electron density ratio on SWEs by considering different
values of β and the remaining parameters constant. It is
observed the amplitudes of SWEs are growing with the
increase of positron concentrations. This happens with the

FIGURE 4 | Electrostatic NIASWEs for different of (A) Tepwith d � 1, r � e, β � 0.9, αe � 0.5, ρ0 � 0.96, Tep � 1, Vi0/c � 0.1,Np0/Ne0 � 0.5 and T � 100; and (B) Tepwith
the same typical values of (A) except β � 1.

FIGURE 5 | Electrostatic NIASWEs for different of (A) αewith d � 1, r � e, β � 0.9,Np0/Ne0 � 0.5, ρ0 � 0.96, Tep � 1, Vi0/c � 0.1 and T � 100; and (B) αewith the same
typical values of (A) except β � 1.
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depopulation of ions because the driving force provided by the
ion inertia is increased with the increase of positron
concentration. The influence of electron to positron
temperature ratio and electron nonthermality index on
electrostatic SWEs taking both of local (β � 1) and non-
local (0 < β < 1) parameter into account are explored in
Figures 4, 5, respectively. It is found from Figures 4, 5 that
the amplitude of SWEs are increased with the increase of
electron temperature, but decreased with the increase of
electrons nonthermality index. Finally, the influence of

relativistic streaming factor on electrostatic SWEs taking β
� 1 and 0 < β < 1 into account is displayed in Figure 6. It clearly
observed from Figure 6 that the electrostatic SWEs lose
energies due to the increase of a relativistic factor of ions,
which is in good agreement with the previous study [22]. As a
result, the amplitudes of SWEs are remarkably restrained with
the increase of relativistic factor of ions. On the other hand, the
displayed Figure 3 show that the compressive and rarefactive
shock structures have supported in the considered plasmas
with the presence of not only a nonlocal operator (0 < β < 1)
but also local operator (β � 1) by depending on the parametric
values of the related plasma parameters. It is noted here that
the parametric effects on the other obtained solutions of space
fractional KdVBE is ignored for simplicity. In addition, the
typical values of the plasma parameters are considered based
on the earlier investigations [13, 14, 16, 24, 25], which are very
much relevant to some astrophysical and space environments.
It is predicted from the above discussion that the peak
amplitude of SWEs has not existed in the negative regimes
of Z with the presence of the nonlocal operator. Whereas, the
peak amplitude of SWEs has existed in both regimes of Z with
the presence of the local operator.

In order to check the validity of the beta fractional derivative,
the electrostatic potential with regards to space is displayed in
Figure 7 by comparing it with the RL derivative. This figure is
clearly shown that the electrostatic potential only exists in the
positive regime of Z with the presence of both fractional
derivatives, which is in good agreement with the investigations
in Ref. [35]. It is also observed that beta fractional derivative
minimizes the amplitude of electrostatic potential rather than RL
fractional derivative. As it is expected because of some limitations
of RL fractional derivative. Thus, the results obtained in this
article would be very useful for better understanding the physical
scenarios with the presence of non-locality as well as non-
conservative energies of charged particles not only in

FIGURE 6 | Effect of relativistic streaming factor on electrostatic NIASWEs for (A) β � 0.9 and (B) β � 1with αe � 0.5,Np0/Ne0 � 0.5, d � 1, r � e, ρ0 � 0.96, Tep � 1 and
T � 100.

FIGURE 7 | Electrostatic potential with the presence of beta (red color)
and RL (green color) fractional derivatives with respect to space and T � 10.
The remaining parameters are considered as d � 1, r � e, ρ � 0.96, αe � 0.5,
Np0/Ne0 � 0.5, Tep � 1, Vi0/c � 0.1, β � 0.8 and T � 10.
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astrophysical and space environments but also in plasma
laboratories.

CONCLUDING REMARKS

The KdVBE including beta space FO has been proposed to
report the unrevealed physical issues in the unmagnetized
collisionless plasmas, where the non-locality as well as non-
conservative systems play an essential role. The analytical
solutions of this equation have obtained via the effective
MKM. The proposed equation has been divulged the SWEs
in the considered plasma system. The effects of beta fractional
and other related parameters on NIASWEs have investigated. It
is found that electrostatic NIASWEs are significantly modified
with the presence of a nonlocal operator, like beta FD. This
means that the nonlocal behaviors of electrostatic NIASWEs
have only existed in the positive regimes of space with the
influence of plasma parameters. From a physical point of view,
this will happen only when the scale approaches a very small
one. It is also observed that the beta FD is very useful to study
the basic features of nonlinear dynamical wave phenomena
because of the localized and non-localized nonlinear wave
phenomena can be described very easily by considering β �
1 and 0 < β < 1, respectively. The considered plasma system is
supported both of compressive and rarefactive shock wave
excitations within the domain 0 < Z < ∞ with the presence
of beta FD, which is another most important finding in this
work. It would be concluded that one may be derived various

types of beta fractional NLEEs for better understanding the
unfamiliar physical scenarios not only in plasmas, but also in
fluid dynamics, water wave theories, fluid-filled elastic tubes,
nonlinear optics, etc.
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