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Multimodal deep learning applied 
to classify healthy and disease 
states of human microbiome
Seung Jae Lee1 & Mina Rho1,2*

Metagenomic sequencing methods provide considerable genomic information regarding human 
microbiomes, enabling us to discover and understand microbial diseases. Compositional differences 
have been reported between patients and healthy people, which could be used in the diagnosis of 
patients. Despite significant progress in this regard, the accuracy of these tools needs to be improved 
for applications in diagnostics and therapeutics. MDL4Microbiome, the method developed herein, 
demonstrated high accuracy in predicting disease status by using various features from metagenome 
sequences and a multimodal deep learning model. We propose combining three different features, 
i.e., conventional taxonomic profiles, genome-level relative abundance, and metabolic functional 
characteristics, to enhance classification accuracy. This deep learning model enabled the construction 
of a classifier that combines these various modalities encoded in the human microbiome. We achieved 
accuracies of 0.98, 0.76, 0.84, and 0.97 for predicting patients with inflammatory bowel disease, type 
2 diabetes, liver cirrhosis, and colorectal cancer, respectively; these are comparable or higher than 
classical machine learning methods. A deeper analysis was also performed on the resulting sets of 
selected features to understand the contribution of their different characteristics. MDL4Microbiome is 
a classifier with higher or comparable accuracy compared with other machine learning methods, which 
offers perspectives on feature generation with metagenome sequences in deep learning models and 
their advantages in the classification of host disease status.

Abbreviations
HMP	� Human microbiome project
IBD	� Inflammatory bowel disease
OTU	� Operational taxonomic unit
LC	� Liver cirrhosis
T2D	� Type 2 diabetes
RPKM	� Reads per kilobase per million mapped reads
KO	� KEGG ortholog
ReLU	� Rectified linear unit
LOOCV	� Leave-one-out cross-validation
ROC	� Receiver operating characteristic
AUC​	� Area under curve

Since the introduction and application of next-generation sequencing technologies to human genomes and their 
microbiomes, many researchers have exploited its application in disease diagnostics and therapeutics. Genetic 
variation in the human genome is an important feature for diagnosing diseases, such as cancer1,2. In the past few 
decades, advanced metagenomic sequencing methods have allowed research on the human microbiome to find 
pathological relationships between bacterial composition and functions with the disease. The Human Microbi-
ome Project (HMP) has sequenced more than 700 samples of microbial communities from different body sites of 
healthy individuals3. Subsequently, the Integrated Human Microbiome Project (iHMP) has collected microbiome 
samples from three different microbiome-associated dysbiosis conditions4.

With the increasing amount of metagenome sequencing data, more studies have characterized profiles of the 
human microbiome for a deeper analysis. Traditionally, alignment-based methods, such as MetaPhlAn5, have 
been widely used for taxonomy profiling. Despite their algorithmic differences, all alignment-based programs rely 
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on the current databases of bacterial genomes. To address such problems, time-efficient, alignment-free methods, 
such as Kraken6 and CLARK7, have been applied to profiling8, which assign taxonomic labels to metagenomic 
sequences based on the k-mer frequency. In addition, microbial functions have also been analyzed to under-
stand the physiology of the disease. Using well-curated databases, such as KEGG9,10, COG11,12, and subsystems13, 
metabolic functions are annotated for specific microbiomes using various algorithms14.

In the skin, mouth, nose, and digestive tract of humans, the microbiota is composed of diverse species of 
microorganisms in different proportions, which can be meaningful indicators of the disease status15. Recent 
studies have used computational methods to profile microbial compositions in samples to differentiate between 
healthy and disease states16–18. For example, the gut microbiome composition of patients with inflammatory 
bowel disease (IBD) is different from that of healthy people19–22. Liver disorders have been studied to reveal a 
correlation with altered gut microbiome17,23. Studies of the human gut microbiota have shown that the interplay 
between microbes and the host is associated with various medical factors24.

For the classification of host health states regarding the microbiome, machine learning methods were applied 
using amplicon sequencing data25. Conventionally, operational taxonomic unit (OTU) representations are com-
monly used as input features for neural networks. MetaDP uses 16S sequencing data to generate OTU tables 
that contain information about microbial composition and diversity as features for the SVM-based prediction26. 
MicroPheno uses k-mer distribution features in body site identification and Crohn’s disease prediction, which is 
more accurate and time-efficient than using conventional features27. MetaNN overcomes the overfitting problem 
by applying data augmentation and dropout training techniques to multilayer perceptron and convolutional 
neural network models28. Most of the classifiers were developed based on amplicon sequencing data, which is 
cost-efficient but provides limited information that is captured from the comprehensive microbiome. As being 
already reported, microorganisms in the human body have numerous significant intrinsic features for diagnosing 
diseases29, and even the same species may differ genetically and perform different functions30.

In this study, we developed a deep learning model called MDL4Microbiome to classify disease status using 
the features extracted from microbiome sequencing data. Our classifier was built using a multimodal neural 
network based on the compositional and functional aspects of the human microbiome, which achieved the higher 
or comparable accuracies of 0.98, 0.76, 0.84, and 0.97 in predicting patients with IBD, Type 2 diabetes (T2D), 
liver cirrhosis (LC), and colorectal cancer (CRC), respectively.

Methods
Data preparation and preprocessing.  All methods were performed in accordance with the relevant 
guidelines and regulations. Four datasets were used to train and validate the classifier. The first set was patients 
with IBD and healthy individuals, the second was patients with T2D and healthy individuals, the third was 
patients with LC and healthy individuals, and the fourth set was patients with CRC and healthy individuals. 
The IBD dataset was downloaded from the NIH Common Fund’s HMP Program (100 controls and 100 IBD 
patients)3,4. The T2D dataset was downloaded from NCBI Sequence Read Archive under accession numbers 
SRA045646 and SRA050230 (47 controls and 101 T2D patients)31. The LC dataset was downloaded from the 
European Nucleotide Archive (ENA) under the accession number ERP005860 (83 controls and 94 LC patients)17. 
The CRC dataset was downloaded from the ENA under the accession number PRJEB27928 (60 controls and 59 
CRC patients)32 . Each dataset consisted of 200, 148, 177, and 119 samples of gut microbiome sequencing data 
from healthy individuals and patients with IBD, T2D, LC, and CRC, respectively. Additional information on the 
samples is provided in Supplementary Table S1.

For each downloaded raw sample, paired-end sequencing reads were trimmed for quality control. Low-quality 
reads (Phred quality score < 20) were removed using Sickle33. All reads containing Ns in their sequences were also 
removed. Taking into account the technological imperfections in extracting gut microbiome, host contaminations 
were removed by mapping reads to the UCSC human reference genome (GRCh37, hg19, established in February 
2009) using Bowtie (ver. 2.3.4.1)34. Throughout the mapping results, reads with a mismatch and soft-clip length 
under 10% and 30% of the read length were considered as human contaminations and removed.

Generation of feature sets.  The proposed classifier was constructed and trained using the essential infor-
mation of the microbiome data. Three different approaches were used for extracting features in this study, i.e., 
two for the relative abundance of microbial composition and one for functional characteristics. MDL4Microbi-
ome combined all three features in a multimodal model (Fig. 1).

The conventional composition profile was generated at seven different taxon ranks from phylum to species 
using MetaPhlan (version 2.1.0)5. MetaPhlan was performed with the default options except the ignore flags 
(–ignore-archaea, –ignore-eukaryotes, –ignore-viruses), leaving only bacteria in the profiles. Any genus and 
species that appeared in only one sample were removed because they could be sample-specific. For the IBD, 
T2D, and LC datasets, a total of 327, 406, and 316 species were identified, respectively. The number of taxa at 
each rank, which is the number of features in the modal for the conventional taxonomic profile, is provided 
in Table 1. Each feature value is the proportion of each taxon. Proportion values were log-transformed before 
feeding them into neural network models35.

Features of genome-level relative abundance were generated to consider genomic variation information that 
taxonomic profiles may not include. We used the term “genome-level” to indicate the genomic regions that are 
conserved in a group of strains. The abundance of such specific genomic regions was extracted as a type of feature. 
Therefore, reference samples were randomly selected from all the training samples in the dataset. Performance 
was evaluated according to the number of reference samples used (see “Results” section). To construct contigs, 
paired-end reads of the reference samples were assembled using MEGAHIT (ver. 1.1.3)36. Of all contigs from the 
reference samples, contigs longer than 5000 bp were retained. Binning was performed on the contigs to retain 
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non-homologous contigs, which improved the computational time with comparable accuracy performance (see 
“Results” section). The contigs were binned with MetaBAT (ver. 2.15)37. All parameters were set as default with 
no depth file as an option when running MetaBAT. The longest contig in each bin was selected and gathered as 
non-redundant representative contigs for feature generation.

The reads in each sample were mapped to non-redundant contigs using Bowtie (ver. 2.3.4.1)34. For each pair 
of a sample and non-redundant contig, the values of reads per kilobase per million mapped reads (RPKM) were 
calculated as follows:

The RPKM values represent the relative abundance of genomic fragments. Contigs with coverage under 70% 
were disregarded since such genomic fragments might not exist in a certain sample. The coverage of contig j in 
sample i was calculated as follows:

Log transformation was applied to genomic features before feeding them into neural networks.

RPKM(samplei , contigj) =
number of mapped reads in samplei ∗ 10

3
∗ 106

number of reads in samplei ∗ length of contigj

Coverage
(

samplei , contigj

)

=

length of contigj covered by reads in samplei

length of contigj

Figure 1.   Schematic diagram of MDL4Microbiome. (A) Three methods were used to generate different types 
of features, viz., conventional taxonomic profiles, metabolic functional features, and genome-level abundance. 
Different features are fed into the multimodal deep learning model. The model was evaluated by the leave-one-
out cross-validation method. (B) Specific steps of extracting non-redundant contigs of known and unknown 
microorganisms. A subset of samples is selected randomly. After contigs are assembled with the reads of the 
selected samples, they are clustered to collect a set of non-redundant representative contigs. Entire sample reads 
are mapped to non-redundant contigs to measure the relative abundance of genomic fragments.

Table 1.   Number of input features in the IBD, T2D, and LC datasets. a For genomic features, an average of 
three runs conducted with different representative samples was calculated.

Features IBD T2D LC CRC​

Taxonomic composition

Phylum 12 11 11 11

Class 20 19 18 17

Order 26 32 27 26

Family 52 62 54 52

Genus 116 141 121 122

Species 327 388 361 313

Genomic contigsa
2 Refs 27 50 23.7 69

40 Refs 279.3 366 207.3 479.3

Functional proportion 6,147 5,333 7,381 7,220
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An abundance of metabolic functions was generated as a feature. Using 14,785 ortholog gene clusters provided 
by KEGG (ver. 54)9,10, metagenomic sequencing reads were searched using DIAMOND (ver. 0.9.14)38 with the 
following parameters: percent identity and query coverage cutoffs were set as 50% and 50%, respectively; e-value 
cutoff was 1.0e−10. For reads, RPKM values were calculated for all KEGG ortholog (KO) proteins that matched at 
least one read in the dataset. These values were summed into functional categories and normalized by gene length.

Construction of multimodal deep learning model.  A multimodal deep learning model was used 
to combine different types of features in MDL4Microbiome (Fig.  1). More specifically, species-level profiles, 
genomic features generated with 40 reference samples, and metabolic functional features generated using the 
KEGG database were used. The architecture of the model is shown in Fig. 2. Different features were fed into a 
separate supervised deep neural network model. The last hidden layer represents the embedded representations 
of each feature. Combining each representation, we obtained a new shared representation that inherits original 
features from different modalities. For comparison, individual features were trained using simple deep neural 
network classifiers.

Multimodal deep learning models and simple deep neural network models were implemented in Python 
(version 3.6.9) for the evaluation. Keras (version 2.3.1), Python deep learning API, was used to build and compile 
all neural network models. Each layer was created as a dense layer with a fully connected configuration. Models 
were created and compiled for multiclass classification. The activation function for the output layer was set to 
the softmax function. The activation functions for all the other layers were rectified linear unit (ReLU) func-
tions. For compilation, the Adam optimizer was used with default settings of learning rate = 0.001, beta_1 = 0.9, 
and beta_2 = 0.999.

The number of nodes in each hidden layer and the number of hidden layers were considered in the design 
of the architecture of the models. The performances of the models with various structures of hidden layers are 
presented in Supplementary Table S2. There was no significant difference with an increase in the number of nodes 
and hidden layers. The execution time increased as the number of nodes and hidden layers increased. For time 
efficiency and fair comparison between features, three hidden layers consisting of 200, 100, and 50 nodes were 
used for taxonomic and genomic features. For functional features, regarding the bigger feature sets, the number 
of hidden layers were the same, but were implemented with 500, 100, and 50 nodes. For the final classifier in 
multimodal learning models, only two hidden layers consisting of 50 and 25 nodes were used.

Performance evaluation.  Model evaluation was performed using the leave-one-out cross-validation 
(LOOCV) method. LOOCV is the case of k-fold cross-validation, where k is the number of samples. In our 
evaluation process, one sample was excluded in both stages of training, i.e., feature embedding and final clas-
sification, and used in testing. Accuracy, precision, and recall were used to evaluate the performance as follows:

Figure 2.   Architecture of multimodal deep learning model. A multimodal deep learning model aims for 
combining features from different modalities. Each feature generated by different methods is first fed to the 
classifier. The nodes of the last hidden layer are considered as embedded representations of each feature. 
Embedded representations are concatenated into a new shared representation inheriting original features. 
Combined feature representation is fed to the classifier for final classification.



5

Vol.:(0123456789)

Scientific Reports |          (2022) 12:824  | https://doi.org/10.1038/s41598-022-04773-3

www.nature.com/scientificreports/

where TP, FP, TN, and FN represent true positive, false positive, true negative, and false negative, respectively. 
LOOCV was conducted five times and averaged for the evaluation. For genomic features, three runs were con-
ducted by randomly selecting new reference samples in each iteration. For the IBD and T2D datasets, macro- 
and micro-averaged accuracies were the same because both datasets included the same number of positive and 
negative samples. For the LC dataset, the number of positive and negative samples were similar, resulting in no 
significant difference between macro- and micro-average performances.

To evaluate the performance, five traditional machine learning models (i.e., random forest (RF)39, extreme 
gradient boosting (XGBoost)40, principal component regression (PCR), lasso regression41, and support vector 
machine (SVM)42 were used. All the traditional models were implemented in Python (version 3.6.9). For RF, 
PCR, lasso regression, and SVM, scikit-learn library (version 0.24.2) of python machine learning package, was 
used. For XGBoost, the xgboost 1.5.0-dev library was used.

Results
Performance evaluation with various model architectures and parameters.  To evaluate the 
accuracy with respect to model architectures, four different models were constructed using different features. 
We measured the accuracy using three large-scale metagenome sequencing data: the IBD, T2D, and LC data-
sets. With the IBD dataset, precision, recall, and accuracy were 0.97, 0.98, and 0.98, respectively. With the T2D 
dataset, values of 0.80, 0.86, and 0.76, respectively, were achieved, and with the LC dataset, values of 0.86, 0.83, 
and 0.84, respectively, were achieved. Lastly, values of 0.99, 0.94, and 0.97 were achieved with the CRC dataset. 
Notably, multimodal neural networks achieved the best accuracy for all four datasets, compared to simple DNN 
classifiers with individual feature types (Table 2 and Supplementary Table S3).

When using a conventional genus-level profile as input features, the accuracies of the classifier were 87.3%, 
67.6%, 81.4%, and 66.4% for the IBD, T2D, LC, and CRC datasets, respectively, with the same probability thresh-
old of 0.5. For the species-level profile, the accuracies were 89.4%, 68.9%, 81.5%, and 70.0% for IBD, T2D, LC, 
and CRC datasets, respectively. Using the probability threshold of 0.5, the model with genome-level variation 
achieved accuracies of 92.9%, 72.3%, 79.0%, and 80.7% for the IBD, T2D, LC, and CRC datasets, respectively, 
with 40 reference samples selected in the feature generation process. Using metabolic functional features, the 
accuracies were 79.5%, 70.3%, 77.4%, and 94.1% for IBD, T2D, LC, and CRC datasets, respectively.

As shown in the receiver operating characteristic (ROC) curves and area under curve (AUC), the multimodal 
neural network showed better performance compared to the neural network with single type of feature (Fig. 3). 
In particular, for IBD, LC, and CRC datasets, the ROC curves and AUC values improved dramatically when 
combining the features and using a multimodal deep learning model. To analyze how well the decision boundary 
was set with combined features compared to each of the features, the training and testing datasets were plotted 
using t-SNE. Three different views were observed, viz., data distribution before training; with split training and 
testing data with a ratio of 7:3; after training in one of the folds in LOOCV (Fig. 4). Before training, distribution 
of samples with the raw feature values, obtained through simple concatenation of three different features, did 
not show a clear separation (Fig. 4A,D,G,J). When the data were divided into two groups for training and testing 
at a ratio of 7:3, the data from two different phenotypic groups were relatively well-separated to achieve higher 
accuracy. When the testing data were evaluated by combined features, the testing data were well-aligned with 
training data from the two different groups (Fig. 4B,E,H,K). After training with all samples except for one in the 

Accuracy =
TP + TN

TP + FP + TN + FN

Precision =

TP

TP + FP

Recall =
TP

TP + FN

Table 2.   The performance of four different model architectures. a For each experiment, LOOCV was used 
to calculate the precision, recall, and accuracy. Five simulation runs were performed, and the values were 
averaged over five runs. P precision, R recall, A accuracy.

Features

IBD T2D LC CRC​

P R A P R A P R A P R A

Taxonomic composition

Phylum 0.69 0.71 0.7 0.66 0.80 0.58 0.77 0.57 0.68 0.57 0.41 0.55

Genus 0.87 0.87 0.87 0.76 0.77 0.68 0.83 0.82 0.81 0.66 0.66 0.66

Species 0.91 0.87 0.89 0.75 0.82 0.69 0.86 0.78 0.81 0.71 0.67 0.70

Genomic contigsa
2 Refs 0.89 0.85 0.87 0.72 0.80 0.65 0.71 0.73 0.70 0.62 0.54 0.61

40 Refs 0.94 0.92 0.93 0.77 0.85 0.72 0.81 0.8 0.79 0.84 0.75 0.81

Functional proportion 0.77 0.85 0.80 0.74 0.86 0.70 0.74 0.88 0.77 0.98 0.90 0.94

All combined
(multimodal) 0.97 0.98 0.98 0.80 0.86 0.76 0.86 0.83 0.84 0.99 0.94 0.97
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dataset as part of the LOOCV, the datasets showed better separation (Fig. 4C,F,I,L), which may suggest that a 
larger amount of training data increases the accuracy of this LOOCV evaluation process.

Effects of different features on the performance.  As the lower rank of taxonomy (i.e., from phylum 
to species) was used as profile features, the accuracy generally increased for all datasets (Fig. 5A). The phylum-
level profile features had the lowest accuracy of 69.7%, 58.1%, 68.3%, and 55.5% whereas the species-level profile 
features had the highest accuracy of 89.4%, 68.9%, 81.5%, and 70.0% for the IBD, T2D, LC, and CRC datasets, 
respectively. The LC dataset showed a similar pattern to other datasets, except for a protruding point at the 
class-level. Moreover, for IBD, T2D, and CRC datasets, the genome-level variation features showed the highest 
accuracy of up to 92.9%, 72.2%, and 80.7%, which exceeded the accuracy of all taxonomic features. With the LC 
datasets, the genome-level variation features slightly decreased the accuracy.

When generating genomic features, the number of reference samples affects the accuracy (Fig. 5B). When 
there were more than a certain amount of reference samples (10 for the IBD and 20 for the CRC), the accuracy 
of genomic features surpassed the taxonomic proportions of all ranks (Fig. 5B). For the T2D dataset, with 20 and 
40 reference samples, genomic features exceeded the taxonomic proportions of all ranks. This implies that a set of 
specific strains could be more associated with disease physiology than general taxonomy information on bacte-
rial composition. Although both methods use relative abundance information generated based on metagenome 
sequencing data, genome-level variations achieved better performance than the conventional taxonomy profiles. 
We suspected that the lower accuracy of the LC dataset compared to that of the other two datasets resulted from 
the high diversity of samples within the group.

Although conventional composition profile features primarily consist of annotated taxa, genome-level varia-
tion uses relative abundance without taxonomic information. To confirm that genome-level relative abundance 
can provide more abundant taxonomic information, two samples of the gut microbiome from patients with IBD 

Figure 3.   ROC curves and AUCs for MDL4Microbiome with each feature and all features combined. For ROC 
curves, thresholds were selected as the means between any two consecutive values observed in the data. ROC 
curves and AUCs for the (A) IBD, (B) T2D, (C) LC, and (D) CRC datasets.
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and healthy individuals were profiled by CAT​38,43,44. As a result, 10% of the sequences could not determine their 
taxa at the genus level using CAT. Although this result does not represent the proportion of unknown taxa, these 
results imply that certain amounts of genomic sequences are not taxonomically annotated; thus, our approach of 
using the relative abundance of genomic sequences could provide more informative features for characterizing 
and comparing the microbiomes of different disease states.

When generating genomic features, the representative contigs were gathered with the longest sequences in 
each cluster (see Method section). We also checked whether the contigs selected from each cluster could repre-
sent each unique taxon. For this purpose, we analyzed the sequences in each cluster using CAT​38,43,44, counting 
the number of contigs that were assigned to the same taxonomy. On average, 87.9% of the clusters had over 70% 

Figure 4.   Visualizations of the IBD, T2D, and LC datasets before and after training using t-SNE. Each column, 
(A–C), (D–F), (G–I), and (J–L) was generated with IBD, T2D, LC, and CRC datasets, respectively. (A,D,G,J) are 
from the data before training MDL4Microbiome with all features combined (simply concatenated). (B,E,H,K) 
are from the data in the last hidden layer when the classifier was trained with 70% of the dataset (as light colors). 
The remaining 30% retained for testing were predicted using the classifier (as dark colors). (C,F,I,L) are the 
result of one-fold of LOOCV. All samples, except for one, in the dataset were used for training, and all samples 
were included in prediction for visualization.
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of contigs classified to the same taxon at the family and genus levels. Over 86% of the clusters had their longest 
sequences assigned to the dominant taxa in the cluster. This indicates that the clustering and selecting the longest 
contig from each cluster for representative contigs works properly to generate genomic features.

The classifier was also trained with metabolic function features obtained using the KEGG database (see 
“Methods” “Construction of multimodal deep learning model”). Using a probability threshold of 0.5, the model 
achieved an accuracy of 79.5%, 70.3%, 77.4%, and 94.1% for the IBD, T2D, LC, and CRC datasets, respectively 
(Table 2). Even though the accuracy with metabolic function features alone was lower than the compositional 
features (i.e., taxonomic, and genomic features) except for the CRC dataset, the combined features increased the 
performance in the multimodal model. This demonstrates that when classifying patients from healthy people, 
functions of microbiomes are still powerful features, and the potency may vary across diseases.

Accuracy comparison with existing models.  When the performance of the current model was com-
pared to that of previous studies, our multimodal deep learning model with all combined features achieved 
higher or comparable performance. We could not find any classifier based on the whole metagenome sequencing 
data. MicroPheno45 and MetaNN28 utilized 16S rRNA gene sequencing data to predict host phenotypes. Micro-
Pheno generated k-mer representation features and compared multiple classifiers, such as random forest (RF), 
SVM, and deep neural networks. For the Crohn’s disease dataset, the top micro- and macro-F1 scores were 0.76 
and 0.75, respectively, using RF. MetaNN also compared several classifiers using an in-house data-augmentation 
method for taxonomy abundances. The highest micro- and macro-F1 scores were 0.84 and 0.78, respectively, for 
the IBD dataset using the MLP classifier with the dropout training technique.

Conventional machine learning models (i.e., RF, XGBoost, PCR, lasso regression, and SVM), were used for 
further comparisons (Table 3). For the input, three different features were concatenated into a single feature. For 
T2D and LC datasets, MDL4Microbiome outperformed all the other single models. In addition, an ensemble 
model was built with the combination of PCR, lasso regression, and SVM classifiers. The voting method was 
applied for the final prediction of the ensemble model.

Time complexity for feature generation.  When reference samples are used in training, non-redundant 
sets of genomic sequences need to be selected as features because multiple samples have the same genomic 

Figure 5.   Accuracy with different levels of relative abundance features. (A) Accuracy of conventional 
taxonomic features from phylum-level to species-level and genomic features generated with 40 reference features 
for comparison. (B) Accuracy of genome-level features with different numbers of reference samples. Each data 
point is an average accuracy of three runs conducted with different reference samples. Each run represents an 
average accuracy of five iterations of LOOCV. Orange, blue, purple, and red lines correspond to the IBD, T2D, 
LC, and CRC datasets, respectively.

Table 3.   The accuracy of our model and conventional machine learning models. a Ensemble of PCR, lasso, and 
SVM.

RF XGBoost PCR lasso SVM Ensemblea MDL4Microbiome

IBD 0.98 0.98 0.99 0.99 0.73 0.99 0.98

T2D 0.68 0.72 0.68 0.72 0.68 0.74 0.76

LC 0.81 0.82 0.83 0.82 0.82 0.84 0.84

CRC​ 0.94 0.94 0.95 0.96 0.87 0.94 0.97
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sequences originating from the same taxon. The number of redundant sequences affects the amount of time 
required for mapping to generate features. From all contigs that were assembled from the reference samples, 
contigs of non-redundant sequences were obtained by clustering using MetaBAT37. The number of representa-
tive contigs reduced significantly after clustering (Supplementary Table S4). The amount of time consumed for 
mapping sequencing reads from the 200 IBD samples to 9,373 representative contigs (from one of the runs, 
two reference samples) was approximately 26.76 h (with 20 threads option in running Bowtie). However, when 
clustering was applied, the number of non-redundant sequences was reduced to 44, which took approximately 
9.85 h (with the same options). The process for feature generation was approximately 2.72-times faster when the 
non-redundant set was used. As the number of reference samples increased, the reduction in time complexity 
increased.

Conclusion
The gut microbiome is a collective set of microorganisms inside the human digestive tract and is a good indica-
tor of human health. MDL4Microbiome showed higher or comparable accuracy for predicting the phenotypes 
of the hosts by combining features that were extracted on the basis of three different ways from metagenome 
sequencing data, i.e., on the basis of the conventional composition profiles, genome-level abundance, and meta-
bolic functional abundance. Moreover, MDL4Microbiome achieved accuracies of 0.98, 0.76, 0.84, and 0.97 for 
the IBD, T2D, LC, and CRC datasets, respectively.

Compared to the taxonomy profiles for the microbiome, genome-level measurement of bacterial abundance 
could provide two advantages: first, the provision of a deeper level, supposedly, strain-level abundance infor-
mation, and second, the provision of abundance information for unannotated taxa. Our method of generating 
genomic features achieved accuracies of 92.9%, 72.3%, and 80.7%, and the conventional profile-based classifier 
had accuracies of 89.4%, 69.9%, and 70.0% (in particular, species-level profile using MetaPhlAn) for the IBD, 
T2D, CRC datasets, respectively. When non-redundant contigs were extracted using binning before calculating 
the RPKM, the time required for feature generation decreased markedly. The process for feature generation (in 
particular, genomic features with two reference samples) was approximately 2.72-fold faster when binning was 
applied. Despite the advantages of our method, further studies are needed to identify unannotated species that 
contribute towards important features for diagnosing a disease. Metabolic function features were also evaluated. 
We showed that metabolic functions act as a significant feature for predicting disease states in the T2D dataset. 
In summary, the multimodal deep learning method allowed the combination of features of different aspects of 
microbiomes, resulting in an overall high accuracy of classifying host phenotypes.

Data availability
The codes and the models in this article can be found at the public repository at https://​github.​com/​DMnBI/​
MDL4M​icrob​iome.

Code availability
Project name: MDL4Microbiome; Project home page: https://​github.​com/​DMnBI/​MDL4M​icrob​iome; Operating 
system(s): Linux; Programming language: Python version 3.6.9; License: FreeBSD etc.
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