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I. INTRODUCTION 

Epidemiological studies have actively analyzed the correla-

tions between mobile phone use and the risk of brain tumors 

[1–4]. These cohort studies aimed to identify relationships be-

tween various risk factors and human health through follow-up 

research. However, cohort studies are costly and time-consuming, 

since they require long-term observation of changes in individu-

al or group characteristics. Numerical specific absorption rate 

(SAR) studies have therefore been performed and have proven 

effective; for example, Wiart et al. [5] and Christ et al. [6] inves-

tigated electromagnetic (EM) exposure in the head tissues of 

children and adults using computational head phantoms and 

numerical handset models. Lee et al. [7] studied the relationship 

between brain SAR and various important factors, such as the 

mobile phone type, phone position, operating frequency, and 

user age using computational head phantoms and numerical 

mobile phone models. Additionally, Lee et al. [8] investigated 

brain SAR using computational average head models suitable 

for Korean males. 

In numerical SAR studies, the development of numerical 

mobile phone models is highly important. In [7, 8], for epide-

miological studies, the authors employed numerical mobile 

phone models [9] that were developed based on an investigation 

of commercial mobile phones released from 2002 to 2013 in 

South Korea. Note that the numerical mobile phone models in 

[9] were confined to 2G and 3G communication services. The 

evolutionary cycles of the mobile phone market and communi-

cation services have become shorter over time; therefore, these 

trends should be considered in numerical SAR studies of cur-

rent mobile phones. Nowadays, smartphones are widely used for 

long-term evaluation (LTE) services. 

Wireless local area network (WLAN) services are usually 

used for voice calls, texting, and web surfing; therefore, it is 
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Abstract 
 

This paper presents the representative numerical modeling of smartphones with wideband code division multiple access (WCDMA), 

long-term evaluation (LTE), and wireless local area network (WLAN) bands for epidemiological studies. For this purpose, based on spe-

cific absorption rate (SAR) test reports for commercial smartphones released in South Korea from 2013 to 2019, we determined the 

smartphone size, frequency band categorization, antenna locations, and target 1-g peak-spatial SAR (psSAR) values for a specific anthro-

pomorphic mannequin (SAM) phantom. Numerical results showed that the designed numerical smartphone models yielded good match-

ing and radiation performance, and more importantly, their 1-g psSAR values were within ±16% of the target 1-g psSAR values. 
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important to develop numerical smartphone models for epide-

miological studies that reflect the modern era, which is what this 

study has achieved. 

By surveying SAR test reports provided by Samsung Elec-

tronics, we determined the smartphone size, frequency band 

categorization, antenna locations, and target 1-g peak-spatial 

average SAR (psSAR) values for a specific anthropomorphic 

mannequin (SAM) phantom. We then developed numerical 

smartphone models with return losses larger than 6 dB, radia-

tion efficiencies greater than 70%, and difference magnitudes of 

1-g psSAR values between their target values below 20%. All 

numerical simulations were performed using Sim4life [10], 

which produces simulations based on the accurate and powerful 

finite-difference time domain (FDTD) method [11–15]. 

II. NUMERICAL SMARTPHONE MODELING 

In this study, we developed numerical smartphone models 

based on SAR test reports for smartphones distributed in South 

Korea from 2013 to 2019. First, we determined the size for the 

numerical smartphone models to be 73 × 148 × 8 mm3 by 

averaging the sizes of commercial smartphones provided in the 

SAR test reports. Each numerical smartphone model comprised 

a smartphone platform and an antenna. Although many com-

ponents and materials are used in commercial smartphones, we 

simplified the numerical smartphone platform by considering 

only the essential parts; hence, the numerical smartphone plat-

form consisted of a casing, liquid-crystal display (LCD) glass, 

LCD dielectrics, an LCD ground, a metal chassis, a main board, 

and a battery. The thickness of the battery was 3 mm and the 

thickness of the remaining components was 1 mm. Fig. 1 shows 

a schematic diagram of the numerical smartphone platform. 

Note that the length of all components was set to an integer 

multiple of 1 mm to avoid overwhelming FDTD simulation 

burdens. This smartphone platform was used throughout the 

research. We designed various antennas and integrated them 

into the smartphone platform to develop the final numerical 

smartphone models. 

Based on the previously mentioned SAR test reports, we con-

sidered LTE Band 1 (1,920–1,930 MHz), LTE Band 3 (1,715–

1,785 MHz), LTE Band 5 (824–849 MHz), LTE Band 7 

(2,500–2,570 MHz), LTE Band 8 (905–915 MHz), a wideband 

code division multiple access (WCDMA) band (1,922.8–

1,977.2 MHz), and a WLAN band (2,412–2,472 MHz). The 

development of seven numerical smartphone models for each 

frequency band was unnecessary; hence, for this study, we devel-

oped four numerical smartphone models by grouping similar 

frequency bands together because their peak SAR values were 

almost identical for small frequency deviations, as demonstrated 

in [9]. Table 1 shows the four frequency bands used for this 

study, with their corresponding SAR target frequencies. 

Next, we determined the antenna locations based on the SAR 

test reports. Most antennas for the WCDMA and LTE bands 

were located at the bottom, whereas the WLAN antennas were 

mostly located at the top left; therefore, we determined the posi-

tions of the antennas integrated into the numerical smartphone 

models as bottom and top left for the WCDMA/LTE bands 

and the WLAN band, respectively, as shown in Fig. 1(b). 

SAR values were evaluated for four positions—left cheek, left 

tilt, right cheek, and right tilt—as shown in Fig. 2. The cheek 

position indicates that a smartphone is in contact with the cheek 

along the reference plane, and the tilt position indicates a 

smartphone tilt of 15° against the cheek position. 

For this study, we used the SAM phantom described in the 

IEC/IEEE international standard [16]. Table 2 lists the electri-

cal properties of the SAM phantom. For target frequencies not 

specified by [16], the electrical properties were obtained using 

the linear interpolation technique. We now address the FDTD 

cell modeling for the SAR study for the tilt positions in detail. 

(a) 

 
(b) (c) 

Fig. 1. Schematic diagram of the numerical smartphone platform: 

(a) side view, (b) front view, and (c) back view. 

 

Table 1. Frequency band categorization 

Band Bandwidth (MHz) 
SAR target frequency 

(MHz)

WCDMA/LTE B1/B3 1,715–1,980 1,850

LTE B5/B8 824–915 870

LTE B7 2,500–2,570 2,535

WLAN 2,412–2,472 2,450
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The FDTD method uses orthogonal cells; thus, geometrical 

models that are not parallel to the major (x, y, and z) coordinates 

suffer from staircasing errors. For tilt positions, we should 

choose to rotate the numerical smartphone model or the SAM 

phantom by 15°. The structure of the numerical smartphone 

model was significantly more complicated than that of the 

SAM phantom. When tilting the numerical smartphone model, 

the resulting staircasing errors reduced FDTD accuracy more 

severely than did the SAM phantom rotation; therefore, we po-

sitioned the numerical smartphone model along the major co-

ordinates and tilted the SAM phantom (see Fig. 2). 

The target 1-g psSAR values were determined by averaging 

the 1-g psSAR values of the smartphones for each frequency 

band in Table 1. As mentioned previously, most WLAN anten-

nas are located on the top left. In this work, to consider as many 

WLAN antennas as possible, WLAN antennas on the top right 

were also included to average the 1-g psSAR values using geo-

metrical symmetry; for example, the 1-g psSAR values of the 

left cheek position for the top-right antennas were used to 

obtain the target 1-g psSAR values for the right cheek position. 

In the same fashion, the 1-g psSAR values of the right cheek 

position for the top-right antennas were employed to obtain the 

target 1-g psSAR values of the left cheek position. A similar 

procedure was utilized for the tilt positions. 

As stated previously, the aim of this work was to develop 

computational models for numerical SAR research on smart-

phone use. We designed antennas for the four categorized 

frequency bands to finalize the numerical smartphone models. 

Antennas should be designed so that the 1-g psSAR values of 

numerical smartphone models are as close to the target 1-g 

psSAR values as possible. Moreover, antennas should yield good 

performance for their matching and radiation characteristics. In 

this work, we designed antennas so that the numerical 

smartphone models satisfied the following criteria: 

(1) The S11 parameter is less than –6 dB, with or without the 

SAM phantom. 

(2) The radiation efficiency is higher than 70% without the 

SAM phantom.  

(3) The difference in the 1-g psSAR value is within ±20%.  

Fig. 3 summarizes the design flowchart for the numerical 

smartphone models. 
In this work, we designed an inverted-F antenna (IFA) for a 

numerical smartphone platform, the configuration of which is 

shown in Fig. 4. According to the design procedure described 

above, we optimized the geometrical parameters for each anten-

na for the four frequency bands, as listed in Table 3. 

 
(a)          (b)         (c)         (d) 

Fig. 2. Smartphone positions for simulated SAM phantoms:  

(a) left cheek, (b) right cheek, (c) left tilt, and (d) right tilt. 

 

Table 2. Electrical properties of the SAM phantom 

SAR target frequency 

(MHz) 
Relative permittivity Conductivity (S/m)

1,850 40 1.4

870 41.5 0.9385

2,535 39.0845 1.8935

2,450 39.2 1.8

 

 
Fig. 3. Design flowchart for numerical smartphone models. 

 

 
Fig. 4. IFA configuration.
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Table 3. Antenna parameters for each frequency band (unit: mm) 

Band W1 W2 S H L1 L2 A

WCDMA/LTE B1/ B3 3 3 3 4 28 - 1

LTE B5/B8 2 - 11 9 64 16 1

LTE B7 - 3 20 6 38 - 1

WLAN 1 - 2 4 28 - 1
 

III. RESULTS FOR THE NUMERICAL SMARTPHONE  

MODELS 

This section presents the simulation results for the numerical 

smartphone models for the four categorized frequency bands. 

Fig. 5 shows that all S11 parameters of the designed numerical 

smartphone models were below –7.2 dB, with or without the 

SAM phantom. Fig. 6 shows the efficiencies of the numerical 

smartphone models. As shown in Fig. 6, the radiation efficien-

cies of the designed phone models without the SAM phantom 

exceeded 78%. For the SAM phantom, the radiation efficiency 

decreased due to the EM absorption of the SAM phantom, as 

expected. Specifically, the radiation efficiency in the tilt posi-

tions was always larger than in the cheek positions because the 

distance between the antenna and the SAM phantom increased 

in the tilt positions more than in the cheek positions. Also, for 

the SAM phantom, the radiation efficiency for the WLAN 

band was worse than for the WCDMA/LTE bands. As men-

tioned previously, the WLAN antenna was located on the top 

left of the smartphone model, and the WCDMA/LTE anten-

nas were located at the bottom; therefore, the SAM phantom 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Reflection coefficients: (a) WCDMA/LTE B1/B3, (b) LTE 

B5/B8, (c) LTE B7, and (d) WLAN. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Radiation efficiency: (a) WCDMA/LTE B1/B3, (b) LTE 

B5/B8, (c) LTE B7, and (d) WLAN. 
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decreased the radiation efficiency for the WLAN more severely 

than for the other cases. 

Next, we simulated the 1-g psSAR values for the numerical 

smartphone models. The difference values were determined by 

comparing the simulated 1-g psSAR values with the target 1-g 

psSAR values, as listed in Tables 4–7. As shown in Table 4, the 

largest differences in the simulated 1-g psSAR values versus the 

target value were ±14.89% in the cheek positions. Table 5 

shows that the largest difference between the simulated 1-g 

psSAR value and the target value was –12.77% in the left tilt 

position for LTE Band 5 and LTE Band 8. For LTE Band 7, 

the largest differences in the simulated 1-g psSAR values were 

±15.71% in the tilt positions. In the WLAN band, the largest 

difference between the simulated 1-g psSAR value and the tar-

get value was –14.95% in the left cheek position. All differences 

in the 1-g psSAR values for the numerical smartphone models 

met the design criterion (±20%). For the numerical smartphone 

models with the antenna at the bottom, the 1-g psSAR values 

in the cheek positions were higher than in the tilt positions, as 

shown in Tables 4–6. When the antenna is located at the bot-

tom of the phone, the ground current intensity is strong near 

the bottom or center of the phone ground; therefore, the dis-

tance between the SAM phantom and the phone ground (on 

which the strong current flows) plays a crucial role in SAR eval-

uation. This distance in the cheek positions is shorter than in 

the tilt positions; therefore, when the antenna is located at the 

bottom of the phone, higher 1-g psSAR values are obtained in 

the cheek positions versus the tilt positions, as illustrated in [17].  

It is worth noting that, in the numerical smartphone models, 

we did not include shielding materials or components for SAR 

reduction, which were usually used in commercial smartphones; 

therefore, the output power levels of numerical smartphone 

models are lower than those of commercial smartphones. Again, 

it should be stressed that our 1-g psSAR values for the four 

different SAR test positions at a certain output power satisfied 

the design criterion. 

IV. CONCLUSION 

Previous epidemiological studies were confined to mobile 

phones for the 2G and 3G communication services. In this 

work, for ongoing epidemiological studies, we proposed nu-

merical modeling of smartphones for LTE and WLAN services. 

Based on the SAR test reports for smartphones released in 

South Korea in 2013–2019, we determined the smartphone size, 

antenna locations, frequency band categorization, and target 1-g 

psSAR values. We developed the numerical smartphone models 

using the following design criteria: First, the return loss of the 

numerical smartphone models should be larger than 6 dB, re-

gardless of SAM existence. Second, the radiation efficiency of 

the numerical smartphone models without the SAM phantom 

should exceed 70%. Finally, the differences between the simu-

lated 1-g psSAR values of the smartphone models for the four 

SAR test positions and the target values should be within 

±20%. The numerical results showed that the designed 

smartphone models satisfied all of the above-mentioned criteria. 

We believe that our numerical smartphone models can be suc-

cessfully employed in future epidemiological studies to investi-

gate the health risks of smartphone use. 

 

 

Table 4. Target and result values for the 1-g psSAR for WCD-

MA/LTE B1/B3 at an output power of 54 mW 

 
Cheek position Tilt position

Left Right Left Right

Target value (W/kg) 0.188 0.188 0.107 0.107

Result value (W/kg) 0.160 0.216 0.119 0.105

Difference (%) -14.89 14.89 11.21 -1.87

 

Table 5. Target and result values for the 1-g psSAR for LTE B5/B8 

at an output power of 33.9 mW 

 
Cheek position Tilt position

Left Right Left Right

Target value (W/kg) 0.166 0.166 0.094 0.094

Result value (W/kg) 0.158 0.186 0.082 0.091

Difference (%) -4.82 12.05 -12.77 -3.19

 

Table 6. Target and result values for the 1-g psSAR for LTE B7 at 

an output power of 34.2 mW 

 
Cheek position Tilt position

Left Right Left Right

Target value (W/kg) 0.135 0.135 0.070 0.070

Result value (W/kg) 0.145 0.125 0.081 0.059

Difference (%) 7.41 -7.41 15.71 -15.71

 

Table 7. Target and result values for the 1-g psSAR for WLAN at 

an output power of 8.64 mW 

 
Cheek position Tilt position

Left Right Left Right

Target value (W/kg) 0.194 0.221 0.155 0.199

Result value (W/kg) 0.165 0.254 0.145 0.189

Difference (%) -14.95 14.93 -6.45 -5.03
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