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Abstract: The increased advancement in nanosciences in recent times has led to fascinating innova-
tions. It has potential applications for altering the structural, surface, and physicochemical properties
of nano-ranged metamaterials. The adaptable optical, structural, and surface characteristics of the
nanoscopic regimes enhance the quality of integrated nanodevices and sensors. These are further
used in optoelectronics, biomedicines, and catalysis. The use of nanomaterials for constructing
nano-biosensors and various other organic and inorganic functional nanomaterials is quite promising.
They have excellent electronic and surface-to-volume reactivity. Their various applications include
metal and metal-oxides-based nanoparticles, clusters, wires, and 2D nanosheets as carbon nanotubes.
More recently, hybrid nanomaterials are being developed to regulate sensing functionalities in the
field of nanomedicine and the pharmaceutical industry. They are used as nano-markers, templates,
and targeted agents. Moreover, the mechanical strength, chemical stability, durability, and flexibil-
ity of the hybrid nanomaterials make them appropriate for developing a healthy life for humans.
This consists of a variety of applications, such as drug delivery, antimicrobial impacts, nutrition,
orthopedics, dentistry, and fluorescence fabrics. This review article caters to the essential importance
of nanoscience for biomedical applications and information for health science and research. The
fundamental characteristics and functionalities of nanomaterials for particular biomedical uses are
specifically addressed here.

Keywords: nanotechnology; nanocomposite; nanotech-applications; drug delivery; nanomedicine;
biomedical
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1. Introduction

Researchers all over the world are working towards solutions for human welfare and
health-related issues. The Allied Health Professionals (AHP) are developing a platform
to sense and treat diseases by doing therapeutic and diagnostic research. Their field of
study includes dental hygiene, sonographic diagnosis, diet, and medical technologies.
The implementation of nanosciences in all these fields has improved the quality of all
the services and human life in general. The fundamentals of nanosciences and their
implementations in improving human health quality are summarized in Figure 1 [1].
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Nanomaterials are synthesized in different shapes and sizes, these include 1D, 2D,
and 3D structures (inorganic, organic, and dendrimers). The particles can be molded in the
form of particles, sheets, rods, and wires based on their dimensionally confined electronic
properties. The surface sites and band structures of such designed nanostructures have
been prepared via different techniques and processed for multiple uses in various fields of
medicine. Two-dimensional carbon materials, such as graphene, or CNTs, quantum dots
(TiO2, ZnO, CuO, etc.), and semiconductors are also used to enhance the quality and safety
of medicinal therapies. A schematic representation is presented in Figure 2 to highlight the
different nanostructures for medicinal uses.

There are several technologies already available for improving paramedical or allied
health services. This article particularly highlights the fundamental significance of nano-
ranged substances for health and medicine-based challenges. This includes diagnosis, drug
delivery, gene therapy, and nanomedicine. Nanomaterials have found their way in almost
every area of science and daily life. Nanotechnology tends to take advantage of recent phe-
nomena when the sizes of the materials are in the range of nanoscale (1–100 nm). To obtain
different features from the bulk, electron fluctuations are controlled, or electronic character-
istics are manipulated. The macro- to nano-sized particles have been explored in various
physicochemical processes due to their surface and bandgap alterations. Some techniques,
such as the luminescence optical emission of specific nanomaterials, are being studied
using photoluminescence, which is commonly used in biomedical active nanocomposites.
Although drug binding and releasing actions are studied by a UV–vis spectrophotometer
for several nanomaterials, the inorganic material contained a metallic, and metal-oxide
nanostructures absorb and emit a definite frequency of light. Thus, this spectral response
helps us to study the biomedical sensing of many nano-based constituents [2,3].

The essential alteration of nano-based substances has opened a new window in the
area of medical sciences. They are more cost-effective and give quality health and medical
equipment, advanced facilities, and treatment schemes through continuous research and
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studies across the world. It helped create a healthy environment, including innovative
thoughts and concepts to resolve health-based issues in the medical sector. This will be
effective in studying drug resistance of pathogens for antibiotics, vaccine development,
and cancer therapy [4,5]. Nano-theragnostic encompasses advanced tools that sense the
symptoms of syndromes or diseases with higher precisions timely.
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Nanosheets or thin films, such as graphene, MoS2, and carbon nitride, are found to
have catalytic applications in antibacterial and antifungal activities. Such layered structures
provide higher strength and a surface area to disperse the nano-regime under uniform
manners. The 2D materials doped with noble metals (Ag, Cu, and Au NPs) are studied
as efficient tools for medicinal application in nanoscience and technology. The recent
advances in graphitic carbon nitrides and their composites have improved performances
due to the sensitive optical, structural, and surface structures. This is a key factor that
involves atomic layered structures for designing the nanodevices and sensors for biomedical
applications. Many metal oxides, such as ZnO, CuO, MgO, TiO2, etc., along with the
transitional (Cu, Zn, Ti, etc.), lanthanides (Sm, Gd, etc.), and other alkalis (Rb, Li, etc.)
metals, have been investigated for manufacturing the nanocomposites materials with 2D
structures [6,7]. The hybrid nanomaterials are also employed for wider uses, such as
optoelectronics, biomedicine, and catalytic actions. The catalytic action of such meta-oxides
is regulated by controlled electron-hole recombination, making the utilized 2D layer a
phenomenon. The exciting free electrons are easily captured by the 2D materials, which can
delay a recombination process. This results in the high performance of catalytic functions
during antibacterial or antifungal activities. The role of nanotechnology in biomedical
applications highlights the different nanomaterials and their characteristic features. A
systematic report based on nano-concepts and their impacts on allied science has been
constructed by discussing the various aspects of health questions and tasks. Applications
of different nanomaterials in the field of medical sciences are shown in the given Table 1.
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Table 1. Application of different nanomaterials in the field of medical sciences.

Types of Nanomaterials Applications

Metal/metal-oxide nanoparticles

Enhanced drug loading and releasing action,
permeation characters,

Carriers or agents for MRI and ultrasound image
Used in apoptosis and angiogenesis.

CNT
Diagnosis in DNA transformation

biomarker for changes in protein structure

Nanocrystals Enhanced soluble drug formulation

Nanocore shells Contrast imaging for tumors

1D, 2D nanostructures

Accurate throughput scanning
Detector for protein diseases
Detection of DNA mutation
Diagnosis of gene mutation

0D (quantum dots)
Diagnosis of gene and protein structures due to

optical properties
Detection of tumor and lymph nodes

2. Nanomedicine

Nanomedicine is a special branch of nanosciences for identifying diseases by a spe-
cific diagnosis. The treatment is offered using nanomaterials as agents or biomarkers [8].
Figure 3 represents the various applications of nanotechnology in medical sciences [9].
Highly effective pharmaceutical carriers are essential for simplifying the various health
factors and diseases with minimum toxicity to normal tissues. These kinds of necessi-
ties prompted extraordinary research in several nano-sized systems, such as liposome
structures, for medicinal uses. Bangham explored the categories of several nanoparticles
in anticancer applications [10]. The liposomal systems were carried out by many other
scientists, and they collectively launched these applications in society for healthy human
life. In the development of liposomal-based drugs, specific lipid units play an important
role. It significantly increases the pharmacological impacts [11]. The semiconducting
nanomaterials, such as ZnO, CuO, and TiO2, are mostly used in drug delivery due to their
functionalized stabilities and actions. The functionalized metal-oxide nanoparticles are
found more effective towards drug loading and delivery. They have surface modifications
and quick actions in biological systems. The decorating surface of such nanoparticles is very
studied and commonly employed for biomedical applications, including their confinement
effects and surface-to-volume area properties. Apart from the liposomes, CNT, atonic
layered structures of carbon (graphene), and its oxides have also been employed. However,
silicon-based pure and doped nanomaterials have assembled molecular dendrimers [12].
They have also stabilized micelles systems, noble metal-based nanosystems, and other
materials that can also be applied for the efficient delivery of drugs. This is shown in
Figure 4. Metal-based nanostructures, including organic and inorganic nanomaterials, have
potential in biomedical fields. The efficiency and accuracy of these nano-ranged materials
have multiple merits to overcome some serious health issues by the implementation of
nanocarriers, markers, and bioimaging. The optical sensitivities and spectral characteristics
of such advanced nanomaterials make them reliable for multiple biomedical practices.
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Nanoscale has countless applications in the field of medicines, drugs, and nanodevices.
These are well commercialized and now easily available in the market [13]. They change
the outer appearance using dimensional confinement in electron movements, and thus, it
plays a key role in optimizing the properties of the nanomaterials. The optical, structural,
and surface modifications are being explored to improve the quality of the nano-based
materials. The metal and its derivatives are highly modified by using different physical and
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chemical routes. This is employed for controlled electronic and physicochemical activities
of hybrid nanostructures. The details of various nanomaterials discovered in biosystems
are listed in Table 2.

Table 2. Examples of biocompatible nanomaterials for healthcare applications.

Nanomaterial Respective Nanomedicine Biomedical
Applications Properties References

Gold NPs Verigene In vitro studies Genetic [14]

Nanogoldhn nm, mmv, or
colloid Au NPs

Loading and releasing
agents for Drugs.

Enhanced bioimaging

Optoelectronic features
due to Controlled Surface

and band positions
[15]

Aurimm une Anticancer Anticancer impacts [16]

AIE-active
fluorogen-loaded BSA

NPs

Fluorogen,
2-(2,6,bis((E)-4-(phenyl(4-
(1,2,2-triphenylvinyl)-[1,1

biphenyl]4-yl)amino)styryl)-
4Hpyran-4-

ylidene)malononitrite(TPE-
TPA-DCM)

advanced uptake
tendency for cancer

cells and in vitro and
in vivo studies

Improved penetrability
with good stability [17]

Nano-shell Auro-shell Aeroshell
Semiconductor Neck and head targets [18]

Quantum-dots Qdots, EviTags In vitro studies Tumor-based cell studies [19]

Semiconductor Nanoco, CrystalPlex,
cytodiagnostics

Enhanced Fluorescence
study

Molecular sensing inside
tissue cells [20,21]

Self-assembled chitosan
(CHI) and modified

lecithin (ML)

Biosuitable and stable
nanosystems

Several applications,
such as reversible

hemostatic activities in
wounds, nanocarriers

for drugs, etc.

Higher encapsulation
performance with strong
ionic nature, solubility, or

lyophilized solid or
rigorous colloidal system

[22]

Targeted polymer NPs
loaded with (-)

epigallocatechin
3-gallate (EGCG)

Chemotherapeutic markers Stronger anticancer for
prostate cancer (PCa)

Marker for
prostate-specific membrane

antigen (PSMA)
[23]

Organically modified
silica nanoparticles Biocompatible NPs

In vivo neuron
targeting without

harming the whole
organism or causing

neuronal death

Actively useful for
insertion into neuronal cell
bodies, living brains, and

suitable axonal projections

[24]

Polydopamine
fluorescent organic NPs Biocompatible NPs Bioimaging of tissue,

and cells

Controlled
photoluminescence

response
[18]

5-Fluorouracil (5-FU)
loaded biocompatible
fluorescence zein NPs

Semisolids, solution-based,
and solid nanosystems

Drug delivery and
imaging in biosystem

Kinetic rate and controlled
delivery of drug under
biocompatible process

[25]

Non-steroidal
anti-inflammatory

(NSAIDs)-loaded NPs

A biocompatible formulation
for a drug nanosystem

Surface modifications
in a prosthesis

superficial alterations
Controlled drug release [26]

A few research projects have been granted by the DBT under various healthcare
schemes. A combined effort is made by the industries and academicians to promote the
research and development based on nano- and micro-level advanced materials. Some of the
research projects are carried by the Biotechnology Industrial Research Assistance Council
(BIRAC). This is mentioned in Table 3.
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Table 3. Research projects sponsored by BIRAC under industrial and academic collaboration [27,28].

Company Project Title

Lifecare Innovations Pvt Ltd.

Production of poly(lactide-co-glycolide) nanoparticles
(PLG-NP) and poly (lactide-co-glycollde)nanoparticles

encapsulating antitubercular drugs (rifampicin, Isonlazld,
and pyrazinamide-PLG-NP-ATDs)In GMP facilities

Rasayanl Biologics Pvt Ltd. Evaluation of platinum nanoparticles for the treatment of
hormone-refractory prostate cancer

Imgenex India Pvt Ltd. Nanotechnological-based delivery of peptide inhibitors for
the treatment of Osteoporosis

Jupiter Bioscience Ltd.

Development, optimization, and characterization of ligand
RGD peptide-targeted nano-constructs encapsulating
anticancer chemotherapeutic agents for the effective

treatment of lung cancer with Gemcitabine and stabilization
of lyophilized or spray-dried formulation for direct local

delivery or by injection via systemic circulation

Nanosniff Technologies Pvt Ltd.
Development of a prototype instrument (sensor and

detection electronics) to detect heart binding
protein (hFAbP)

Onisome Healthcare Pvt Ltd. Bleomycin sulfate bearing nanostructured lipid particles for
targeting brain cancer

Rellsys Medical Devices Ltd. Manufacture and clinical evaluation of non-polymeric
nanocarbon porous matrix drug-eluting stent DES

V.B. Medicare Pvt Ltd. Development and characterization of lipid carrier-based
nanogel formulation for 5-Fluorouracil

3. Nanotechnology in Nutrition

Nanotechnology has significantly contributed to the improvement of the food and
fitness sectors, as well as the general well-being, of human life. They help in delivering
nutrients by the range of food articles having unique chemical and physical activities
combined with the regularity and quality [29]. It is applied to modify taste and color,
investigate microorganisms found in food materials, and decompose the bacteria. The
improved quality of nutritional substances and unusual carrier for nutrients transfer
into the body parts in the form of vitamins are also employed by using nano-concepts.
Nanotechnology serves as a significant tool to enable further explanation of nutrient
metabolism and food physiology [30,31].

4. Nanotechnology in Sport Equipment

The global manufacturing of high-quality sports tools, materials, and kits is geared
towards increasing the durability and functionality of sports equipment. Several industries
and businesses are using nano-based building blocks to create high-strength apparatus that
will revolutionize sports. To make sports equipment and clothing, nanomaterials, such as
noble metal-based structures, metal oxides, carbon-based graphene, and their derivatives,
are mixed into diverse starting materials [32]. Nanomaterials are lightweight but have
stronger stability, resistance, and durability. Inwati, G.K. and co-authors have studied the
antibacterial impact of hybrid nanomaterials and the fundamental mechanism of bacterial
cell damage [2]. The metallic and metal-doped semiconducting inorganic nanoparticles are
being used for biomedical applications by following their free radical oxygen species in the
bacterial cytoplasm. The destruction of cell organelles and killing activities could be well
understood by the schematic diagram shown in Figure 5.
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5. Nanotechnology in Audiology

The development of hearing aid equipment is significantly improving. New technolo-
gies, such as feedback reduction circuitry trainable hearing, aids, nano-coatings to protect
from moisture and corrosion, innovative noise reduction algorithms, and efficient power
options, present strong merit towards the individual’s hearing disability. This is also a great
help for those who are dependent on the hearing centers on the international platforms.
Some semiconducting nanomaterials for medicinal impacts include antipathogenic and
antibacterial actions [33]. In 2016, Hummel developed the nano-coating technique, which
could stop moisture from entering the hearing aid shell. The study was conducted to
check the effect of moisture on nano-coatings applied hearing aids. This enhanced the
efficiency of the hearing aid against the moist environment by comparing the qualitative
and quantitative outcomes. In this regard, the considered results involved different hearing
aid creators. They were later compared with hearing aids exposed to chlorinated water
and saltwater with three different times of exposure: 30, 180 and 480 min, respectively.
Recently, Lin (2018) used hydrophobic nano-coatings to protect the hearing aid from foreign
materials. However, the Hydra Shield2 nanotech was discovered to diminish the influx of
water and oily broth constituents in hearing aids. This served as an immensely efficacious
solution to moisture and earwax obstruction compared to other classical approaches [34].

5.1. Nanotechnology in Dentistry

Nano-dentistry is an emerging and flourishing science in the field of dental applica-
tions [35]. New approaches in the field of dentistry comprise native anesthesia, completely
dealing with hypersensitivity, dentition denaturalization, and desired orthodontic read-
justment in a single official meeting. Often, covalently attached diamondized enamel and
regular oral health preservations with the use of mechanical dentist robots (nanorobotic den-
tifrice) is another potential application. This helps to deteriorate caries-forming microbes
and fixes teeth decay blemishes [36,37].

5.2. Nanotechnology in Gene Therapy

Gene therapy refers to any treatment that involves the introduction of novel genes
into cells, the repair or replacement of existing defective genes, or the regulation of gene
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expression [38–40]. Nanotechnology proved to be one of the most efficient methods for
delivering bare therapeutic nucleic acids to target cells without the use of biological or
synthetic carrier molecules. Dendrimers have proven to have potential applications in the
crucial process of gene and drug deliveries. Gene delivery with the use of dendrimers was
first time attempted by Dufes et al., 2005 [41]. Polyamidoamine (PAMAM) dendrimers
with few branching points and an ammonium or ethylenediamine core molecule were
successfully loaded with the gene. Gold nanoparticles are also being studied to offer
improved drug transfer schemes in the treatment of gene healing. They have impressive
features, such as chemical stabilities and simplicity while interacting with thio functional
groups. Apart from this, fluctuating electrons on top of the conduction bands called
plasmon resonance have given new directions for extensive research to explore their
therapeutic potentials [42].

5.3. Nanotechnology in Diagnostic Techniques

Nanoparticles attached to biomolecules, such as proteins and a variety of other
molecules, act as excellent disease markers. They are employed to be detected in laboratory
samples at an early stage of infection or sickness. Implementation of nano-constituents in
in vitro studies has expressed sensing functionalities. They have excellent accuracy and
applicability. Various ranges of nanomaterials are reported as an attractive tool for the
in vitro diagnostic tests, such as zero-dimensional (0D) metallic nanoparticles, magnetic
nanoclusters, dispersed quantum dots (QDs), spherical silica nanostructures, CNTs (1D),
silicon 2D structure, and nanopores. They are also used as atomic carbon, such as graphene,
metal-based layered thin films that are categorized under two-dimensional (2D) systems
(Table 4) [43].

Table 4. Application of nanotechnology for different imaging approaches.

Imaging Method Advantages Disadvantages Nanoparticles Used Reference

MRI

- Increased spatial resolution
(~10–500 µm)

- Better contrast of soft tissues
- Advanced and differential

choices for metabolic
structural, and functional
analysis of tissues

- Less sensitivity to
contrast agents

- Expensive
- Time-consuming

- Gadolinium
containing probes

- paramagnetic
liposomes and
polymers

- ParaCEST agents

[44–49]

CT

- Improved better resolution
(~20–200 µm);

- Infinite penetration depth;
- Better contrast of soft tissues

upon the introduction of
contrast agents

- Cost-effective
- Faster

- Inadequate contrast
of soft tissues
without injection of
contrast agents

- Radiation exposure
- Less sensitivity to

contrast causing
agents

- Micelles based on
iodine and liposomes

- Barium-based
nanoparticles

- Nanoparticles based
on gold

- Bismuth
nanoparticles

[50–53]

Ultrasound

- Better temporal and spatial
resolutions (~50–100 µm)

- Easily and swiftly operable
- Real-time visualization;
- Cost-cutting

- Dependency on user
- Inappropriate for

full-body imaging

- Targeted and
non-targeted
gas-filled
microbubbles

- Polymers releasing
air

[54–59]
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Table 4. Cont.

Imaging Method Advantages Disadvantages Nanoparticles Used Reference

Optical Imaging

- Best sensitivity for
contrasting agents

- Wide range of probes
- Least expensive

- Less penetration
depth (<10 cm)

- Increased
background signal

- Sensitivity to artifacts

- Near-infrared
fluorochrome-
labeled
nanoparticles

- Quantum dots
- Fluorescent

nanoparticles probes

[58,60,61]

Photoacoustic
imaging

- Better sensitivity
- Real-time visualization
- Low cost

- Finite penetration
depth (up to ~5–6
cm)

- Comparatively less
specificity to contrast
agents (signal from
hemoglobin)

- Gold nanoparticles,
Gold nanorods

- Carbon nanotubes
- Fluorescent/dye-

loaded
NPs

[62,63]
Akers WJ

2011

Positron emission
tomography

- Extremely high sensitivity
- High penetration depth
- Quantitative

- Low spatial
resolution (1–2 mm)

- No anatomical
information

- Radiation exposure
- High costs

- Radioactive contrast
agents (e.g.,
radiolabeled gold
nanoshells)

- Polymeric NPs

[64,65]

Single-photon
emission CT

- Very high sensitivity
- Unlimited penetration depth
- Long-circulating

radionuclides

- Low spatial
resolution (1–2 mm)

- No anatomical
information

- Radioactive probes
- High cost

- Technetium-labeled
gold NPs

- Indium-labeled
liposomes

- Nano- and
micro-colloids

[66–68]

5.4. Nanoparticles in MRI

Iron oxide nanoparticles are used to improve MRI imaging of cancer tumors. Iron
oxide nanoparticles are functionalized with epithelial growth factor receptor antibodies,
short peptides, such as Arginyl glycyl aspartic acid (RGD), or aptamers. They have been
proposed for several cancer diagnoses, including kidney, stomach, liver, breast, colon, and
brain cancer. Apart from that, synthesized iron oxide nanoparticles can be used for other
purposes, such as early thrombosis detection and brain inflammation studies [69]. MRI
imaging can also be conducted using nanoparticles made of manganese (Mn), gadolinium
(Gd), and iron nanoparticles [70]. Due to the electronic and structural band gap positions,
these nano-objects are commonly used in MRI studies in the field of biomedical applications.
The d-d, d-f, and f-f intra-band spectral response of certain light energy allow them to
be used as the desired alternative. The metal and metal oxides of such nanostructures
are easy to employ in the medicinal branches. The elements and their compositions
are targeted for the same. Another widely used and medically acceptable substance
is superparamagnetic iron oxide nanoparticles (SPION). SPION increases imagining by
shortening the T2 relaxation time of nearby water protons. This results in visible signal gaps
on T2 weighted images that appear as dark spots. [71]. The photoactive spectral intensity in
the form of absorption and emission is generally considered a vast factor for MRI and other
biomedical applications. The electronic transitions under certain electromagnetic radiations
are mentioned for the light active sensing, and thus, these metallic and metal-oxides are
widely studied. The d-d and f-f transition are considered very narrow and clear for the
studies based on absorption, luminescence, and electrochemical catalysis. Hence, these
materials have been appreciated for their efficient durability [72,73].
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5.5. Nanotechnology in Implants

The use of nanoparticles has a significant impact on processes, such as protein adsorp-
tion, blood clot formation, and cell behavior. This occurs during the placement of dental
implants. Nanotechnology has the potential to improve spinal fusion efficiency while also
minimizing the cost and danger of complications caused by bone morphogenetic protein
(rhBMP). Advanced orthopedic implants frequently use nanomaterials. The use of complex
high molecular structure polyethylene (UHMWPE) in arthroplasty areas has been limited
due to concerns about probable breakage. However, due to its acceptable biocompatibility
and wear-resistant features, nano-ranging techniques or tools have raised awareness in
improving the mechanical asset of UHMWPE. CNT incorporation frequently results in
unique nanocomposites, which represent a significant achievement and could be applied
to the acetabular liner or tibial components in the future [74,75].

5.6. Nanotechnology in Vaccine Production

Nanoparticles offer numerous advantages over traditional vaccinations and adjuvants.
Nanoparticles improve hydrophobic antigen solubility and reduce post-vaccine adverse
effects. Uses of nanoparticles offer a controlled sustainable release of the antigens, with
smaller volume and fewer doses [75]. Modifications of nanoparticles can result in their more
immunogenic properties with adjuvant. They help to facilitate securely carrying antigens
for different pathogens all at the same time. Researchers have also published their work on
the development of an efficient spore-based vaccine that was proved to be effective against
spores of Bacillus subtilis and anti-clostridium tetani [76,77]. Vaccines are the most effective
way to prevent viral strains, such as SARS-CoV-2. Shin et al., 2020, reviewed contemporary
approaches to advancing the COVID-19 vaccine, emphasizing the importance of nano-based
techniques that enhanced the production approach for vaccines. Peptide-based vaccines are
the most basic type of vaccination, and they may be easily created, validated, and prepared
at a lower duration [78]. DNA vaccines are synthesized as an effective solution for diseases
and are able to produce cellular immunity, including humoral; these are the safe vaccines
so far. DNA vaccines, encapsulated with specific nanoparticles, stabilize DNA formulation
and avoid its degradation [79]. Porous silicon micro-particle (PSM)-based therapeutic
dendritic cell-vaccination (Nano-DC vaccine) serves as an antigen peptide carrier and an
adjuvant both. There is a stronger association between the shape of PSM objects and their
absorption owing to circulating dendritic cells. The intravenously approached vaccines
highly gathered on the spleens and inguinal lymph nodes. Conversely, popliteal lymph
nodes respond higher amounts by intradermal inoculated vaccines. Additionally, it is
found that mice have large tumors received a high number of vaccines in lymph nodes
compared to those with small or medium-sized tumors [80]. Thus, nanotechnology plays
an efficient role in future therapeutic cancer vaccines.

Understanding the nanomedicine’s behavior in the human body requires controlled
processing and a proper risk evaluation, which necessitates its characterization. The number
of parameters needed for an accurate and full identification is not agreed upon in this cate-
gorization. Assessment of a nanocomposite should optimally take place at several phases
of the lifecycle, from formulation to in vitro and in vivo evaluation processes. Interactions
with living organisms, as well as specimen processing and extraction techniques, can al-
ter specific attributes and cause interference with results. Furthermore, determining the
biophysical characteristics of the materials in vivo and in vitro is critical for understanding
their perceived hazard. For the analysis of these characteristics, a variety of methodologies
are accessible, such as counting, separation, ensemble, integral approaches, etc. [81]. The
particle tracking investigation using Transmission Electron Microscopy (TEM), HR-TEM,
Scanning Electron Microscopy (SEM), cryo-SEM, and AFM are found disadvantageous as
they require a high-vacuum operation. However, recently, cryo-SEM has been increasingly
used, which prevents sample dehydration under high-vacuum circumstances. A further
important aspect in the development of targeted drug delivery is biocompatibility. A bio-
compatible environment, in a nutshell, does not cause the organism to respond unfavorably.
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Biocompatibility can also be defined as “the capacity of a substance to function in a certain
operation with a realistic solution.” The pharmaceutical companies, the government, and
academia are all working to develop unique and suitable hazard analysis standards for
nanomaterials. Nanotoxicology, which studies the impact of nanomaterials on biological
systems, is being applied and explored. Additionally, the scale-up and reproducibility
of nanomedicines will be a future issue in formulation development. A large proportion
of nanomedicines fail to meet such criteria, and as a result, they are not available in the
pharmaceutical sector. Conventional production procedures are incapable of producing
nanoscopic 3D pharmaceuticals. As previously stated, nanomaterial fabrication methods
involve top-down and bottom-down strategies, involving various phases, such as homog-
enization, ultrasound-assisted, crushing, gelatinization, and, in certain cases, the use of
organic chemical reagents [82,83]. It is simple to monitor and accomplish a formulation
for improvement on a limited scale. Furthermore, doing so on a wide level is difficult.
The minor modifications in the production process can induce significant events in the
physicochemical features, affecting the health and reliability of nanomedicines. The nano-
range of constructed materials are now the strongest available particles to overcome several
drawbacks, including efficiency, toxicity, and reproducibility, in the field of medical and
health sciences.

5.7. Future Prospects

The development of nanotechnologies and their impacts in the biomedical field have
been explored by implementing the distinct structures of nanomaterials or nanocomposites
with their different morphologies and surfaces. The advanced hybrid metamaterials, in-
cluding inorganic and organic substances, have significant importance in medical science
and medicinal studies. Therefore, combining both nanomaterials and nanotechnology is
covered with suitable surface-modified structures (spheres, wires, rods, sheets, etc.) for the
rapid progress in human health and science. The semiconducting metal-oxides, metals, and
organic constituents are well explained to study the biomedical sensors and their uses. The
different aspects of medical issues, such as audiology, dentistry, nutrition, nanomedicines,
diagnosis, and imaging, are explained in this review. The structural, optical, surface, and
spectral properties of the nano-ranged materials are explained with authentic literature.
Consequently, the obstacles of implementing nanotechnology, particularly in the phar-
maceutical creation of novel drug products and resolving complicated health issues, are
also outlined in this review. These are the features granted by the nanoscale that serve
as the biggest challenges. Concerns about the implementation of nanostructures include
their physical characteristics, which can lead to a change in pharmacokinetic, pharma-
codynamic, and metabolic activity. Their ability to pass biological membranes, noxious
assets, and persistence more easily in the environment and biology is an outstanding
achievement. The importance of nanotechnology and nanosciences open a wider scope for
further environmental, energy, and biomedical-based applications using nanoparticles and
their derivatives.
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