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Abstract: The model of decision practice reflects the evolution of moral judgment in mathematical
psychology, which is concerned with determining the significance of different options and choosing
one of them to utilize. Most studies on animals behavior, especially in a two-choice situation, divide
such circumstances into two events. Their approach to dividing these behaviors into two events is
mainly based on the movement of the animals towards a specific choice. However, such situations can
generally be divided into four events depending on the chosen side and placement of the food. This
article aims to fill such gaps by proposing a generic stochastic functional equation that can be used
to describe several psychological and learning theory experiments. The existence, uniqueness, and
stability analysis of the suggested stochastic equation are examined by utilizing the notable fixed point
theory tools. Finally, we offer two examples to substantiate our key findings.
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1. Introduction and preliminaries

Mathematical psychology is a subfield of psychology that focuses on mathematical modeling of
visual, intellectual, behavioral, and physical processes and the formulation of law-like principles that
link measurable functional attributes to quantitative behavior. Mathematical techniques are utilized
to generate more trustworthy theories, which result in more scientifically rigorous validations. The
primary difficulty with today’s and most likely future applications of mathematics to psychological
issues is modeling these problems.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022294


5292

The learning process in human beings or animals may be viewed as a chain of responses between
many potential choices. Even in repeated tests conducted under well-controlled circumstances,
preference sequences are often unexpected, suggesting that chance determines response selection.
Thus, it is beneficial to consider the systemic changes in a series of choices that correspond to
variations in response probability from trial to trial. From this perspective, all learning research is
devoted to understanding the probability of trial-to-trial occurrences that define a stochastic process.

Recent studies on mathematical psychology have shown that the behavior of a basic learning
experiment follows a stochastic model. It is not a novel concept (for a history of the idea, see [1]).
Following 1950, two critical characteristics emerge mainly from Bush, Estes, and Mosteller’s study.
Firstly, one of the most critical characteristics of the proposed models is the inclusive nature of the
learning process. Second, such models may be evaluated in such a manner that their statistical
properties are revealed.

In psychological learning theory, the solutions to the subsequent stochastic equation have a great
importance

L (x) = xL (ν1 + (1 − ν1)x) + (1 − x)L ((1 − ν2)x), (1.1)

for all x ∈ V = [0, 1], 0 < ν1 ≤ ν2 < 1 are learning-rate parameters and L : V → R is an
unknown function. Markov transitions were used to describe such behavior and converting the states
by P(x→ ν1 + (1 − ν1)x) and P(1 − x→ (1 − ν2)x), where P is the probability of that specific event.

In 1976, Istrăţescu [2] used the above stochastic equation (1.1) to inspect the involvement of
predatory animals that prey two distinct types of prey.

On the other hand, Bush and Wilson [3] observed the movement of a paradise fish in a two-choice
situation under the reinforcement-extinction and the habit formation behaviors. They claimed that
under such behavior, there are four distinct outcomes: Left-reward, right-nonreward, right-reward,
left-nonreward.

It is usually believed that being awarded for choosing one side increases the probability of selecting
that specific side in the subsequent trials. However, the rationale for unrewarding experiences is less
obvious. According to extinction or reinforcement theory (see Table 1), the probability of selecting an
unrewarded side in the subsequent trial would decrease.

Table 1. Operators for reinforcement-extinction model with the learning rate parameters η1

and η2.

Fish’s Responses Outcomes (Left side) Outcomes (Right side) Events
Reinforcement η1x η1x + 1 − η1 ERE

1
Non-reinforcement η2x + 1 − η2 η2x ERE

2

By contrast, a model that depends on habit formation or secondary reinforcement (see Table 2)
would indicate that merely picking a side increases the chances of choosing that side in subsequent
trials.

Table 2. Operators for habit formation model with the learning rate parameters η1 and η2.

Fish’s Responses Outcomes (Left side) Outcomes (Right side) Events
Reinforcement η1x η1x + 1 − η1 EHF

1
Non-reinforcement η2x η2x + +1 − η2 EHF

2
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In 1967, Epstein [4] proposed the following functional equation to discuss the learning process of
animals in a two-choice situation

L (x) =

(
ex

1 − ex

)
L (k1x) +

(
1 −

ex

1 − ex

)
L (k2x), ∀x ∈ V , (1.2)

where L : V → R is an unknown and k1, k2 : V → R are given mappings. The analytical solution of
the above equation was calculated by using the bilateral Laplace transformation.

Recently, Turab and Sintunavarat [5] utilized the above idea and suggested the functional equation
stated below

L (x) = xL ($1x + (1 −$1)Θ1) + (1 − x)L ($2x + (1 −$2)Θ2), ∀x ∈ V , (1.3)

where L : V → R is an unknown, 0 < $1 ≤ $2 < 1 and Θ1,Θ2 ∈ V . The aforementioned functional
equation was used to study a specific kind of psychological resistance of dogs enclosed in a small box.

Several other studies on human actions in probability-learning scenarios have produced different
results (see [6–11]).

The point to ponder is that most studies in the literature related to the behavior of animals in a two-
choice situation just focused on the movement of the animals towards a specific choice. In contrast,
by focusing on the food placement and the chosen side, Bush and Wilson [3] divided such types of
responses into four events (right-reward, right-nonreward, left-reward, left-nonreward). Such events
and their corresponding probabilities can be seen in Table 3 below.

Table 3. Four events and their corresponding probabilities.

Events Responses and outcomes Corresponding probabilities
E1 right-reward (food side) τν

E2 right-nonreward (non-food side) (1 − τ)ν
E3 left-reward (food side) τ(1 − ν)
E4 left-nonreward (non-food side) (1 − τ)(1 − ν)

To cover the gap discussed above, here, we propose the following general stochastic functional
equation

L (x) = τν(x)L (k1(x)) + (1 − τ)ν(x)L (k2(x))
+τ(1 − ν(x))L (k3(x)) + (1 − τ)(1 − ν(x))L (k4(x)), (1.4)

where L : V → R is an unknown function, 0 ≤ τ ≤ 1 represents the probability of choosing the food
side. Also, ν : V → V and k1, k2, k3, k4 : V → V are given mappings that represent the four options,
based on the chosen side and the reward, discussed in Table 3.

Our objective is to prove the existence and uniqueness of solutions to the above Eq (1.4) by utilizing
the Banach fixed point theorem (for the details of fixed point theory, we refer [12–16]). Following
that, we provide two examples to demonstrate the importance of our findings in this area. Finally,
we examine the Hyers-Ulam and Hyers-Ulam-Rassias (shortly, HU and HUR) type stability of the
suggested stochastic equation’s solution.

The following stated outcome will be required in the advancement.
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Definition 1.1 ( [17]). Let (V , d) be a metric space. A mapping L : V → V is called a

(1) Banach contraction mapping (or, BCM) if there is a nonnegative real number λ < 1 such that

d(L µ,L υ) ≤ λd(µ, υ) (1.5)

for all µ, υ ∈ V .
(2) Contractive mapping if

d(L µ,L υ) < d(µ, υ) (1.6)

for all µ, υ ∈ V with µ , υ.
(3) Non-expansive mapping if

d(L µ,L υ) ≤ d(µ, υ) (1.7)

for all µ, υ ∈ V .

Theorem 1.2 ( [18]). Let (V , d) be a complete metric space and L :V → V be a BCM with λ < 1.
Then L has precisely one fixed point. Furthermore, the Picard iteration {µn} in V which is defined as
µn = L µn−1 for all n ∈ N, where µ0 ∈ V , converges to the unique fixed point of L .

2. Main results

Let V = [0, 1]. The class consisting of all continuous real-valued functions L : V → R such that
L (0) = 0 and

sup
v1,v2

|L (v1) −L (v2)|
|v1 − v2|

< ∞

is denoted by D . Here, it is straightforward that (D , ‖·‖) is a Banach space (for the detail, see [19]),
where

‖L ‖ = sup
v1,v2

|L (v1) −L (v2)|
|v1 − v2|

(2.1)

for all L ∈ D .
Next, we rewrite (1.4) as

L (x) = τν(x)L (k1(x)) + (1 − τ)ν(x)L (k2(x))
+τ(1 − ν(x))L (k3(x)) + (1 − τ)(1 − ν(x))L (k4(x)), (2.2)

where L : V → R is an unknown function and k1, k2, k3, k4 : V → V are given contraction mappings
with contractive coefficients η1, η2, η3, η4, respectively and k3(0) = 0 = k4(0). Also, ν : V → V is a
given non-expansive mapping with ν(0) = 0 and |ν(x)| ≤ η5 (η5 ≥ 0), for all x ∈ V .

Theorem 2.1. Consider the generalized stochastic equation (2.2). Assume that λ1 < 1, where λ1 is
defined as

λ1 :=
[
τ (η1(1 + η5) + 2η3) + (1 − τ) (η2(1 + η5) + 2η4)

]
, (2.3)
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and k1(0) = 0 = k2(0). Assume that there is a nonempty subset O of T := {L ∈ D |L (1) ≤ 1} such that
(O , ‖ · ‖) is a Banach space, where ‖ · ‖ is given in (2.1). Then (2.2) has a unique solution. Furthermore,
the sequence {Ln} in O (∀n ∈ N), where L0 is given in O , given by

Ln(x) = τν(x)Ln−1(k1(x)) + (1 − τ)ν(x)Ln−1(k2(x))
+τ(1 − ν(x))Ln−1(k3(x)) + (1 − τ)(1 − ν(x))Ln−1(k4(x)), (2.4)

converges to a unique solution of (2.2).

Proof. Let d : O ×O → R be a metric induced by ‖·‖. Thus (O , d) is a complete metric space. We deal
with the operator K from O which is defined as

(K L )(x) = τν(x)L (k1(x)) + (1 − τ)ν(x)L (k2(x))
+τ(1 − ν(x))L (k3(x)) + (1 − τ)(1 − ν(x))L (k4(x)),

for all L ∈ O .
For each L , we obtain (K L )(0) = 0. Also, K is continuous and ‖K L ‖ < ∞ for all L ∈ O .

Thus, K is a self operator on O . Moreover, the solution of (2.2) is clearly equal to K ’s fixed point.
Since K is a linear mapping, for L1,L2 ∈ O , we obtain

‖K L 1 −K L 2‖ = ‖K (L1 −L2)‖ .

Thus, to evaluate ‖K L 1 −K L 2‖, we mark the subsequent framework

Υx1,x2 :=
K (L 1 −L2)(x1) −K (L1 −L2)(x2)

x1 − x2
, x1, x2 ∈ V , x1 , x2.

For each distinct x1, x2 ∈ V , we get

Υx1,x2 =
1

x1 − x2
[τν(x1)(L1 −L2)(k1(x1)) + (1 − τ)ν(x1)(L1 −L2)(k2(x1))

+τ(1 − ν(x1))(L1 −L2)(k3(x1)) + (1 − τ)(1 − ν(x1))(L1 −L2)(k4(x1))
−τν(x2)(L1 −L2)(k1(x2)) − (1 − τ)ν(x2)(L1 −L2)(k2(x2))
−τ(1 − ν(x2))(L1 −L2)(k3(x2)) − (1 − τ)(1 − ν(x2))(L1 −L2)(k4(x2))]

=
1

x1 − x2
[τν(x1)(L1 −L2)(k1(x1)) − τν(x1)(L1 −L2)(k1(x2))

+(1 − τ)ν(x1)(L1 −L2)(k2(x1)) − (1 − τ)ν(x1)(L1 −L2)(k2(x2))
+τ(1 − ν(x1))(L1 −L2)(k3(x1)) − τ(1 − ν(x1))(L1 −L2)(k3(x2))
+(1 − τ)(1 − ν(x1))(L1 −L2)(k4(x1)) − (1 − τ)(1 − ν(x1))(L1 −L2)(k4(x2))
+τν(x1)(L1 −L2)(k1(x2)) − τν(x2)(L1 −L2)(k1(x2))
+(1 − τ)ν(x1)(L1 −L2)(k2(x2)) − (1 − τ)ν(x2)(L1 −L2)(k2(x2))
+τ(1 − ν(x1))(L1 −L2)(k3(x2)) − τ(1 − ν(x2))(L1 −L2)(k3(x2))
+(1 − τ)(1 − ν(x1))(L1 −L2)(k4(x2)) − (1 − τ)(1 − ν(x2))(L1 −L2)(k4(x2))].

Then we have
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∣∣∣Υx1,x2

∣∣∣ =

∣∣∣∣∣ 1
x1 − x2

[τν(x1)(L1 −L2)(k1(x1)) − τν(x1)(L1 −L2)(k1(x2))]

+
1

x1 − x2
[(1 − τ)ν(x1)(L1 −L2)(k2(x1)) − (1 − τ)ν(x1)(L1 −L2)(k2(x2))]

+
1

x1 − x2
[τ(1 − ν(x1))(L1 −L2)(k3(x1)) − τ(1 − ν(x1))(L1 −L2)(k3(x2))]

+
1

x1 − x2
[(1 − τ)(1 − ν(x1))(L1 −L2)(k4(x1)) − (1 − τ)(1 − ν(x1))(L1 −L2)(k4(x2))]

+
1

x1 − x2
[τν(x1)(L1 −L2)(k1(x2)) − τν(x2)(L1 −L2)(k1(x2))]

+
1

x1 − x2
[(1 − τ)ν(x1)(L1 −L2)(k2(x2)) − (1 − τ)ν(x2)(L1 −L2)(k2(x2))]

+
1

x1 − x2
[τ(1 − ν(x1))(L1 −L2)(k3(x2)) − τ(1 − ν(x2))(L1 −L2)(k3(x2))]

+
1

x1 − x2
[(1 − τ)(1 − ν(x1))(L1 −L2)(k4(x2)) − (1 − τ)(1 − ν(x2))(L1 −L2)(k4(x2))]

∣∣∣∣∣.
As k1−k4 : V → V are BCM with contractive coefficients η1−η4, respectively with k3(0) = 0 = k4(0),
and ν : V → V is a non-expansive mapping with ν(0) = 0 and |ν(x)| ≤ η5 (η5 ≥ 0), for all x ∈ V .
Therefore by using (2.1), we have∣∣∣Υx1,x2

∣∣∣ ≤ η1τ|ν(x1)| ‖L1 −L2‖ + η2(1 − τ)|ν(x1)| ‖L1 −L2‖ + η3τ|1 − ν(x1)| ‖L1 −L2‖

+η4(1 − τ)|1 − ν(x1)| ‖L1 −L2‖ + |τ(L1 −L2)(k1(x2)) − τ(L1 −L2)(k1(0))|
+ |(1 − τ)(L1 −L2)(k2(x2)) − (1 − τ)(L1 −L2)(k2(0))|
+ |τ(L1 −L2)(k3(x2)) − τ(L1 −L2)(k3(0))|
+ |(1 − τ)(L1 −L2)(k4(x2)) − (1 − τ)(L1 −L2)(k4(0))|

= η1η5τ ‖L1 −L2‖ + η2η5(1 − τ) ‖L1 −L2‖ + η3τ ‖L1 −L2‖

+η4(1 − τ) ‖L1 −L2‖ + η1τx2 ‖L1 −L2‖ + η2(1 − τ)x2 ‖L1 −L2‖

+η3τx2 ‖L1 −L2‖ + η4(1 − τ)x2 ‖L1 −L2‖

= λ1 ‖L1 −L2‖ ,

where λ1 is given in (2.3). This gives that

d(K L 1,K L 2) = ‖K L 1 −K L 2‖ ≤ λ1 ‖L1 −L2‖ = λ1d(L1,L2).

As 0 < λ1 < 1, so by Theorem 1.2, we get the unique solution of (2.2). �

Here, Theorem 2.1 leads to the conclusion stated below.

Corollary 2.2. Consider the generalized stochastic equation (2.2). Assume that k1, k2, k3, k4 : V → V
are contraction mappings with contractive coefficients η1, η2, η3, η4, with η1 ≤ η2 ≤ η3 ≤ η4 and
k1(0) = 0 = k2(0). Also, λ̃1 := η4(3 + η5) < 1, and assume that there is a nonempty subset O of
T := {L ∈ D |L (1) ≤ 1} such that (O , ‖ · ‖) is a Banach space, where ‖ · ‖ is given in (2.1). Then
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(2.2) has a unique solution. Furthermore, the sequence {Ln} in O (∀n ∈ N), where L0 is given in O ,
given by

Ln(x) = τν(x)Ln−1(k1(x)) + (1 − τ)ν(x)Ln−1(k2(x))
+τ(1 − ν(x))Ln−1(k3(x)) + (1 − τ)(1 − ν(x))Ln−1(k4(x)), (2.5)

converges to a unique solution of (2.2).

The conditions k1(0) = 0 = k2(0) are sufficient but not necessary to prove the main results. Our next
outcomes are independent of such conditions.

Theorem 2.3. Consider the generalized stochastic equation (2.2). Suppose that, there exist η6, η7 ≥ 0
such that

|k1(x)| ≤ η6 and |k2(x)| ≤ η7, for all x ∈ V , (2.6)

and that λ2 < 1, where λ2 is defined as

λ2 :=
[
τ (η1η5 + 2η3 + η6)) + (1 − τ) (η2η5 + 2η4 + η7))

]
. (2.7)

Assume that there is a nonempty subset O of T := {L ∈ D |L (1) ≤ 1} such that (O , ‖ · ‖) is a Banach
space, where ‖ · ‖ is given in (2.1). Then (2.2) has a unique solution. Furthermore, the sequence {Ln}

in O (∀n ∈ N), where L0 is given in O , given by

Ln(x) = τν(x)Ln−1(k1(x)) + (1 − τ)ν(x)Ln−1(k2(x))
+τ(1 − ν(x))Ln−1(k3(x)) + (1 − τ)(1 − ν(x))Ln−1(k4(x)), (2.8)

converges to a unique solution of (2.2).

Proof. Let d : O ×O → R be a metric induced by ‖·‖. Thus (O , d) is a complete metric space. We deal
with the operator K from O which is defined as

(K L )(x) = τν(x)L (k1(x)) + (1 − τ)ν(x)L (k2(x))
+τ(1 − ν(x))L (k3(x)) + (1 − τ)(1 − ν(x))L (k4(x)),

for all L ∈ O .
For each L , we obtain (K L )(0) = 0. Also, K is continuous and ‖K L ‖ < ∞ for all L ∈ O .

Thus, K is a self operator on O . Moreover, the solution of (2.2) is clearly equal to K ’s fixed point.
Since K is a linear mapping, so for L1,L2 ∈ O , we get

‖K L 1 −K L 2‖ = ‖K (L1 −L2)‖ .

Thus, to evaluate ‖K L 1 −K L 2‖, we mark the following framework

Υx1,x2 :=
K (L 1 −L2)(x1) −K (L1 −L2)(x2)

x1 − x2
, x1, x2 ∈ V , x1 , x2.

For each distinct x1, x2 ∈ V , we obtain
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Υx1,x2 =
1

x1 − x2
[τν(x1)(L1 −L2)(k1(x1)) + (1 − τ)ν(x1)(L1 −L2)(k2(x1))

+τ(1 − ν(x1))(L1 −L2)(k3(x1)) + (1 − τ)(1 − ν(x1))(L1 −L2)(k4(x1))
−τν(x2)(L1 −L2)(k1(x2)) − (1 − τ)ν(x2)(L1 −L2)(k2(x2))
−τ(1 − ν(x2))(L1 −L2)(k3(x2)) − (1 − τ)(1 − ν(x2))(L1 −L2)(k4(x2))]

=
1

x1 − x2
[τν(x1)(L1 −L2)(k1(x1)) − τν(x1)(L1 −L2)(k1(x2))

+(1 − τ)ν(x1)(L1 −L2)(k2(x1)) − (1 − τ)ν(x1)(L1 −L2)(k2(x2))
+τ(1 − ν(x1))(L1 −L2)(k3(x1)) − τ(1 − ν(x1))(L1 −L2)(k3(x2))
+(1 − τ)(1 − ν(x1))(L1 −L2)(k4(x1)) − (1 − τ)(1 − ν(x1))(L1 −L2)(k4(x2))
+τν(x1)(L1 −L2)(k1(x2)) − τν(x2)(L1 −L2)(k1(x2))
+(1 − τ)ν(x1)(L1 −L2)(k2(x2)) − (1 − τ)ν(x2)(L1 −L2)(k2(x2))
+τ(1 − ν(x1))(L1 −L2)(k3(x2)) − τ(1 − ν(x2))(L1 −L2)(k3(x2))
+(1 − τ)(1 − ν(x1))(L1 −L2)(k4(x2)) − (1 − τ)(1 − ν(x2))(L1 −L2)(k4(x2))].

Then we have∣∣∣Υx1,x2

∣∣∣ =

∣∣∣∣∣ 1
x1 − x2

[τν(x1)(L1 −L2)(k1(x1)) − τν(x1)(L1 −L2)(k1(x2))]

+
1

x1 − x2
[(1 − τ)ν(x1)(L1 −L2)(k2(x1)) − (1 − τ)ν(x1)(L1 −L2)(k2(x2))]

+
1

x1 − x2
[τ(1 − ν(x1))(L1 −L2)(k3(x1)) − τ(1 − ν(x1))(L1 −L2)(k3(x2))]

+
1

x1 − x2
[(1 − τ)(1 − ν(x1))(L1 −L2)(k4(x1)) − (1 − τ)(1 − ν(x1))(L1 −L2)(k4(x2))]

+
1

x1 − x2
[τν(x1)(L1 −L2)(k1(x2)) − τν(x2)(L1 −L2)(k1(x2))]

+
1

x1 − x2
[(1 − τ)ν(x1)(L1 −L2)(k2(x2)) − (1 − τ)ν(x2)(L1 −L2)(k2(x2))]

+
1

x1 − x2
[τ(1 − ν(x1))(L1 −L2)(k3(x2)) − τ(1 − ν(x2))(L1 −L2)(k3(x2))]

+
1

x1 − x2
[(1 − τ)(1 − ν(x1))(L1 −L2)(k4(x2)) − (1 − τ)(1 − ν(x2))(L1 −L2)(k4(x2))]

∣∣∣∣∣.
Here k1 − k4 : V → V are BCM with contractive coefficients η1 − η4, respectively and satisfies the
condition (2.6). Also, ν : V → V is a non-expansive mapping with ν(0) = 0 and |ν(x)| ≤ η5 (η5 ≥ 0),
for all x ∈ V . Thus by using (2.1), we have∣∣∣Υx1,x2

∣∣∣ ≤ η1τ|ν(x1)| ‖L1 −L2‖ + η2(1 − τ)|ν(x1)| ‖L1 −L2‖ + η3τ|1 − ν(x1)| ‖L1 −L2‖

+η4(1 − τ)|1 − ν(x1)| ‖L1 −L2‖ + |τ(L1 −L2)(k1(x2)) − τ(L1 −L2)(0)|
+ |(1 − τ)(L1 −L2)(k2(x2)) − (1 − τ)(L1 −L2)(0)|
+ |τ(L1 −L2)(k3(x2)) − τ(L1 −L2)(k3(0))|
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+ |(1 − τ)(L1 −L2)(k4(x2)) − (1 − τ)(L1 −L2)(k4(0))|
= η1η5τ ‖L1 −L2‖ + η2η5(1 − τ) ‖L1 −L2‖ + η3τ ‖L1 −L2‖

+η4(1 − τ) ‖L1 −L2‖ + η6τ ‖L1 −L2‖ + η7(1 − τ) ‖L1 −L2‖

+η3τx2 ‖L1 −L2‖ + η4(1 − τ)x2 ‖L1 −L2‖

= λ2 ‖L1 −L2‖ ,

where λ2 is given in (2.7). This gives that

d(K L 1,K L 2) = ‖K L 1 −K L 2‖ ≤ λ2 ‖L1 −L2‖ = λ2d(L1,L2).

As 0 < λ2 < 1, so by Theorem 1.2, we get the unique solution of (2.2). �

The following conclusion is derived from Theorem 2.3.

Corollary 2.4. Consider the generalized stochastic equation (2.2). Assume that k1, k2, k3, k4 : V → V
are contraction mappings with contractive coefficients η1, η2, η3, η4 with η1 ≤ η2 ≤ η3 ≤ η4 and there
exist η6, η7 ≥ 0 such that

|k1(x)| ≤ η6 and |k2(x)| ≤ η7, for all x ∈ V , (2.9)

and that λ̃2 < 1, where λ̃2 is defined as

λ̃2 :=
[
(2 + η5) η4 + η7 + (η6 − η7)τ

]
. (2.10)

Assume that there is a nonempty subset O of T := {L ∈ D |L (1) ≤ 1} such that (O , ‖ · ‖) is a Banach
space, where ‖ · ‖ is given in (2.1). Then (2.2) has a unique solution. Furthermore, the sequence {Ln}

in O (∀n ∈ N), where L0 is given in O , given as

Ln(x) = τν(x)Ln−1(k1(x)) + (1 − τ)ν(x)Ln−1(k2(x))
+τ(1 − ν(x))Ln−1(k3(x)) + (1 − τ)(1 − ν(x))Ln−1(k4(x)), (2.11)

converges to a unique solution of (2.2).

Remark 2.5. Our proposed generalized stochastic equation (2.2) is a generalization of many
mathematical models in the particular research (including equations discussed in the introduction
section). For instance

(1) If we put τ = 0 and define ν, k2, k4 : V → V by

ν(x) = x, k2(x) = η1x + 1 − η1 and k4(x) = η2x,

where 0 < η1 ≤ η2 < 1, then our proposed model (2.2) is equivalent to the model examined
in [20].

(2) If we put τ = 1. Define ν(x) = x and k1, k3 : V → V as BCM having contractive constants η1

and η2 respectively with η1 ≤ η2, then our proposed stochastic equation (2.2) is equivalent to the
functional equations examined in [21, 22].
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To support our argument, we now present the subsequent examples.

Example 2.6. Consider the stochastic equation stated below

L (x) = τxL
( x
13

)
+ (1 − τ)xL

(
3x
14

)
+ τ(1 − x)L

( x
9

)
+(1 − τ)(1 − x)L

(
2x
11

)
(2.12)

for all x ∈ V , where L : V → R is an unknown function. If we define mappings ν, k1, k2, k3, k4 : V →
V by

ν(x) = x, k1(x) =
x

13
, k2(x) =

3x
14
, k3(x) =

x
9

and k4(x) =
2x
11

for all x ∈ V , then our generalized stochastic equation (2.2) reduces to the Eq (2.12).
Now, our aim is to use Theorem 2.1 to find the existence of a unique solution to the above problem.

Here, k1, k2, k3, k4 are contraction mappings with contractive coefficients η1 = 1
13 , η2 = 3

14 , η3 = 1
9 and

η4 = 2
11 , respectively, and k1(0) = k2(0) = k3(0) = k4(0) = 0. Also, ν : V → V is a non-expansive

mapping with ν(0) = 0 and η5 = 1. Thus,

λ1 :=
[
τ (η1(1 + η5) + 2η3) + (1 − τ) (η2(1 + η5) + 2η4)

]
=

1
13629

(10797 − 7409τ) < 1,

for all τ ∈ V . All of the Theorem 2.1’s premises are now true. As a result, there is only one solution to
the functional equation (2.12).

Furthermore, if we pick L0(x) = x for all x ∈ V as an initial approximation, then the next iteration
will converge to a unique solution (2.12).

L1(x) =
1

18018
[−1201τx2 + 585x2 − 1274τx + 376x],

L2(x) =
1

5849513501832


7520845753τ2x3 − 8677708650τx3 + 2442459825x3

+35644603904τ2x2 − 101143007784τx2 + 40809099240x2

+29244583368τ2x − 150400714464τx + 193372347168x

 ,
...

Ln(x) = τxLn−1

( x
13

)
+ (1 − τ)xLn−1

(
3x
14

)
+ τ(1 − x)Ln−1

( x
9

)
+(1 − τ)(1 − x)Ln−1

(
2x
11

)
for all n ∈ N.

Example 2.7. Consider the stochastic equation stated below

L (x) = τxL
(
ax + 1 − a

2

)
+ (1 − τ)xL

(
bx + 1 − b

2

)
+ τ(1 − x)L

(cx
2

)
+(1 − τ)(1 − x)L

(
dx
2

)
(2.13)
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for all x ∈ V and 0 < a, b, c, d < 1, where L : V → R is an unknown function. Also, if we define
mappings ν, k1, k2, k3, k4 : V → V by

ν(x) = x, k1(x) =
ax + 1 − a

2
, k2(x) =

bx + 1 − b
2

, k3(x) =
cx
2

and k4(x) =
dx
2

for all x ∈ V , then the generalized stochastic equation (2.2) reduces to the Eq (2.13).
We next attempt to solve the problem by using Theorem 2.3. Here, k1, k2, k3, k4 are contraction

mappings with contractive coefficients η1 = a
2 , η2 = b

2 , η3 = c
2 and η4 = d

2 , respectively, and ν : V → V
is a non-expansive mapping with ν(0) = 0 and η5 = 1. Also,

|k1(x)| ≤
1
2

and |k2(x)| ≤
1
2
, for all x ∈ V ,

and
k3(0) = k4(0) = 0.

Thus,

λ2 :=
[
τ (η1η5 + 2η3 + η6)) + (1 − τ) (η2η5 + 2η4 + η7))

]
=

[
τ

2
(a + 2c + 1) +

(1 − τ)
2

(b + 2d + 1)
]
.

Now, all the hypotheses of Theorem 2.3 are fulfilled. Thus, (2.9) has a unique solution if |λ2| < 1.
Furthermore, if we pick L0(x) = x for all x ∈ V as an initial approximation, the next iteration will

converge to a unique solution (2.13).

L1(x) =
1
2

[(b + aτ − bτ − cτ + tτ − d)x2 + (−b − aτ + bτ + cτ + 1 − dτ + d)x],

L2(x) = τxL1

(
ax + 1 − a

2

)
+ (1 − τ)xL1

(
bx + 1 − b

2

)
+ τ(1 − x)L1

(cx
2

)
+(1 − τ)(1 − x)L1

(
dx
2

)
,

...

Ln(x) = τxLn−1

(
ax + 1 − a

2

)
+ (1 − τ)xLn−1

(
bx + 1 − b

2

)
+ τ(1 − x)Ln−1

(cx
2

)
+(1 − τ)(1 − x)Ln−1

(
dx
2

)
for all n ∈ N.

3. Stability review of the proposed generalized stochastic equation

In mathematical modeling theory, the consistency of solutions is critical. Slight changes in the
data set, such as those caused by natural measurement mistakes, have no corresponding impact on the
conclusion. Hence, it is essential to analyze the stability of the suggested functional equation (1.4)’
solution. For the details of HU and HUR stability, we refer [23–30].
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Theorem 3.1. Under the hypothesis of Theorem 2.1, the equation K L = L , where K : O → O is
given as

(K L )(x) = τν(x)L (k1(x)) + (1 − τ)ν(x)L (k2(x))
+τ(1 − ν(x))L (k3(x)) + (1 − τ)(1 − ν(x))L (k4(x)), (3.1)

for all L ∈ O and x ∈ V , has HUR stability, that is, for a fixed function ϑ : O → [0,∞), we have that
for every L ∈ O with d(K L ,L ) ≤ ϑ(L ), there exists a unique L ? ∈ O such that K L ? = L ?

and d(L ,L ?) ≤ `ϑ(L ) for some ` > 0.

Proof. Let L ∈ O such that d(K L ,L ) ≤ ϑ(L ). By utilizing Theorem 2.1, we have a unique
L ? ∈ O such that K L ? = L ?. Therefore, we obtain

d(L ,L ?) ≤ d(L ,K L ) + d(K L ,L ?)
≤ ϑ(L ) + d(K L ,K L ?)
≤ ϑ(L ) + λ1d(L ,L ?),

where λ1 is given in (2.3), and so
d(L ,L ?) ≤ `ϑ(L ),

where ` :=
1

1 − λ1
. �

From the above analysis, we obtain the result corresponding to the HU stability.

Corollary 3.2. Under the hypothesis of Theorem 2.1, the equation K L = L , where K : O → O is
given as

(K L )(x) = τν(x)L (k1(x)) + (1 − τ)ν(x)L (k2(x))
+τ(1 − ν(x))L (k3(x)) + (1 − τ)(1 − ν(x))L (k4(x)), (3.2)

for all L ∈ O and x ∈ V , has HU stability, that is, for a fixed ξ > 0, we have that for every L ∈ O
with d(K L ,L ) ≤ ξ, there exists a unique L ? ∈ O such that K L ? = L ? and d(L ,L ?) ≤ `ξ, for
some ` > 0.

4. Conclusions

Mathematical psychology is a branch of psychology that is oriented toward mathematical modeling.
Simultaneously, the learning process in human beings or animals can be viewed as a set of possible
reactions. From this perspective, most of the learning research focuses on determining the probability
of trial-to-trial occurrences that characterizes a stochastic process. In this work, we proposed a general
stochastic functional equation that can be used to discuss numerous psychological learning theory
experiments on animals and humans in the existing literature. In addition, we examined the existence,
uniqueness, and stability of a solution to the suggested generalized stochastic equation by utilizing the
fixed-point theory tools. Two examples are also given that show the importance of our results in this
area of research.
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