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A B S T R A C T   

Remote and descriptive visualization of spatio-temporal information of excavator activities may increase 
awareness about jobsite hazards and operational performance in earthwork operations. One of the emerging 
approaches to collect this information is to extract the 3D pose of an excavator from the video frames using a 
convolutional neural network (CNN). However, this method requires labeling the training datasets, which are 
difficult to prepare because of conditions unsuitable for installing the motion capture sensors. This study in
vestigates the performance of a CNN for estimating the 3D pose when trained on a synthetic dataset. In 
particular, a kinematic constraint is proposed to update the model parameters efficiently during training. The 
results show that the proposed method estimated the 3D poses of a real excavator with an average pose error of 
9.63◦. Hence, the proposed data augmentation method could help address the training data issues and improves 
the learning of real data complexity.   

1. Introduction 

Earthmoving operations are an essential part of construction pro
jects, such as dam construction, foundation work, road construction, and 
airport construction. In these operations, earth materials, such as soil, 
are removed from the ground and transferred to another location. Most 
of the activities in these operations are driven by heavy equipment, such 
as a loader or an excavator. Because of the use of heavy equipment, these 
activities are among the most critical in construction from the safety and 
economic perspectives. From a safety perspective, the fatality rate in 
earthmoving operations is 112% higher than that in general construc
tion [1]. Struck-by fatalities are one of the four most deadly hazards (i.e., 
fall, electrocution, caught-in, and struck-by fatalities) in the field of 
construction [2], and approximately 75% of struck-by fatalities are 
caused by inappropriate interactions between construction workers and 
heavy earthwork equipment [1,2]. Among the heavy earthwork equip
ment, the most significant proportion of fatalities is caused by excava
tors on the jobsite [3]. From an economic perspective, the earthmoving 
operation cost accounts for more than 20% of the total project cost [4]. 
The cost of earthwork significantly depends on the productivity and 
efficiency of the excavator [3]. The productivity of an excavator is the 
measure of the output, i.e., the amount of soil excavated and transported 

per unit time (i.e., an hour), while the efficiency is the percentage of 
total project time in which the excavator is productive. For the former, 
the productivity of the excavator is affected by the number of trucks 
assigned to transport the soil. For instance, a poorly assigned number of 
dump trucks to the excavator can increase the idle time of the excavator; 
in return, this time can decrease the overall project productivity. 
Meanwhile, the efficiency of the excavator is affected by the sequence of 
the boom, arm, and bucket motions, and the trajectory length of the 
bucket motion cycle [5]. For instance, a short bucket trajectory cycle to 
dig the soil from the ground, dumping it in a truck, and then returning to 
dig again, can efficiently reduce the operational time and fuel con
sumption [5]. Thus, on-site monitoring of excavator activities is crucial 
for ensuring the safety and productivity of earthwork. Effective means of 
monitoring the excavator activities can facilitate the collection of spatial 
and temporal information, such as the working pose and trajectory 
required for productivity and safety analysis. Using this information, a 
manager can analyze the reasons for poor safety performance and low 
productivity. 

Generally, excavator-related activities are manually monitored to 
evaluate the worker's safety [6,7] and excavator productivity [8–10]. 
For safety evaluation, an inspector manually observes the jobsite to 
identify the hazards and violations [11]. For instance, the location of 
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workers near the excavator and the spatial extent of excavator parts 
during earthwork operations are manually observed and evaluated to 
identify the hazards. In addition, the working speed of the excavator, 
action smoothness, and pose angles are manually observed and then 
compared with the standards provided by the manufacturer to identify 
the violations. For productivity estimation, the activities of the exca
vator are recognized, and then their time duration is calculated (e.g., the 
time required to excavate and dump a soil load into a truck) using a 
stopwatch. The productivity of the excavator is the ratio of the amount 
of excavated soil to the time duration for this excavation (e.g., m3/h). To 
calculate this time duration for productivity estimation, random work 
sampling is conducted [12]. In this work sampling, the inspector visits 
the jobsite randomly and calculates the activity duration for unbiased 
monitoring. Usually, work sampling is performed once or twice a week 
[7] depending on the project size, and then a report on the site condi
tions is prepared based on the inspector's perception; the site inspector 
spends 30–50% of his/her time on this process [10]. Consequently, the 
traditional method of monitoring may not be sufficient for a manager to 
identify the hazards proactively or inefficient operations on an earth
work site where productivity and safety conditions change continuously. 
In addition, this report is subjective and may not provide a clear mental 
model of the job site's complexity and dynamics [6,7] to analyze the 
incident. 

To facilitate the monitoring of excavator activities in a continuous 
and automated manner, this paper proposes a vision-based excavator 
pose estimation method. This pose estimation method calculates the 
relative position of the excavator elements, i.e., the boom, arm, and 
bucket, from an image. This pose can be linked to a virtual excavator 
model to visualize the spatial information (i.e., the pose) of a real 
excavator in a virtual environment. Then, an animation is created from 
the sequences of these poses to visualize the temporal information (i.e., 
trajectories) of excavator activities. By visualizing this animation of 
equipment movements in such a virtual environment of a construction 
jobsite, the safety and productivity performance of the excavator can be 
monitored and analyzed remotely. For example, the 3d pose information 
representing articulated motions of an excavator may allow for recog
nizing pre-defined situational scenarios of unsafe incidents (e.g., a 
bucket moving closer to a worker) in real-time [13], classifying the 
motions into specific activities (e.g., idling, loading, dumping) [14] and 
measuring their cycle times for productivity [15], providing an operator 
with visualized information that helps perceive the ongoing motions of a 
bucket arm relative to the as-planned place for productivity improve
ment [16], and observing the trajectory smoothness of a bucket and an 
arm for the assessment of the operator's skill [17]. Specifically, for this 
pose estimation, a CNN model is trained on synthetic excavator images 
with corresponding poses instead of a real image dataset because it is 
challenging to measure the 3D poses of an excavator on a job site 
directly, whose dataset is required to train the pose estimation model. 
Thus, this study evaluates the performance of synthetic image-based 
CNN model training for the 3D pose estimation of a real excavator. By 
continuously recovering the excavator poses and then visualizing these 
pose trajectories in a virtual environment, a manager can proactively 
evaluate the excavator performance in a dynamic construction site. 

2. Literature review 

The spatial orientation and configuration of an articulated subject (e. 
g., humans or excavators), whose body parts are connected to each other 
through rotating joints, can be described by the 3D pose. The 3D pose 
can be represented in two ways: 1) the relative position of the joints in a 
Cartesian coordinate system, and 2) the relative angle of the parts 
around its joint. This 3D pose has been studied for sensor-based and 
vision-based methods. In sensor-based methods, a sensor network is 
attached to the subject, and these sensors measure the change in their 
angle or position to calculate the 3D pose. On the contrary, in vision- 
based methods, images of the subject are captured using a specific 

visual device, and the 3D pose is estimated by calculating the visual 
features in these images. These visual features can either be designed 
manually to detect the specific shapes of the subject in images (e.g., the 
histogram of oriented gradients) or can be automatically extracted and 
trained to locate the subject parts in the image (e.g., a convolutional 
neural network (CNN)). The details of the 3D pose estimation methods 
are further described in the following sections, and the potential issues 
in machine learning approaches are discussed from a technical 
perspective. 

2.1. 3D pose estimation methods 

3D pose estimation methods can be categorized as sensor-based and 
vision-based methods. In sensor-based methods, inertial measurement 
units (IMUs) [18], global positioning systems (GPS), wireless local area 
networks (WLANs), radio frequency identification (RFID), and ultra- 
wideband (UWB)-based methods are used. An IMU sensor is attached 
to the excavator elements [18] and the change in IMU angular orien
tation is measured. IMU-based pose estimation does not depend on the 
visibility of the excavator, and the pose can be estimated even when the 
excavator parts are occluded by other equipment. However, the IMU- 
based method requires initial manual calibration before recovering the 
pose data. In addition, measuring the change in angle continuously 
suffers from magnetic interference and drift issues over time [19]. In the 
GPS-based pose estimation method, GPS sensors are attached to the 
excavator elements, and the 3D pose is estimated using the GPS position 
and kinematics of the excavator. Similar to the IMU-based method, the 
GPS-based method does not have visibility issues. In addition, each pose 
estimated from the GPS is independent of other estimated poses, which 
resolves the drift issues. However, GPS receivers may detect signal 
blockages in urban populated areas [20]. In WLAN-, RFID-, and UWB- 
based 3D pose estimation, a signal source is placed at a fixed position, 
and signal receiver tags are attached to each excavator element. To es
timate the 3D pose of the excavator, the location of these tags is calcu
lated based on the time of arrival, angle of arrival, and received signal 
strength of signals received back on the source. These methods are more 
accurate than IMU-based and GPS-based methods [21] and are pre
dominantly used on actual jobsites [21]. However, these systems require 
the sensors to be precalibrated [22]. In addition, it is not possible to 
place a signal source at a fixed position in dynamic jobsite conditions. 

In the vision-based method, two methods are used: marker-based and 
marker-less. For marker-based pose estimation, a network of markers is 
attached to the excavator, and the detected location of these markers in 
the image is used to calculate the 3D pose of an excavator [16,23,24]. 
These marker-based methods are being used extensively [25]. However, 
these methods require precise pre-installation of the markers at different 
locations of excavators, which can easily be broken and lost during site 
operations. For marker-less pose estimation, first, the features are 
extracted from visual data, and then the 3D pose is calculated from the 
features. These visual data can be depth images [14,26–28], multi-view 
images [29], and monocular images [30]. Depth images already have 
depth information in each pixel of the RGB image, which makes 3D pose 
estimation a keypoint detection problem. For instance, human body 
parts are detected using depth-based clustering of pixels [31] and then 
recognized as Randomized Trees [32]. However, the sensors for depth 
images may be difficult to handle in a dynamic construction environ
ment because they have to be installed at a fixed location and have a 
limited scanning range [29]. In multi-view images, parts of excavators 
are detected in RGB images using color-based clustering of pixels, and 
the parts are then recognized by fitting the geometric shapes. Further 
depth information is calculated via triangulation of the detected parts in 
paired images [29] however, this method may be slow and requires the 
calibration of multiple cameras focusing on the same view [33]. 

With the advancement in CNNs, 3D pose estimation using monocular 
images has been studied for humans. Monocular image-based 3D pose 
estimation can be categorized into model-free 3D pose estimation and 
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model-based 3D pose estimation [34]. Model-free methods estimate the 
3D pose of each body joint independently and do not consider their 
mutual relationship. In contrast, the model-based method estimates the 
pose of each joint based on the mutual connectivity relationship. The 
model-free method can be further divided into two methods: direct 
location estimation and 2D with depth estimation. For direct location 
estimation, a CNN model is directly trained for images against the joint 
location [35–37]. On the contrary, in 2D with depth-based 3D pose 
estimation, 2D keypoint locations are calculated, and then the depth of 
the individual joint is estimated to convert these 2D keypoints into 3D 
keypoints [38–40]. Compared to direct pose estimation, 2D with depth- 
based pose estimation shows better performance [34]. In model-based 
3D pose estimation, a mutual relationship among the body parts is 
included in the training of the CNN model. These relationships restrict 
the CNN model from estimating unrealistic poses. For instance, joint 
connectivity [41] and bone-length ratios [30] are calculated for the 
estimated pose, and CNN model parameters are corrected to fulfill these 
constraints. Thus, in monocular image-based pose estimation methods, 
the model-based CNN method is more suitable for excavator 3D pose 
estimation than the model-free method because, in the training of 
model-based CNNs, constraint parameters are used to refine the esti
mated pose that will conserve the joint configuration and mutual rela
tionship of different parts of the excavator. However, existing model- 
based CNN methods are mostly designed for human pose estimation, 
and technical issues may arise for the implementation of these methods 
for excavator pose estimation. 

2.2. Technical issues in CNN-based pose estimation 

To train a CNN for 3D pose estimation, a labeled dataset and an 
appropriate loss function are required to compute the errors and update 
the model parameters through an iterative learning processes. For 
instance, the loss function estimates the training error by comparing the 
estimated poses from the CNN and the corresponding ground truth poses 
in the labeled dataset. Then, this training error is adjusted in the CNN 
weight parameters. For an excavator, these loss functions are specifically 
formulated in a model-based method to calculate the deviations of the 
estimated pose from natural pose constraints (i.e., avoiding awkward 
poses not performed in practice). In previous studies [30,41], additional 
loss functions have been used to preserve the spatial constraints of the 
human body (e.g., bone length [30] and mutual relationship of joints 
[41]). However, these loss functions are unable to preserve the natural 
kinematic constraints [42], such as joint rotation along an axis that is 
naturally constrained or a joint rotation beyond the natural limits. This 
kinematic error occurs because previous methods assume a single 
scaling factor for image generation [42] and they scale down the depths 
of all the subject parts with a single scaling factor. However, there is 
non-linear scaling of subject parts owing to the perspective projection, 
and this effect is relatively large in excavators because their size is larger 
than the average size of humans. In this regard, the intrinsic parameters 
of the camera are calculated to correct the pose for kinematic constraints 
[42]. However, this method is not generalized for all the image- 
capturing scenarios, such as cameras with different focal lengths at 
different positions. 

The training dataset comprises images labeled with corresponding 
poses. In this pose labeling, pixels of joint positions are marked on the 
image, and the camera depth of those pixels is calculated in the image 
space. Motion capture sensors have been used to prepare a training 
dataset [43] in the field of human 3D pose estimation. However, this 
method may not be suitable for an excavator because it is difficult to 
install such sensors onto heavy equipment operating in harsh con
struction environments, which makes it difficult to obtain 3D poses for 
labeling the actual excavator images. A virtual excavator model has 
been used as an alternative to calculate the poses of an excavator in a 
real image [44]. For instance, the virtual model is rotated to obtain an 
approximate pose of the excavator in an image. However, it is time- 

consuming to rotate the virtual model manually to make it look 
similar to the pose in the image. For automated labeling, a robotic arm in 
an indoor environment [25] and images of a virtual excavator model 
[45] have also been proposed to obtain the 3D pose labels of training 
images. This robotic arm or virtual model is simulated for realistic 
movement of the excavator such that the pose data are automatically 
calculated after applying a motion and capturing an image. For auto
mated generation of the training dataset, compared to a robotic arm, 
virtual model-based image capturing and 3D pose labeling methods 
provide a cheap and easy-to-implement solution. However, synthetic 
images captured from the virtual model do not have natural noise, oc
clusions, backgrounds, and lighting conditions similar to the site images, 
which makes the visual features of these images different from the real 
images. Recently, the performance of these images in stereo vision-based 
excavator pose estimation has been studied using traditional image 
processing techniques (i.e., color-based clustering of pixels) [29]. 
However, to estimate the 3D pose of the excavator from a monocular 
image, the performance of synthetic image-based CNN model training 
remains unknown. 

3. Method 

To visualize the excavator activities, we experimentally evaluated 
the performance of vision-based 3D pose estimation when synthetic 
excavator images were used for CNN model training. The real excavator 
video frames were then used for testing the trained CNN model. To 
prepare a synthetic dataset of images and the corresponding 3D pose 
data for CNN model training, a method that can capture images from any 
camera view angle is required; these training images should represent an 
actual construction jobsite and excavator dimensions, and the method 
should be fast enough to label the 3D poses in images. To fulfill these 
requirements, synthetic images of the excavator were used to train a 
CNN model for excavator 3D pose estimation. To generate a synthetic 
training dataset, a virtual excavator model was generated with a shape 
and dimensions similar to that of a real excavator. Then, the images of 
the virtual excavator were captured using a virtual camera from all 
possible viewpoints. A 3D pose corresponding to the captured image was 
obtained by projecting the excavator joint positions to the image space. 
However, these images did not have natural visual features such as 
lightening, occlusions, image distortion, and poor visibility owing to 
issues like dust in the air and natural background scenes. Data 
augmentation techniques were thus applied to make these synthetic 
images look similar to real jobsites. 

Fig. 1 provides an overview of the experimental stages in the vision- 
based excavator pose estimation method. The methodology includes the 
training, testing, and post-processing stages. In the training stage, a 
virtual model of actual excavator dimensions was created by joining 
simple geometric shapes (e.g., planes, spheres, and surfaces). Then, the 
kinematic relationship between the excavator elements (e.g., the boom, 
arm, and bucket) was defined, and random rotations were applied to 
these excavator elements. After rotating these elements, a virtual camera 
was placed randomly around the excavator, whose line of sight passed 
through the excavator center. This virtual camera rendered an image of 
the excavator using ray tracing and rasterization. To obtain the 3D pose 
of the excavator corresponding to this image, the pixel coordinates of the 
joints of the excavator were considered as a 2D pose. The distance of 
these joints in the virtual model to the image plane was scaled down, 
called the joint depth, to the image scale as the third dimension of the 
pose. This data augmentation technique was applied to make these 
synthetic images realistic. To train a CNN model that estimates the 3D 
pose of the given excavator images, three loss functions were defined to 
correct the 2D pose estimation error, the error in the estimation of the 
joint depth, and the kinematic constraint error to place all the excavator 
joints in a plane, respectively. In the testing stage, the CNN model 
trained with virtual images was tested with video frames of a real 
excavator, and the estimated 3D poses were converted to angular poses 
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to compare the result with the ground truth (i.e., poses measured using 
sensors). The video frames of a real excavator whose elements rotate 
randomly served as the input to the CNN model trained on synthetic 
images. To evaluate the 3D pose estimation performance, these CNN- 
based estimated poses were compared with ground truth poses. In this 
study, the ground truth was the angular pose data of the boom, arm, and 
bucket collected with IMU sensors that were pre-calibrated and attached 

to the excavator elements. The estimated poses collectively form a tra
jectory of the element's activity. This vision-based pose estimation can 
be further improved if the consecutive poses are considered as a tra
jectory. By correcting this trajectory, incorrectly estimated poses can be 
excluded. In the post-processing stage, the error in the CNN-based 
excavator pose estimation was further reduced by utilizing a temporal 
sequence of poses called the trajectory. In the trajectory, incorrect 

Fig. 1. Research overview for evaluation of the CNN-based excavator 3D pose estimation  

Fig. 2. Description of the processes involved in synthetic data generation and generated data with these processes. In synthetic data generation, (a) virtual excavator 
poses are generated randomly, (b) virtual camera positions around the excavator are selected, on these positions, (c) camera is focused on the excavator, and then (d) 
excavator joints position are projected on the image plane. As a result of these processes, the following data is generated: (e) generated synthetic image, (f) projected 
key-points represented as heatmap, (g) camera depth represented as a depth map, and (h) 3d pose of excavator scaled-down in image space. 
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estimations may occur when the excavator's joints are self-occluded. 
These errors can be detected using the camera viewpoints or tradi
tional outlier detection algorithms. These incorrect estimations were 
excluded from the trajectory, and then the correct pose was estimated by 
interpolating and averaging the surrounding poses in the trajectory. 

3.1. Synthetic data generation 

To train a CNN model for estimating the 3D pose of an excavator with 
an excavator image provided, a dataset of synthetic images (e.g., Unity 
images) and the corresponding excavator poses were generated. For this 
dataset generation, a virtual excavator model was simulated to mimic 
the actual excavator poses, and then virtual cameras were placed around 
this model to capture the images and the camera relative poses of such 
poses. Furthermore, data augmentation techniques were applied to 
these images to generate realism in them. For this synthetic dataset 
generation, four steps were followed: (1) generating poses in the virtual 
excavator model for mimicking the real poses of the excavator (Fig. 2a), 
(2) placing a virtual camera around the excavator (Fig. 2b), (3) orienting 
the camera towards the virtual model (Fig. 2c), and (4) projecting the 
model with its keypoints on a virtual image (Fig. 2d). The dataset 
generated from this process includes the synthetic images (Fig. 2e), the 
keypoint locations in the image represented as a heat map of excavator 
joint positions (Fig. 2f), and the camera depth of excavator joints 
(Fig. 2g). These keypoint locations in the image and camera depths of 
the keypoints were combined to create the 3D pose of the excavator 
(Fig. 2h). 

To generate the real excavator poses in a virtual environment, the 
poses of the virtual model were characterized based on the local rotation 
angle of the excavator's joints. These angles were randomly generated 
within the kinematic constraints of the excavator. To implement these 
pose angles in the virtual model, the joints of the virtual excavator 
model were first simulated using forward kinematics, and the pose an
gles were then applied to these simulated joints using rotation matrices. 
Forward kinematics are considered to calculate the position of the end 
effector of each joint in the chain of joints after applying a local rotation 
angle. For the simulation of the forward kinematics of the excavator in 
the virtual model, the joint type, rotation axis, and rotation matrices of 
the joints were defined to calculate the position of the end effector of 
every joint in the chain for relative rotation angles. An excavator has 
revolute joints that rotate along a single axis. The boom, arm, and bucket 
joints in the excavator rotate along the horizontal axis. We consider θ1, 
θ2, and θ3 as the angles of the boom, the arm, and the bucket with the 
horizontal, respectively. Thus, considering the corresponding joint as 
the origin, the locations of the boom, arm, and bucket ends can be 
calculated using Eqs. (1–6) [46]. Using these equations and choosing the 
realistic angles for the boom, arm, and bucket, the excavator poses can 
be mimicked in the virtual model. 

xb = lbcosθ1 (1)  

yb = lbsinθ1 (2)  

xa = lbcosθ1 + lacos(θ1 + θ2) (3)  

ya = lbsinθ1 + lasin(θ1 + θ2) (4)  

xbck = lbcosθ1 + lacos(θ1 + θ2)+ lbckcos(θ1 + θ2 + θ3) (5)  

ybck = lbsinθ1 + lasin(θ1 + θ2)+ lbcksin(θ1 + θ2 + θ3) (6)  

where (xb, yb), (xa, ya), and (xbck, ybck) are the coordinates of the 
boom, arm, and bucket ends, respectively; θ1, θ2, and θ3 are the angles of 
the boom, arm, and bucket, respectively. 

To place a virtual camera around the excavator, a zone around the 
excavator needs to be defined such that the following conditions are 
met: a camera placed anywhere inside that zone should be able to 

capture the entire excavator, and the zone should not be at the exact top 
or bottom of the excavator . This zone can be defined as the horizontal 
torus around the excavator model (Fig. 2b). Inside this zone, the camera 
can be placed either at a uniform distance interval [21] or at a random 
position. In this study, the random placement of virtual cameras inside 
specified torus zone was employed because this method is comparatively 
easy to implement and automatically generates a balanced dataset for all 
the possible camera poses. To define this zone, the center of the virtual 
excavator (Eq. 8) is considered as the center of the torus. A major radius 
(R) and a minor radius (r) of the torus are selected based on the field of 
view of the camera. To generate the points where the camera will be 
placed, a random point is first selected at the centerline inside this torus 
using Eqs. (9 and 10). Then, the camera position is selected by randomly 
generating a camera position in an assumed sphere around this selected 
point (Eqs. (12–15)). 

α = Rand(0, 2π) (7)  

CExcavator = Xc,Yc,Zc (8)  

Xt = Xc+RCosα (9)  

Zt = Zc+RSinα (10)  

Φ,Θ = Rand(0, 2π) (11)  

x = rSin ΦCos Θ (12)  

y = r Sin Φ Sin Θ (13)  

z = r Cos Φ (14)  

Camera = Xt+ x,Yc+ y,Zt+ z (15) 

To orient the camera towards the virtual model, it is rotated around 
its own axes such that the line of sight of the camera passes through the 
center of the excavator model (Fig. 2c). This rotation of the camera 
ensures that the entire excavator is visible in the image. To calculate the 
rotation angles of the camera, a direction vector is calculated from the 
camera to the center of the model (Eq. 16). Then, from this direction 
vector, the Euler angle along the horizontal axis for orientation in the 
up-down direction is called the pitch (Eq. 17); the Euler angle along the 
vertical axis for orientation in the left-right direction is called the yaw 
(Eq. 18). The excavator model in the plane of the camera is realized by 
rotating the camera along the pitch and yaw. 

d.X, d.Y, d.Z = C.x − E.x,C.y − E.y,C.z − E.z (16)  

pitch = sin− 1( − d.Y) (17)  

yaw = tan− 1 (d.X, d.Z) (18)  

where C.x, C.y, and C.z are the global coordinates of the camera, and E.x, 
E.y, and E.z are the global coordinates of the center of the excavator. 

To project a model with its keypoints on a virtual image, the virtual 
camera generates a virtual image of the visible excavator surface using a 
ray-tracing algorithm [47] and calculates the image coordinates of 
keypoints using a camera projection matrix. Ray-tracing algorithms 
project a ray of light from each pixel of the image towards the model and 
store the reflected visual information. This reflected visual information 
usually provides information of the color and illumination in the re
flected light, which is stored in each pixel of the virtual image. To 
calculate the image coordinates of the keypoints, the world coordinates 
of the keypoints are transformed to a camera coordinate system using a 
camera transformation matrix, and the image coordinates are calculated 
using a perspective transformation matrix [48]. In perspective projec
tion, a frustum-shaped camera field of view is converted into a cube to 
create a square image (Fig. 3). Owing to the perspective projection, 
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distant objects look smaller than close objects. For example, in Fig. 3, the 
body of the excavator (B) appears smaller than bucket (A) because the 
bucket is near the camera. 

The dataset generated from the above process includes (1) a virtual 
image of the excavator, (2) image coordinates of the keypoints, (3) 
camera depth of keypoints, and (4) 3D pose of the excavator. The image 
coordinates and camera depth of the keypoints are obtained as the 
output of the pose-estimating CNN model and collectively represent the 
3D pose of the excavator. These keypoints are single pixels in an image 
with a 100% probability of occurrence. However, it is difficult to train a 
CNN model for a single-pixel target; therefore, a heat map is generated 
for each keypoint of the joint. In a heat map, the target pixel of the 
keypoint is assigned a 100% probability of occurrence, and the sur
rounding pixels to keypoints have a lower probability of occurrence. To 
calculate the depth of each keypoint, the shortest distance between the 
excavator joint and image plane is measured. These depths correspond 
to real-world distances that need to be scaled down to the image scale to 
preserve the length ratios of the excavator elements in the image space. 
Usually, a weak perspective projection is used to calculate the scaling 
factor and thus generate the depths in an image space [30]. The weak 
perspective projection model reduces computational complexity by 
assuming that the size of the object is very small compared to the camera 
depth [49] and that a single scaling factor is sufficient to estimate the 
entire object in the image. This scaling factor is calculated by calculating 
the distance between the two farthest keypoints (i.e., the joints) in the 
image and in the real world and then calculating the ratio of these dis
tances [30]. By multiplying this scaling factor with the real depth of the 
key point, the depths are made compatible with the image. 

Image augmentation on a synthetic dataset is applied to increase 
keypoint detection in the real image. Image augmentation increases the 
diversity of the dataset to avoid overfitting in the CNN model training 
process and to train a model for noise in a real-world environment, 
which may be caused by poor lightning/weather conditions, occlusion, 
or quantization error in image capturing. It helps the CNN model to 

learn the difference between the target object shape and surroundings. 
To ensure that the image is realistic, this generated image is augmented 
on a real-world scene. These scenes are construction sites, mountains, 
fields, and river banks (Fig. 4b). In addition, flying distractors (e.g., 
cubes, pyramids, and gears) are placed around the excavator model to 
train the model to differentiate between similar shapes of the sur
rounding objects (Fig. 4c). During the training of the CNN model, 
Gaussian noise is added to the RGB values of the images; colors are 
inverted; the contrast is changed, and the image is compressed. An 
example of such an augmentation is shown in Fig. 5. 

3.2. CNN model training 

A CNN model has learnable weights and biases that are multiplied by 
input image features to classify an image into defined classes or to 
perform other tasks such as detection and regression. These weights are 
learned iteratively by back-propagating the error of classification and 
then adjusting the model weights for this error until the CNN model can 
be classified correctly. In this study, the CNN structure and input/output 
data type used were the same as those used in human pose estimation 
[30]. This structure had the shape of an hourglass; in the initial layers, 
the height and width of the features were reduced using convolution; in 
the subsequent layers, the height and weight were increased again using 
deconvolution (Fig. 6b). The input of this structure was a three-channel 
(red, green, and blue) image (Fig. 6a). The output of this structure was 
the classification of each pixel for each keypoint, represented as the heat 
map of each keypoint and the depth of each joint. Two losses have been 
conventionally considered in human pose estimation: 2D loss and depth 
loss. For 2D loss, the ground truth heat map is subtracted from the CNN- 
generated heat map (Eq. (19)). Ground truth heat maps were generated 
for each joint position in the image. The CNN model classifies each pixel 
of the image for a specific joint class and then generates the output heat 
maps. For depth loss, the difference in the estimated depth of each joint 
in the image space with the ground truth depth was calculated. In 

Fig. 3. Illustration of camera perspective projection. Heights A and B appear similar in 3D after camera projection in image space.  

Fig. 4. Training dataset preparation: (a) synthetic image, (b) rendered background, (c) rendered background and flying distractors.  
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addition to these two losses, an additional kinematic loss was introduced 
in this study to compensate for the error in the scaling of depth owing to 
nonlinear perspective projection. A single factor for scaling the joint 
depth in the image scale may cause errors in the 3D pose [50] when the 
camera is near the excavator. To correct this error in the pose, the ki
nematic constraint of the excavator's joints was used. According to this 
constraint, the excavator's joints reside on a geometric plane; when the 
estimated excavator's joints do not follow this constraint, a pose error 
occurs. Therefore, a third loss, referred to as the kinematic loss, is also 
added in the CNN model training to ensure that the joints of the exca
vator are in a plane. Kinematic loss refers to the difference between the 
corrected bucket end depth in the ground truth and the estimated bucket 
depth end (Fig. 7). The bucket end is chosen for this loss when a large 
pose estimation error is observed in the bucket end [25]. To correct the 
bucket's end depth in the ground truth, the boom joint is considered as 
the origin of the coordinate system, and then a plane is fitted on the joint 
coordinates. A linear regression model is used to fit the plane (Eq. 20). 
Image coordinates in the form of row and column indices, are considered 
as the independent variables of the regression model, and the corre
sponding depths are considered as the dependent variables. Subse
quently, the coefficients of this plane equation are used to calculate the 

depth of a bucket end using the average bucket end coordinates. This 
bucket depth is the ground truth, which is compared with the CNN- 
estimated depth to correct the kinematic loss.where y is the actual 
pixel value, Y^ is the predicted pixel value, and n is the number of pixels. 

z = w0 x+w1 y (20)  

where z is the scaled depth; x, y are image pixel indices, and w0, w1 are 
coefficients.  

3.3. Real data testing 

To test this trained CNN model, video images of a real excavator were 
used as the input to the trained CNN model and were compared with the 
ground truth pose. To capture real video images, a video camera was set 
on the ground near the excavator, and a video was recorded while the 
boom, arm, and bucket were rotated randomly. These captured images 
were individually fed to the trained CNN model for estimating the 3D 
poses of the excavator. The parameters of these estimated poses were the 
3D coordinates of the keypoints of the excavator in the camera's frame of 
reference (Fig. 8). These pose parameters need to be homogenized for 

Fig. 5. Application of image augmentation: (a) original image, (b) Gaussian noise, (c) gamma contrast, (d) brightness, (e) invert colors, (f) compress image  

Fig. 6. CNN model training for excavator 3D pose estimation 

Mean square error =
(∑

|y − yˆ|2
)/

n (19)    

B. Mahmood et al.                                                                                                                                                                                                                              



Automation in Construction 133 (2022) 103996

8

concatenating poses and simplified for further motion analysis [51]. To 
homogenize the estimated poses, these poses were transformed to a 
world frame of reference (Fig. 8b). Subsequently, to simplify these ho
mogenized poses, rotation angles around the excavator's joint were 
calculated (Fig. 8c). For the homogenization of poses, the excavator was 
assumed to be on a horizontal ground such that the fitted plane on the 
excavator's joints was perpendicular to the ground. To transform the 
estimated pose in the world frame of reference, a transformation matrix 

was calculated by considering the boom joint as the origin and then 
making a normal vector of the fitting plane horizontal. To simplify the 
three coordinate parameters to one rotation angle around the joint, the 
angles of the boom, arm, and bucket were calculated with respect to the 
horizontal. These simplified poses were then concatenated to create a 
trajectory for the motion analysis (Fig. 8d). The ground truth pose 
calculation is described in the experimental section. 

Fig. 7. Description of kinematic constraint-based error in pose estimation  

Fig. 8. Compatibility of vision-based and sensor-based estimated pose: (a) 3D model and its joints in the camera's frame of reference, (b) 3D model and its joints 
converted into the world frame of reference, (c) pose angles compatible with sensor-based angle, (d) trajectory of poses 

Fig. 9. Detection of bad view pose: (a) bad camera views that hide the joints behind the bucket or arm, (b) description of camera's view angle, (c) detected outliers 
using bad camera view angle. 
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3.4. Trajectory post processing 

To improve the CNN-based pose estimation, the trajectory formed by 
consecutive pose angles (Fig. 8d) is post-processed by detecting the 
incorrect estimation (Fig. 9c) using an outlier detection algorithm and 
then adjusting the trajectory using interpolation and smoothing (Figs. 10 
and 11). These incorrect estimations can be detected either by applying 
the traditional outlier detection method or by detecting bad camera 
views, which are the views where self-occlusion occurs. In the tradi
tional method, a statistical model is fitted (e.g., ARIMA model and the 
slope of trajectory), and then a threshold is set to screen out the anomaly 
in the time series of the trajectory. For bad camera view detection, a pose 
of the excavator is detected with respect to the camera such that self- 
occlusion occurs at this pose; for example, the front view of the exca
vator hides its backside in the image (Fig. 9a). This view can be detected 
by calculating the angle between the boom vector (AB in Fig. 9b) and the 
camera's line of sight (CB in Fig. 9b). The traditional method of outlier 
detection can be used when the trajectory follows a specific trend. 
However, the trajectory in our experiments did not follow any trend 
because it was generated by random rotation of the excavator elements. 
Because of the stochastic nature of the trajectory, a camera view filter 
was used for outlier detection. To adjust the trajectory after removing 
the bad estimations, missing values were interpolated using spline curve 
fitting (Fig. 10), and then this interpolated trajectory was smoothened 
using a moving average (Fig. 11). Spline curve fitting breaks down the 
trajectory into pieces, and a polynomial function is fitted to each piece. 
However, this corrected trajectory has irregularities at the overlapping 
points of the trajectory pieces, which render the trajectory unrealistic 
and may cause an error in the estimated pose trajectory. Irregularities in 
the trajectory can be removed using a moving average (Fig. 11). The 
moving average slides a window of fixed length with fixed intervals over 
the trajectory values, and the average value of this window is used to 
correct the irregular points. 

4. Implementation experiment 

Experiments were conducted on images of different excavator types 
for evaluating the generalization of vision-based pose estimation when a 
CNN model was trained on a synthetic dataset and tested on a real 
dataset. Additionally, post-processing techniques were tested to improve 
pose estimation. The virtual excavator model (Fig. 2a) was used to 
generate a training dataset. This virtual excavator model had di
mensions and shapes similar to those of the real excavator used in our 
experiments. This virtual model was captured using a virtual camera 
with a focal length of 142 mm and a sensor size of 200 mm × 200 mm. 
This camera was placed 15 to 30 m away and at a height of − 15 to 25 m 
from the center of the virtual excavator. These parameters were selected 
to ensure that the full excavator was visible in the image. Synthetic 

images generated from these camera parameters do not initially have 
occlusions, lightning and site conditions, or dirt on the excavator. To 
introduce these natural features of construction into synthetic images, 
data augmentation techniques are applied. Fig. 13a shows the real 
excavator that was used to generate a testing dataset. For the testing 
dataset, 300 images of wheeled, dragline and crawler excavators (100 of 
each category) were labeled manually for the 2D pose. These images had 
various models, sizes, colors and scales of excavators. Also, 100 images 
of the real excavator, which was under experimentation, were also 
labeled for 2D pose manually. Scale variability of the testing dataset in 
terms of image resolutions is shown in Fig. 12. Here, an image with a 
scale of 1 has a resolution of 256 pixels (i.e., the input size of the CNN 
model). The testing dataset for 3D pose estimation of a specific exca
vator model was captured using a Samsung Galaxy S8 Plus camera. The 
excavator and camera were operated on horizontal ground, and the 
camera was placed at a distance between 20 m to 30 m at a height of 1.5 
m. For training data generation, 3000 synthetic images and corre
sponding excavator poses were generated from the virtual excavator 
model, while the camera was placed randomly at every shot and the 
boom, arm, and bucket of the real excavator were rotated randomly. For 
testing the data generation, 2000 video frames were captured, while the 
boom, arm, and bucket of the real excavator were rotated randomly. To 
calculate the poses of the excavator while its movements were being 
recorded, sensors were attached to the boom, arm, and bucket [18] as 
shown in Fig. 13a. These sensors had an inertial measurement unit for 
measuring the rotation angle of the excavator element with respect to 
the initial position (Fig. 13a). Video frames and sensor-based poses were 
calibrated manually for an initial pose and for an interval of 1/10 s af
terward to determine the correspondence between them. The recorded 
sensor data were calibrated with the initial frame by finding a factor 
whose addition made the first recorded angle with respect to the hori
zontal plane. This calibration factor was added to all the sensor data. In 
contrast, the CNN-based pose was estimated as the positional pose that 
was made compatible with the sensor-based pose by converting the 
coordinates of the key-point from the image space (Fig. 8a) to the world 
space (Fig. 8b). Subsequently, the global angle was calculated using the 
boom, arm, and bucket vectors (Fig. 8c). Eventually, the CNN-based 
pose estimation error was calculated by comparing the estimated pose 
with the sensor-based pose in units of degrees. 

For training the data generation, data augmentation was performed 
by augmenting 45 real scenes and putting flying distractors around the 
excavator, such as pyramids, cubes, and gears. Other data augmentation 
techniques such as brightness addition, Gaussian noise addition, color 
inversion, and image compression were applied to synthetic images 
before being applied to the CNN model. To increase the brightness, RGB 
values of the image were added using a randomly selected value be
tween − 30 and 30. To add the Gaussian noise, RGB values of the image 
were added by a randomly selected value between 0 and 25.5. Color 
inversion was applied at a probability of 15%. In addition, 50–90% of 
the image compression was applied to synthetic images. These param
eters were selected after experimenting with a different range of 
augmentation and then visualizing the estimated 2D poses from real 
excavator images. 

During the training and testing of the CNN model, the input image 
was scaled down to 256 × 256 pixels. The output of the CNN model was 
in the form of 64 × 64 pixel heat maps. The CNN model had 50 con
volutional layers of the residual network structure [30], followed by 
three deconvolutional layers, as used in the implementation of 3D 
human pose estimation [30]. To train the model faster, pre-trained 
ResNet 50 layers were used for CNN model training initialization and 
then fine-tuned in three phases. In the first phase, the model was trained 
for a heat map of keypoints using 2D loss. In the second phase, after 
training the model for the heat map, this model was further fine-tuned 
for additional depth maps using depth loss. In the third phase, the 
trained model has trained again for depth correction using kinematic 
loss. In the first training phase, the model was trained with a learning Fig. 10. Description of spline curve fitting for estimating missing values.  
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rate of 0.0001, which decreased exponentially at a rate of 10n, where n 
was 1 for the 3rd epoch and 2 for the 4th epoch. In the second training 
phase, the learning rate was set to 0.0001, which decreased exponen
tially at a rate of 10n, where n was 1 for the 10th epoch and 2 for the 50th 
epoch, and the depth loss was multiplied by 0.1 to train the model 
specifically for depth. In the third training phase, the learning rate was 
set to 0.00005, which decreased exponentially at a rate of 10n, where n 
was 1 for the 10th epoch and 2 for the 50th epoch, and the kinematic loss 
was multiplied by 0.0005 to train the model specifically for kinematic 
loss. These parameters were initially selected based on [30] and then 
fine tuned to minimize the training loss. The training of all the phases 
was continued until the loss became constant. 

Post-processing includes three steps: 1) detecting bad pose 

estimations, 2) adjusting the trajectory, and 3) smoothing the trajectory. 
To detect bad pose estimations, two methods were tested: the traditional 
method of outlier detection and bad camera view detection. In the 
traditional method, the slope of the trajectory was calculated using the 
difference of two consecutive angles in the trajectory, and in this slope 
trajectory, the outlier was the point larger than the average slope of the 
trajectory. For the camera's view filter, poses where the boom had a 
horizontal angle of 90◦ with the camera line of view were excluded 
(Fig. 9c). To adjust the trajectory, spline curve fitting of order one was 
applied to interpolate the missing data points. The order of the spline 
curve was selected as one because the spline curve of order one does not 
consider the overall trend of the complete trajectory; instead, it fits a 
linear curve locally [52]. This poses a trajectory from random move
ments of excavator parts, and this trajectory does not have any sys
tematic trends. To smooth the trajectory, a moving average was applied 
to the smoothing trajectory. The moving average slides a window of 
specific length over the trajectory values and adjusts the abnormal value 
in that window. An experiment was conducted to determine the optimal 
window size, where the pose estimation error was calculated after 
applying a moving average to the trajectory, and the window length was 
varied from 1 to 10 at an interval of 1 frame. 

For evaluating the generalization of the CNN model, 2d pose esti
mation performance was calculated for the different types of excavators 
using the percentage of correctly localized key-points. For considering a 
key point as localized, the same localization definition is used as used in 
human 2D pose estimation; a key point is localized when the distance 
between the estimated position and the ground truth position is less than 
50% of the normalized head segment length—this distance is called as 
the threshold [53]. 

Fig. 11. Smoothing of trajectory using moving average  

Fig. 12. Scale variability of testing image dataset where scale 1 is of resolution 
256 pixels. 

Fig. 13. Description ground truth data: (a) sensor locations to measure the pose angles of the boom, arm, and bucket; (b) trajectory formed by a sequence of 
measured poses angles. 
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To evaluate the performance of the proposed kinematic loss function 
and the proposed post-processing, called the treatments, two matrices 
were used: 1) absolute pose estimation error, which was computed by 
comparing the estimated pose with the sensor-based estimated pose, 
called the ground truth, and 2) a t-test comparing the mean absolute 
error before and after the application of the treatments. The t-test 
compares the difference in the mean error of the two sets of values. If the 
mean error in both the results is different, the applied treatment has a 
significant effect on the performance of the pose estimation. To validate 
the significance of the tested treatments, for example, the use of kine
matic loss in training and then the use of the post-processing stage, a t- 
test was conducted. In the t-test, we hypothesized that the mean error of 
pose estimation from the treatment of kinematic loss and post- 
processing of trajectory was the same as that of the CNN-based pose 
estimation. This hypothesis was rejected if the probability of occurrence 
was less than 0.05. 

5. Results 

Experiments were conducted to evaluate the proposed treatment and 
identify the optimized parameters, through which the overall perfor
mance of the excavator 3D pose estimation was assessed. The results are 
presented and discussed from the following aspects: 1) 2D pose esti
mation results to verify the effectiveness of data augmentation on syn
thetic data, 2) window length for moving average, and 3) performance 
of 3D pose estimation in terms of error in estimated angle and the sig
nificance of applied treatment compared to pose estimation error 
without treatments. 

First, data augmentation was applied to the synthetic images, and the 
level of augmentation was determined based on 2D pose estimation in 

real images. The appropriate level of augmentation was selected by 
visually inspecting the pose estimation accuracy, as it was not possible to 
label the 2D poses in images of the jobsite. The pose estimation results 
for the real images, after applying the augmentation described in the 
experimental section, are shown in Fig. 14. The results showed that the 
augmentation techniques applied to the synthetic images assisted in the 
development of visual features present in the real images, and by 
training a CNN model with such augmented images, the detection 
capability of the model to detect the excavator parts in real images 
increases. 

Second, after removing incorrect pose estimations from the trajec
tory and filling the gaps with the spline curve, the trajectory is 
smoothened using a moving average to further improve the pose esti
mation accuracy. The moving average takes a set of poses, called a 
window, from the estimated poses trajectory, and then corrects the 
abnormal value in that window using the average of that window. 
However, this smoothening could worsen the results. For instance, 
increasing the moving average window length can disturb the trend, and 
lowering that length will make no difference in the results. Fig. 15 shows 
the effect of the window length on the pose estimation error in the 
bucket. The results showed that increasing the window length to four 
poses (e.g., the four frames) reduced the pose estimation error; however, 
further increase in the window length did not change the overall per
formance. This might disturb the trends in trajectory; hence, in this 
experiment, a moving average with a window length of four poses was 
considered suitable for improving the trajectory without disturbing the 
trends. 

To evaluate the performance of the pose estimation methods and the 
proposed treatment used in the method, the error in the estimated pose 
was calculated. To calculate this error, positional poses (i.e., coordinates 

Fig. 14. 2D pose estimation after training a CNN model with synthetic images (a–c); and augmented synthetic images (d–f).  
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in the image space) estimated from the CNN-based method were con
verted into an angular pose (e.g., using the method in the real data 
testing section). Then, this pose was compared with the sensor-based 
pose. This error was calculated and compared for poses estimated 
using (1) a CNN trained with the loss function commonly used in the 
traditional human pose estimation, (2) a CNN trained with the proposed 
kinematic loss, (3) a CNN trained with the proposed kinematic loss and 
applying the traditional post-processing techniques (i.e., trajectory 
slope-based filtering), and (4) a CNN trained with the proposed kine
matic loss and applying the proposed post-processing technique (i.e., 
camera view filter), as presented in Table 2. The significance of each 
method was evaluated by conducting a t-test. For this t-test, the mean of 
the results from each method was compared to that of a basic CNN-based 
result. 

For evaluating the performances of the proposed method on the 
images of different types of excavators, 2D pose estimation was per
formed and assessed in terms of key-point localization accuracy. The 
results of the 2d pose estimation evaluation show that the CNN model 
trained using synthetic images of the excavator can detect the 2d key- 
points accurately when the shape of the excavator is similar. For 
example, in Fig. 16, key-points of a crawler and a wheeled excavator 
were detected accurately, while the CNN model performed poorly when 
the shape of elements in the excavator was different (e.g. a rope in a 
dragline excavator, instead of a solid arm). Results of key-points 
detection accuracy are summarized in Table 1, and these results are 
also represented as a histogram in Fig. 17. Table 1 shows that the CNN 
model shows relatively poor performance in detecting elements of a 
dragline excavator. Fig. 17 illustrates that bucket ends show relatively 
lower localization accuracy. 

Overall, the results show that the proposed method slightly out
performs the other treatments, as summarized in Table 2 and Fig. 18. In 

Table 2, it can be observed that the least pose estimation error is ob
tained for a CNN trained with the proposed kinematic loss when the 
camera view filter-based post-processing technique is applied. Addi
tionally, the p-value of the t-test was less than 0.05, which verifies the 
significance of the proposed method. Specifically, the highest error 
occurred on the bucket (i.e., 20.12◦), which was reduced to 16.38◦ (i.e., 
the second row of ‘Proposed Loss Function’ in Table 1) after applying the 
kinematic loss function during the CNN model training. The t-test result 
of this analysis showed that there is a significant improvement in bucket 
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Fig. 15. Selection of window length in the moving average algorithm.  

Fig. 16. Examples of 2D pose estimation results for different excavator models; (a) a crawler excavator, (b) wheeled excavator, and (c) a dragline.  

Table 1 
2D pose estimation result.  

Excavator type Excavator Element Accuracy 
(%) 

Crawler, similar to 
the virtual model 

Boom Joint 96.18 
Arm Joint 96.94 
Bucket Joint 94.65 
Bucket end 92.78 

Dragline 

Boom Joint 58.88 
Arm Joint 54.91 
Bucket Joint 21.56 
Bucket end 33.33 

wheel 

Boom Joint 83.87 
Arm Joint 87.09 
Bucket Joint 77.41 
Bucket end 67.74 

Crawler, different from 
the virtual model 

Boom Joint 92.94 
Arm Joint 95.29 
Bucket Joint 90.41 
Bucket end 74.11  
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Fig. 17. 2D keypoints localization accuracy in images of different exca
vator types. 
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pose estimation after correcting the pose for kinematics violation. The 
significance of this treatment also confirms that the pose error generated 
due to the perspective camera projection can be corrected if the kine
matics of the articulated object can be modeled in a geometric shape (e. 
g., a plane fitted on joints). This bucket error was further reduced to 
11.85◦ after the incorrect poses were detected using a camera view filter. 
Additionally, the results showed that, compared to the traditional slope 
of trajectory-based incorrect pose detection (i.e., the third row in 
Table 1), camera view filter-based incorrect pose detection (e.g., the 
fourth row in Table 2) is slightly more effective. The effectiveness of this 
incorrect pose detection filter proved that incorrect poses mostly 
occurred in vision-based pose estimation methods when most of the 
body parts are occluded (e.g., self-occlusion), and these incorrect poses 
can be detected if such a camera relative pose of the whole body is 
detected when most of the body parts get self-occluded. 

The estimated pose trajectories from the proposed method were 
plotted with the ground truth trajectory (i.e., sensor-based) to visualize 
the accuracy of the estimated trajectory (Fig. 19). In these plots, both the 
trajectories are close to each other, which validates the effectiveness of 
the proposed method. In addition, these plots show that the overall 
trajectory trend was preserved. For example, the pose angles of the 
boom in both trajectories (estimated and ground truth) (Fig. 19a) 
simultaneously increased from frame number 0 to frame number 100. 
This concurrency in the plots validates that the proposed method can 
estimate the excavator poses from the video frames of real job sites. 

As a proof of concept for excavator trajectory visualization, the 
estimated poses were transformed into a virtual model, as shown in 
Fig. 20. For instance, the estimated pose angles are in the world frame of 

reference. To implement these pose angles on the virtual excavator 
model, the kinematic equations of the excavators (Eqs. 1–6) are used to 
convert these angles into a local frame of reference. Implementation of 
these angles in the virtual model showed that the estimated poses could 
be visualized in a virtual environment (Fig. 20). 

6. Discussion 

The application of machine learning techniques such as the CNN for 
3D pose estimation of an excavator is challenging because the harsh 
jobsite conditions make it difficult to collect the training image datasets 
with pose labels. Synthetic data generation may help in obtaining a 
labeled training dataset in a controlled environment. In this context, this 
study evaluates the performance of a CNN model trained with synthetic 
images and tested with actual images. From a technical aspect, this study 
also proposes two modeling and post-processing methods: (1) use of a 
kinematic loss function in the training of a CNN model to make the 
estimated pose more realistic, and (2) pose trajectory adjustments to 
improve the overall accuracy of 3D pose estimation for visualization. For 
the performance evaluation, experiments were conducted to collect real 
excavator images with pose labels that were measured using motion 
capture sensors. The experimental results show that the CNN trained 
with synthetic data can achieve a mean error of 7.16◦ at the boom, 9.9◦

at the arm, and 11.85◦ at the bucket when applied to actual excavator 
images. This result implies that the proposed approach using synthetic 
images generated in a virtual environment may help overcome the dif
ficulties in collecting training data for pose estimation. In particular, it 
can be observed that the use of the proposed kinematic constraint during 
training could help correct the errors (e.g., camera-depth) caused by the 
camera's perspective projection; for example, the bucket pose estimation 
was improved from 20.12◦ to 16.38◦. In addition, post-processing of the 
trajectory of poses could adjust the bad pose estimations; for example, 
the bucket error was further reduced to 11.85◦. 

Specifically, synthetic images do not have visual features that are 
present in real jobsite images, such as lightening, occlusions, distortion 
in images, poor visibility owing to the dust in the air, and natural 
background scenes. Because of the unavailability of such features, the 
CNN model trained with these images could not estimate the excavator 
poses accurately, as shown in Figs. 13a–c. These natural visual features 
can be artificially generated in synthetic images by adding augmented 
natural scenes in the background, adding Gaussian noise to represent the 
dust, adding brightness to represent the natural lighting conditions, 
compressing the pictures to distort the image for poor visibility, 
inverting the color to represent the wornness of the excavator, and 
adding a flying distractor around the excavator to mimic occlusions. The 
results (Figs. 13d–f) show that by adding this augmentation to the 

Table 2 
3D pose estimation results.  

Treatment Applied Excavator 
element 

Pose Error 
(degree) 

Standard 
Deviation 

T 
value 

P 
value 

Traditional Loss 
Function 

boom 9.05 8.53 – – 
arm 13.79 11.11 – – 
bucket 20.12 15.42 – – 

Proposed Loss 
Function 

boom 7.74 4.31 6.13 0 
arm 13.16 8.63 21.07 0 
bucket 16.38 14.58 7.88 0 

Proposed Loss 
Function +
Traditional Post- 
Processing 

boom 7.71 4.31 6.32 0 
arm 14.36 11.66 0.5 0.55 

bucket 12.51 11.95 17.4 0 

Proposed Loss 
Function +
Proposed Post- 
Processing 

boom 7.16 3.67 9.10 0 
arm 9.9 11.21 11.02 0 

bucket 11.85 11.16 19.43 0  
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Fig. 18. Pose estimation error from tested methods.  
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synthetic images, the CNN model could learn about the natural noise 
present in real images. 

Kinematic constraints may be violated in excavator pose estimation 
owing to the presence of the camera depth error. This depth error occurs 
because of perspective projection in image generation, and the position 
of the excavator's joint in the 3D pose is misplaced owing to this depth 
error. This misplacement of joint position in training data causes errors 
in CNN-based pose estimation. To correct this estimation error, a kine
matic loss was used during the CNN model training, which fits a plane on 
the excavator's joint to estimate the deviation of the bucket end from this 
plane. This loss function helps the CNN model to learn the kinematic 
constraints of the excavator; in return, the CNN model automatically 
corrects the depth error by fitting a plane on the excavator's joints and 
restores the kinematics of the excavator. The results showed that the 
plane fitting on the excavator's joints might better provide a solution for 
recovering the kinematic constraint of the estimated pose of the exca
vator to estimate realistic poses. 

A motion trajectory contains temporal information that can be used 
to adjust the incorrect poses. In this context, two methods are evaluated 
for detecting the inaccurate poses; (1) using the traditional method of 
detecting abnormal pose relative to neighbor poses in trajectory, and (2) 
using camera view filters detecting inaccurate poses where maximum 
self-occlusion occurs. The traditional method basically uses the slope of 
trajectory to find an outlier, while the proposed method is designed to 
detect incorrect poses by assuming that inaccurate poses occur when a 
boom and image plane make 90◦ angle and all the excavator elements 
are self-occluded. This state of the boom relative to the camera was 
detected by measuring the horizontal angle between the camera plane 
and the boom vector. After removing these incorrect poses from the 
trajectory, the adjusted poses were inserted using spline curve fitting, 
and finally, the curve was further refined using a moving average. The 

results showed that applying the use of temporal characteristics of a 
trajectory improves the overall pose estimation performance. The t-test 
result also validates that the effect of these applied methods is significant 
(Table 1). However, using the slope of the trajectory can make results 
worse. For example, in Table 1 (row 3), the pose error of the arm 
increased after applying the traditional post-processing technique. This 
issue may happen due to false positive or false negative classification of 
poses when only the slope of motion trajectories was used. For example, 
false classification of poses may happen because there are consistent 
incorrect poses in the neighbor of a correct pose that can be detected 
falsely. This false classification may also happen because the arm was 
visible in the camera from the front side for a considerable time, and the 
estimated pose was wrong consistently having a uniform slope in tra
jectory. This phenomenon may falsely classify incorrect poses such as a 
larger error of “proposed loss function + traditional post-processing” 
than “traditional loss function”. 

Furthermore, overall, the CNN model learns to detect key elements of 
an excavator for a specific excavator model in the natural environment. 
Meanwhile, this CNN model can particularly work well for similarly 
shaped excavators. For instance, this model can detect excavator ele
ments of a crawler and a wheel-based excavator with more than 90% 
accuracy, while for dissimilar excavator models, the CNN model fails to 
detect a rope of a dragline excavator and its bucket of different shapes 
with 33.33% accuracy. These results indicate that the accuracy can 
further be improved by training a CNN model with a dataset generated 
from various virtual excavator models. In addition, it can be inferred 
that this approach of estimating 3D pose from 2D key points can be 
challenging for excavators of the different boom, arm, and bucket ratios 
because two different arm lengths can look similar depending upon the 
perspective of the camera view. Additional information, such as boom to 
arm length ratio can thus be given to the CNN model during training to 
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deal with different types of machines. 
To evaluate the resulting pose estimation errors for the applicability 

of 3d pose estimation in construction, the angular error is converted to a 
positional error using the equation of arc length (arc = radius × angle). 
As a result, the angular pose estimation error of the proposed method is 
equivalent to 0.5142 m (Table 3). This positional error may be regarded 
as acceptable to monitor safe interactions based on proximity [54] and 
activity analysis of an excavator [55]. For example, Wang and Razavi 
[54] proposed a sensing approach to measuring safe interaction between 
an excavator and other onsite resources, resulting in a positional error of 
0.7 m for detecting unsafe proximity. For activity analysis, ultra- 
wideband technology has been proposed to track onsite resources with 
a positional error of less than 1 m in Maalek and Sadeghpour's study 
[55]. In this regard, the proposed method might potentially be applied 
for safety and activity analysis. However, in Lundeen et al. [16], 0.25 m 
positional error in pose estimation was required for avoiding under
ground utility strikes, which is hard to achieve with the vision-based 
pose estimation in this study. 

Further research efforts are required to address the following po
tential limitations. First, in the experiment, only a single excavator was 
used for data collection. As the shape, dimension, and color of an 

excavator may have an impact on the performance of vision-based 
methods, the proposed method should be further validated with addi
tional datasets representing the various conditions of an actual site. 
Second, in this study, the estimated poses resulting from the proposed 
method were compared with those measured using the motion sensors. 
However, it can be visually observed that the ground truth data may also 
involve some degree of error. Nonetheless, this phenomenon demon
strates the challenges in obtaining the accurate pose labels in a field 
setting, which this study aims to address. Finally, to correct the inac
curately estimated poses, smoothening of the motion trajectory was 
performed using a moving average with a window length of four frames, 
which was empirically determined in the experiment. However, this 
window length can be selected based on the specific working speed of 
the excavator on site. In addition, spline curve fitting can adjust the 
trajectory when an excavator part is occluded for a short time; however, 
if the bucket is inside the ground most of the time and not visible on the 
camera, trajectory prediction algorithms such as the Gaussian process 
[56] could be applied and tested for such cases. 

7. Conclusion 

This study proposed the use of synthetic images for training a CNN- 
based 3D pose estimation model, which was tested and applied to actual 
images from jobsites. In this study, a CNN model, in which a kinematic 
constraint was adopted for loss computations was trained with synthetic 
images generated in a virtual environment (e.g., Unity) and tested with 
field images collected through experiments. The estimated poses, which 
were further adjusted through trajectory-based post-processing, were 
then compared with the poses measured using motion capture sensors. 
From the experimental results, the major contributions of this study can 
be summarized as follows: (1) the use of synthetic images may provide a 

Fig. 20. Visualization of the estimated pose.  

Table 3 
Conversion of angular pose error to positional pose error.   

Angular error 
(deg) 

Angular error 
(rad) 

Element radius (m) Positional  
Error (m) 

Boom 7.16 0.1249 5 0.6245 
Arm 9.9 0.1727 3 0.5181 
Bucket 11.85 0.2 2 0.4 
Mean – – – 0.5142  
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solution to prepare a sufficient amount of training datasets for vision- 
based pose estimation if the real-world visual features can properly be 
augmented in the image, (2) the loss function of a kinematic constraint 
(e.g., joints of the boom, arm, and bucket laid on one plane) may allow 
for correcting the pose errors potentially caused by perspective projec
tion in image generation during the training of a CNN model, and (3) the 
pose trajectory can be improved by detecting and correcting the incor
rect excavator poses commonly resulting from occlusions, which can 
make the motions of an excavator more realistic. Overall, this research 
provides an insight into the data that can be used for training, ways to 
implement a CNN model for pose estimation, and the techniques to 
better visualize the resulting pose data for the monitoring of an 
excavator. 

The proposed method estimates the 3d poses of an excavator from 
images, which can be represented as the trajectory of the pose angle. As 
in previous studies, such 3D poses of an excavator can potentially be 
used for safety monitoring [13], productivity analysis [15], automated 
machine guidance [16], and skill assessment of an operator [17]. First, 
for safety monitoring, hazardous interactions between articulated con
struction equipment and workers are identified using the 3d pose of the 
equipment and relative locations of workers [13]. For this identification, 
the 3d pose of the equipment and locations of the workers are recorded, 
and this recorded data is linked with virtual models to mimic the jobsite 
operations in a virtual environment. Then, probable hazardous situa
tions (e.g., stuck-by incidents) can be identified in this virtual environ
ment using 3d pose-based motion parameters (e.g., the heading 
direction and rotation speed of equipment, the relative location of 
workers). For example, 3d trajectories of the equipment arm can be 
estimated with a pose estimating sensor (e.g., inertial measurement 
units) and the locations of the worker can be estimated using a locali
zation sensor (e.g., ultra-wideband). By linking these spatial parameters 
with the virtual excavator and virtual workers, animation of jobsite 
operations can be created for monitoring. In this animation, a probable 
stuck-by-incident can be identified and prevented by pre-defining and 
alarming unsafe situations (i.e., scenarios) when the arm of equipment is 
heading towards a nearby worker. Second, for productivity analysis 
[15], the 3d pose estimation can be used to measure the cycle time of an 
excavator, particularly when applied in conjunction with action recog
nition (e.g., detecting loading, swinging, dumping, and returning of a 
bucket) [14]. Once the cycle time is measured, the production rate (i.e., 
m3/h) of the excavator can be estimated given the quantity (i.e., soil 
volume) of a bucket. For example, the number of cycles per hour can be 
computed by dividing one hour by the duration of one cycle, and then 
the production rate can be calculated by multiplying the number of 
cycles per hour by the bucket size of an excavator. The proposed method 
thus may serve as a foundation for continuous monitoring of the exca
vator's production rate. In addition, safety and productivity issues can 
further be monitored and analyzed in an indirect way. For machine 
guidance [16], the animation of trenching operations is visualized to the 
operator in the cabin while the excavator is working in the blind zone. 
For creating this animation, firstly, the excavation surface is modeled 
using remote sensing techniques (e.g., a drone, a laser scanner). Then, 
3d poses and locations of the excavator are estimated using IMU sensors 
and a GPS attached to the excavator body. This spatial data is linked to a 
virtual excavator placed on the modeled surface, by which an animation 
is created in the virtual environment. This animation has been displayed 
to the operator on a computer screen during trenching operations [16]. 
With the visualized information, the operator could continuously obtain 
updates on bucket locations (e.g., relative height and distance from a 
target surface) and could move the bucket to excavate the trench at the 
right place with desired depth without an external helper's assistance. 
Also, visualizing the bucket pose relative to an underground utility can 
help avoid the undesirable hitting of the bucket to underground re
sources. This visual guidance to the operator can improve productivity 
from 15% to 30% and this visual guidance can also save cost from 4% to 
6% [57]. As another example, the pose information can be used for the 

skill assessment of an operator by analyzing the trajectory of excavator 
poses. In Bernold [17], the pose trajectories of an excavator's bucket and 
sequences of a rotation in a boom, an arm, and a bucket of an excavator 
have been recorded to measure the skill of an operator. The smoothness 
of bucket trajectories and rotation sequences of excavator elements (i.e., 
a boom, an arm, and a bucket) were used as measures of an operator's 
skill [17]. For example, a smooth trajectory of an excavator bucket with 
simultaneous rotations of excavator elements represents a skilled 
worker; this smooth trajectory requires less force to excavate and thus 
less fuel consumption. 
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