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Abstract: In this paper, we are interested in studying the spread of infectious disease using a
fractional-order model with Caputo’s fractional derivative operator. The considered model includes an
infectious disease that includes two types of infected class, the first shows the presence of symptoms
(symptomatic infected persons), and the second class does not show any symptoms (asymptomatic
infected persons). Further, we considered a nonlinear incidence function, where it is obtained that the
investigated fractional system shows some important results. In fact, different types of bifurcation are
obtained, as saddle-node bifurcation, transcritical bifurcation, Hopf bifurcation, where it is discussed in
detail through the research. For the numerical part, a proper numerical scheme is used for the graphical
representation of the solutions. The mathematical findings are checked numerically.
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1. Introduction

Mathematical models visualize the method of spreading infectious diseases and the potential
outcome of a pandemic and it is very helpful in making a proper decision for the public health
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interventions. Models use basic presumptions or pooled statistics (which it can be used to
approximate the real value of the parameters as example the papers [1–3]) along with mathematics to
obtain criteria for different infectious diseases and use these parameters to determine the influence of
various interventions, such as mass vaccination programs, asymptomatic effect, so on. Modeling can
help determine which intervention(s) are more proper to avoid the fatality of the disease and the
degree of the outbreak of this infection, also, can determine which measure is efficient, and
highlighting the outcome of considering a specific measure next to predicting future growth patterns,
etc [4].

In mathematical epidemiology, the crucial component that describes the speed and the manner of
the spread of a contagious disease in a sample of the population is incidence function. There are
numerous researchers that study the influence of this important component, as for example Holling
I-III incidence function [5–7], ratio-dependent incidence function [8], Beddington-DeAngelis
incidence function [9], and some authors considers even generalized incidence function as the
researches [10–20]. These incidence functions highlights the method of the transmission of the
disease and can model different reaction of population (as fear, caution, using protection materials)
and can reflect the measures taken by government as isolation and crowding behavior (that can lead
eventually to eliminate the disease in the case when the number of infected persons is high), which
shows the big importance of choosing the right incidence function that describes the studied disease.
There are some infectious diseases where the infection will affect some individuals and do not affect
the other individuals (as COVID-19 disease), where there are some infected persons with a visualized
symptoms, or even severe, these individuals have more chance to develop complications that can lead
to death. The other part of infected individuals has a non visualized symptoms, this category has more
resistance to infection, and developing complications that lead to death is not probable. The
importance of this approach (asymptomatic and symptomatic infected person in model building) can
be seen when the individuals interact with the two categories of infected persons, wherein the case of
the large size of the infected class, the susceptible persons will avoid the contact with the visualized
symptoms, and cannot recognize persons with mild symptoms. In terms of modeling this behavior, it
is wise to choose a saturated incidence function for modeling the avoiding infected persons with
severe symptoms (where we will choose generalized Holling type III incidence function [21]), and a
non-saturated incidence functional for modeling the transmission of the infection for infected persons
with mild symptoms (where we will choose the bilinear incidence function). Furthermore, we will
investigate the effect of memory obtained by considering the fractional-order derivative in such a
model. This point of view attract numerous researches as example [22]. As a result, we consider the
following fractional-order system:

DδS (t) = Λ − S
(
µ +

βI2

α+γI+I2 + qβA
)
,

DδA(t) = φS
(

βI2

α+γI+I2 + qβA
)
− (δ + µ)A,

DδI(t) = (1 − φ)S
(

βI2

α+γI+I2 + qβA
)
− (η + µ + m)I,

DδR(t) = δA + ηI − µR,

(1.1)

where Dδ is Caputo’s derivative operator concerning t, which will be defined in the next section.
S , A, I R are respectively the densities of the susceptible individuals, asymptomatic infected
individuals, symptomatic infected individuals, recovered individuals at time t. Λ is the constant
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entering flux into the susceptible populations. µ is the natural mortality rate. β is the transmission rate
of individuals with severe symptoms. qβ is the transmission rate corresponding to individuals in
A-class. α, γ are positive constants related to the generalized Holling type III incidence function.
This function is βI2

α+γI+I2 which increasing function in I and saturates to β when I goes to infinity. The
reason behind choosing such as incidence function due to the awareness of the population when the
number of infection cases is high Contrarily, the asymptomatic individuals will continue infecting
persons without being revealed, which is the main reason behind choosing linear incidence function
for this class on infected persons, where this category is characterized by non saw symptoms. δ, η are
recovering rates for individuals in A-class, I-class, respectively. 0 < φ < 1 represents the probability
of the newly infected person to a person with asymptomatic symptoms. m is the mortality due to this
infection due to complications and severe symptoms.

The main goal of this research is to study mathematically the model (3.1). For this aim we organize
our research in the following manner. In the next section, we will provide some preliminary results that
include some definitions that can be very helpful in dealing with the fractional operator. In section 3
we will analyze the model (3.1) mathematically, where we will calculate the equilibria of this system
and proving that the system has saddle-node bifurcation. For the ecdemic equilibrium, we will show
that the system (3.1) undergoes Hopf bifurcation. The second part of the mathematical analysis is to
provide a numerical scheme that can be very helpful in the graphical representation of the solution
of the system (3.1), where the trapezoidal product-integration rule has been used for building this
numerical scheme. As a result, some graphical representations are plotted and properly interpreted,
which insures the mathematical finding. The conclusion section ends the research.

2. Preliminary

Definition 2.1. The fractional Caputo’s derivative with δ ∈ (0, 1) for p : R+ → R can be expressed:

Dδp(t) =
1

Γ(n − δ)

t∫
0

gn(σ)
(t − σ)δ+σ−n dσ, n − 1 < δ < n, n ∈ N.

Γ is Euler’s Gamma functional. We put

DδX(t) = AX(t) + g(X), X(0) = X0 ∈ R
n. (2.1)

δ ∈ (0, 1), g ∈ C1(Rn,Rn), A ∈ Rn×n, Dg(0) = 0. The local stability concept for fractional differential
systems is provided through the following theorem:

Theorem 2.2. We presume that the origin is an equilibrium of (2.1), the linear stability of the origin
is guaranteed if each eigenvalue denoted λ of A verifies

∣∣∣arg(λ)
∣∣∣ > δπ

2 , and it is unstable if
∣∣∣arg(λ)

∣∣∣ < δπ
2

for some values of λ.

Now, defining the Hopf bifurcation for the fractional order system with a parameter µ ∈ R as

dδX
dt

= A(µ)X(t) + g(X, µ), X(0) = X0 ∈ R
n, (2.2)

where δ ∈ (0, 1), A(µ) ∈ Rn×n, g(X, µ) ∈ C1(R × Rn,Rn),Dg(0, µ) = 0.
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It is well known that the Hopf bifurcation conditions for the system (2.2) in the case of the first
order derivative are

Re {λ(0)} = 0, Im {λ(0)} , 0,
dRe {λ(µ)}

dµ

∣∣∣∣∣
µ=0
, 0.

But the conditions for Hopf bifurcation in the fractional order derivative is given in the following
form ∣∣∣arg(λ(0))

∣∣∣ =
δπ

2
,

dλ(µ)
dµ

∣∣∣∣∣
µ=0
, 0.

To mention that the presence of Hopf bifurcation in the case of the first-order derivative means
the possibility of having a periodic solution under some conditions on the parameters (in the case of
stable periodic orbits). In the case of the presence of fractional order derivative, it is been shown
that a system with fractional derivative cannot have periodic solutions. So, the proof of the existence
of Hopf bifurcation in the case of the fractional derivative does not mean the existence of periodic
solutions [23], where we can mention the presence of oscillations in time only.

3. Mathematical analysis of fractional model (3.1)

In this section, we are interested in providing a qualitative analysis of the solution of the
system (3.1). At first, we can easily remark that the three first equations of (3.1) are independent of R,
hence the R-equation (fourth equation of the same system) can be omitted. So the behavior of the
system (3.1) can be deduced through studying the following reduced system:

DδS (t) = Λ − S
(
µ +

βI2

α+γI+I2 + qβA
)
,

DδA(t) = φS
(

βI2

α+γI+I2 + qβA
)
− (δ + µ)A,

DδI(t) = (1 − φ)S
(

βI2

α+γI+I2 + qβA
)
− (η + µ + m)I.

(3.1)

Based on the fact that the right hand side of (3.1) is continuously Lipcshitz we deduce the
existence and uniqueness of solution. For achieving this result, we split our section into the following
subsections:

3.1. Equilibria

The equilibria of the fractional system (3.1) are the solution of the following system:

0 = Λ − S
(
µ +

βI2

α+γI+I2 + qβA
)
,

0 = φS
(

βI2

α+γI+I2 + qβA
)
− (δ + µ)A,

0 = (1 − φ)S
(

βI2

α+γI+I2 + qβA
)
− (η + µ + m)I.

(3.2)

Obviously, the system (3.2) has always disease free equilibrium (DFE) which is
(

Λ
µ
, 0, 0

)
. Now

focusing on distinguishing the existence conditions for the positive equilibrium (PE), which is the
positive solution of the system (3.2). From the first equation of (3.2) we have:

Λ − µS =
βS I2

α + γI + I2 + qβS A, (3.3)
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substituting this result into the second equation of (3.2) we obtain

A =
φ

δ + µ
(Λ − µS ). (3.4)

Similarly, we have

I =
1 − φ

η + µ + m
(Λ − µS ), (3.5)

hence the positivity condition appears which is S ∗ < Λ
µ

. By substituting (3.4), (3.5) into the second
equation of (3.2) we obtain:

µqβφ
δ + µ

S 3 + B2S 2 + B1S − B0 = 0, (3.6)

where
B0 = Λ2 + α + γΛ > 0,
B1 =

qβφ
δ+µ

(α + γΛ + Λ2) + µ(γ + 2Λ) +
β(1−φ)2Λ

(η+µ+m)2 > 0,

=
qβφ
δ+µ

B0 + µ(γ + 2Λ) +
β(1−φ)2Λ

(η+µ+m)2 > 0,

B2 = −
βµ(1−φ)2

(η+µ+m)2 − µ − µ(γ + 2Λ) qβφ
δ+µ

< 0.

We denote by H(S ) the right hand side of the Eq (3.6). Now, we seek for the zeros of the function
H for S ∈

(
0, Λ

µ

)
. The derivative of H with respect to S is

H′(S ) =
3µqβφ
δ + µ

S 2 + 2B2S + B1. (3.7)

We put H′(S ) = 0 then the following quantity has an important role in determining the number of
the positive zeros of H:

B2
2 −

3µqβφ
δ + µ

B1 =

{
> 0 i f B0 < b0,

< 0 i f B0 > b0,

where

b0 = −
µ

3 (γ + 2Λ) − β(1−φ)2Λ

(η+µ+m)2 +
µβ(µ+δ)(1−φ)4Λ

3qφ(η+µ+m)4 +
µ(µ+δ)
3qβφ +

(γ+2Λ)µqβφ
3(δ+µ) +

2µ(µ+δ)(1−φ)2

3qφ(η+µ+m)2 +
2βµ(γ+2Λ)(1−φ)2

3(η+µ+m)2 .

Obviously, if B0 < b0 then H is increasing in S . The existence and the uniqueness of PE is
guaranteed if (Λ > Λ0 and B0 > b1) or (λ < Λ0 and B0 < b1), where

Λ0 :=
µ(µ + δ)

qβφ
,

and

b1 := Λ0
Λ0−Λ

[
Λ3qβφ
µ2(δ+µ) −

Λ2β(1−φ)2

µ2(δ+µ) −
Λ2β(1−φ)2

µ(η+µ+m)2 −
λ2

µ
−

λ2qβφ(γ+2Λ)
µ(δ+µ) + Λ2

µ
(γ + 2Λ) +

βΛ3(1−φ)2

(η+µ+m)2

]
.

Now we presume that B0 > b0 hence the equation H′(S ) = 0 has the following roots:

S ± =
µ + δ

µqβ

−B2 ±

√
B2

2 −
3µqβφB1

δ + µ

 > 0.

For the goal of discussing the roots of H(S ) = 0, we have the following results:
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(i) The equation H(S ) = 0 has no roots when [H(S −) < 0, and (Λ < Λ0 and B0 > b1) or (Λ > Λ0 and
B0 < b1)].

(ii) The equation H(S ) = 0 has one root when [H(S −) < 0, and (Λ > Λ0 and B0 > b1) or (Λ < Λ0 and
B0 < b1)], or [H(S +) > 0, and S + <

Λ
µ

].
(iii) The equation H(S ) = 0 has two positive roots when [H(S −) > 0, and S − < Λ

µ
, and [ (Λ < Λ0 and

B0 > b1) or (Λ > Λ0 and B0 < b1)]],
(iv) The equation H(S ) = 0 has three positive roots when [H(S −) < 0, H(S +) > 0, S + < Λ

µ
, and

(Λ > Λ0 and B0 > b1) or (Λ < Λ0 and B0 < b1)].

Now we denoted the following assumptions:

(A1): [B0 < b0, and (Λ > Λ0 and B0 > b1) or (Λ < Λ0 and B0 < b1)] or [B0 > b0 and H(S −) < 0, and
(Λ > Λ0 and B0 > b1) or (Λ < Λ0 and B0 < b1),] or [B0 > b0, and H(S +) > 0, and S + <

Λ
µ

].
(A2): B0 > b0 and [H(S −) > 0, and S − < Λ

µ
, and [(Λ < Λ0 and B0 > b1) or (Λ > Λ0 and B0 < b1)]].

(A3): [B0 > b0 and H(S −) > 0, H(S +) < 0, S + < Λ
µ
, and (Λ > Λ0 and B0 > b1) or (Λ < Λ0 and

B0 < b1)].

The obtained results are summarized in the following theorem:

Theorem 3.1. (i) If (A1) holds then the system (3.1) has a unique PE denoted E∗ = (S ∗, A∗, I∗).
(ii) If (A2) holds then the system (3.1) has a two PEs denoted E∗i = (S ∗i , A

∗
i , I
∗
i ), i = 1, 2.

(iii) If (A3) holds then the system (3.1) has a three PEs denoted E∗i = (S ∗i , A
∗
i , I
∗
i ), i = 1, 2, 3,

where S ∗i are the positive roots of the cubic Eq (3.6) verifying S ∗i <
Λ
µ

, A∗i =
φ

δ+µ
(Λ − µS ∗i ) and

I∗i =
1−φ

η+µ+m (Λ − µS ∗i ).

Remark 3.2. Based on the above results and by taking B0 as bifurcation parameter, the saddle-node
bifurcation can appears at H(S −) = 0, (which it can be written as B0 = BS N−

0 ) and BS N−
0 verifies either

b0 < BS N−
0 < b1 if Λ > Λ0 or max{b0, b1} < BS N−

0 if Λ < Λ0,
Also, at H(S +) = 0, (which it can be written as B0 = BS N+

0 ) and BS N+

0 verifies either b0 < BS N+

0 < b1

if Λ > Λ0 or max{b0, b1} < BS N+

0 if Λ < Λ0.

3.2. Local stability and Hopf bifurcation

In this section, we are interested in determining the stability of the equilibria. For achieving this
result we calculate the Jacobian matrix for an arbitrary equilibrium E = (S , A, I), which is expressed
in the following manner:

J =


−µ − βI2

α+γI+I2 − βqA −qβS −βS I(2α+γI)
(α+γI+I2)2

φ
(

βI2

α+γI+I2 + βqA
)

φqβS − (δ + µ) φβS I(2α+γI)
(α+γI+I2)2

(1 − φ)
(

βI2

α+γI+I2 + βqA
)

(1 − φ)qβS (1−φ)βS I(2α+γI)
(α+γI+I2)2 − (η + µ + m)

 . (3.8)

At the DFE the Jacobian matrix (3.8) becomes:

J =


−µ −

qβΛ

µ
0

0 φqβΛ

µ
− (δ + µ) 0

0 (1−φ)qβΛ

µ
−(η + µ + m)

 . (3.9)
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Based on the results mentioned in the second section of the paper, we can highlight that the Hopf
bifurcation appears if the following condition holds∣∣∣arg(λ)

∣∣∣ =
δπ

2
,

dλ(µ)
dµ

∣∣∣∣∣
µ=0
, 0.

It is easy to see that the eigenvalues of (3.9) are λ1 = −µ, λ2 =
φqβΛ

µ
− (δ+µ), and λ3 = −(η+µ+ m),

hence | arg(λ1)| = π > δπ
2 , | arg(λ3)| = π > δπ

2 , and

| arg(λ2)| =
{
π > δπ

2 i f Λ < Λ0,

0 < δπ
2 i f Λ > Λ0,

hence the DFE is locally stable for Λ < Λ0, and unstable for Λ > Λ0. Transcritical bifurcation appears
at Λ = Λ0. Now, we Study the stability of the PE(s), where we denote E∗ = (S ∗, A∗, I∗) for one of
the PEs discussed in theorem 3.1. The Jacobian matrix at this equilibrium can be expressed in the
following form:

J =


− Λ

S ∗ −qβS ∗ −βS ∗I∗(2α+γI∗)
(α+γI∗+(I∗)2)2

φ

1−φ (η + µ + m) I∗
S ∗ −

φβS ∗I∗

A∗(α+γI∗+(I∗)2)
φβS ∗I∗(2α+γI∗)
(α+γI∗+(I∗)2)2

(η + µ + m) I∗
S ∗ (1 − φ)qβS ∗ (1−φ)βS ∗I∗(α−(I∗)2)

(α+γI∗+(I∗)2)2 − (1 − φ)qβS ∗A∗

 . (3.10)

The characteristic equation is
λ3 + C2λ

2 + C1λ + C0 = 0, (3.11)

where

C2 = Λ
S ∗ +

φβS ∗I∗

A∗((B0−Λ2−γΛ)+γI∗+(I∗)2) + (1 − φ)qβS ∗A∗ − (1 − φ)qβS ∗ +
(1−φ)βS ∗I∗((B0−Λ2−γΛ)−(I∗)2)

((B0−Λ2−γΛ)+γI∗+(I∗)2)2 ,

C1 =
(

Λ
S ∗ +

φβS ∗I∗

A∗((B0−Λ2−γΛ)+γI∗+(I∗)2)

) (
(1 − φ)qβS ∗A∗ − (1−φ)βS ∗I∗((B0−Λ2−γΛ)−(I∗)2)

((B0−Λ2−γΛ)+γI∗+(I∗)2)2

)
+
φβ(1−φ)qβ(S ∗)2I∗(2α+γI∗)
((B0−Λ2−γΛ)+γI∗+(I∗)2)2 +

φ

1−φqβ(η + µ + m)I∗

+
β(η+µ+m)(I∗)2(2(B0−Λ2−γΛ)+γI∗)

((B0−Λ2−γΛ)+γI∗+(I∗)2)

C0 =
φβΛI∗

A∗((B0−Λ2−γΛ)+γI∗+(I∗)2)

(
(1 − φ)qβS ∗A∗ (1−φ)βS ∗I∗(α−(I∗)2)

(α+γI∗+(I∗)2)2

)
− (1 − φ)qβΛ

φβS ∗I∗(2(B0−Λ2−γΛ)+γI∗)
((B0−Λ2−γΛ)+γI∗+(I∗)2)2

+
φ

1−φqβ(η + µ + m)I∗
(
(1 − φ)qβS ∗A∗ − (1−φ)βS ∗I∗((B0−Λ2−γΛ)−(I∗)2)

((B0−Λ2−γΛ)+γI∗+(I∗)2)2

)
+

qφβ2(η+µ+m)S ∗(I∗)2(2(B0−Λ2−γΛ)+γI∗)
((B0−Λ2−γΛ)+γI∗+(I∗)2)2 +

qβ2φ(η+µ+m)S ∗(I∗)2(2(B0−Λ2−γΛ)+γI∗)
((B0−Λ2−γΛ)+γI∗+(I∗)2)2

+
φβ2(η+µ+m)S ∗(I∗)3(2(B0−Λ2−γΛ)+γI∗)

A∗((B0−Λ2−γΛ)+γI∗+(I∗)2)3 .

Now defining the quantities:

R = 18C2C1C0 + C2
2C2

1 − 4C0C3
2 − 4C3

1 − 27C3
0.

Making use of the Routh-Hurwitz criteria for the fractional order derivative (see [24]) we get the
following stability conditions:
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Theorem 3.3. The stability of the PEs is guaranteed if one of the following conditions holds: If one or
both of the following conditions may apply, then the equilibrium(s) E2(Ei, i = 1, 2), is (are) stable

(i) R > 0, C2 > 0, C0 > 0, C2C1 > C0.

(ii) R < 0, C2 ≥ 0, C1 ≥ 0, C0 ≥ 0, and δ < 2
3 .

Now let us focus on providing some sufficient conditions for obtaining Hopf bifurcation by
considering δ as bifurcation parameter. This proof is inspired by results obtained in Proposition 2
in [25]. Now we set

d = C2
2 − 4C1,

hence we consider two cases:
Case 1: If d > 0 then the characteristic Eq (3.11) has three real roots hence we cannot have the

Hopf bifurcation condition (this means that we cannot have | arg{λ}| = δπ
2 ).

Case 2: If d < 0 then the characteristic Eq (3.11) has one real root λ1 = −a, the other two roots are
λ2,3 = a1 ± ia2. Hence, the characteristic Eq (3.11) becomes: using the change of variable Y − C2

3 we
get the Eq

Y3 + pY + q = 0, (3.12)

where p = C1 −
C2

2
3 , and q = C1

27 (2C2
2 − 9C1) + C0. Using Cardano’s method the real roots of (3.12) is

Y1 = r + e, (3.13)

where r =

(
−q+
√

q2+ 4
27 p3

2

) 1
3

, and e =

(
−q−
√

q2+ 4
27 p3

2

) 1
3

. The complex roots are:

Y2 = jr + j̄e, and Y3 = j2r + j̄2e,

with j = expi 2π
3 , hence the roots of (3.11) are

λ1 = r + e − C2
3 ,

λ2 = jr + j̄e − C2
3 = −1

6

(
3(e + r) + 2C − i3

√
3(r − e)

)
,

λ3 = j2r + j̄2e − C2
3 = −1

6

(
3(e + r) + 2C + i3

√
3(r − e)

)
,

by taking into count the obtained roots, then the characteristic Eq (3.11) can be rewritten as the form:

(λ − λ1)
(
λ +

1
6

(
3(e + r) + 2C − i3

√
3(r − e)

)) (
λ +
−1
6

(
3(e + r) + 2C + i3

√
3(r − e)

))
.

Hence we get:

C0 = −27λ1(r − e)2 +
1
6

(3(r + e) + 2C2)2 > 0,

this implies λ1 < 0, hence | arg{λ1}| >
δπ
2 .

Besides, | arg{λn}| =

∣∣∣∣∣tan−1
(

3
√

3(e−r)
3(r+e)+2C2

)∣∣∣∣∣ , n = 1, 2.Hence, for 2
π

∣∣∣∣∣tan−1
(

3
√

3(e−r)
3(r+e)+2C2

)∣∣∣∣∣ > δ then | arg{λn}| >

δπ
2 , n = 1, 2 which means that PE is stable, and unstable for 2

π

∣∣∣∣∣tan−1
(

3
√

3(e−r)
3(r+e)+2C2

)∣∣∣∣∣ < δ. Hopf bifurcation

occurs at 2
π

∣∣∣∣∣tan−1
(

3
√

3(e−r)
3(r+e)+2C2

)∣∣∣∣∣ = δ.

The obtained results are summarized in the following theorem:

AIMS Mathematics Volume 7, Issue 2, 2160–2175.



2168

Theorem 3.4. Assume that one of the assumptions (A1), (A2), (A3) holds, then we have the following
results

(i) If d > 0 then the system (3.1) cannot undergo Hopf bifurcation.
(ii) If d < 0 and C0 < 0 then the system (3.1) cannot undergo Hopf bifurcation.

(iii) If d < 0 and C0 > 0 then the system (3.1) undergo Hopf bifurcation at δ = 2
π

∣∣∣∣∣tan−1
(

3
√

3(e−r)
3(r+e)+2C2

)∣∣∣∣∣.
3.3. Numerical scheme using trapezoidal product-integration rule

Now investigating the following fractional initial-value problem:

DδX(t) = P(t, X(t)). (3.14)

By applying the fundamental theorem of fractional calculus obtained in (3.14), we get

X(t) − X(0) =
1

Γ(δ)

∫ t

0
P(ρ, X(ρ))(t − ρ)δ−1dρ. (3.15)

Using t = tn = n} in (3.15), we arrives at:

X(tn) = X(0) +
1

Γ(δ)

n−1∑
i=0

∫ ti+1

ti
P(ρ, X(ρ))(tn − ρ)δ−1dρ. (3.16)

Using the first order Lagrange interpolation we can approximate function P(t,U(t)) as:

P(t, X(t)) ≈ P(ti+1, Xi+1) +
t − ti+1

}
(P(ti+1, Xi+1)) − P(ti, Xi)) , t ∈ [ti, ti+1], (3.17)

where Xi = X(ti). By substituting (3.17) into (3.16) we get (for more details see [26, 27])

Xn = X0 + }δ
ΘnP(t0, X0) +

n∑
i=1

Γn−iP(ti, Xi)

 , (3.18)

where,

Θn =
(n − 1)δ+1 − nδ(n − δ − 1)

Γ(δ + 2)

Γn =

{ 1
Γ(δ+2) , n = 0
(n−1)δ−2nδ+(1+n)δ

Γ(δ+2) , n = 1, 2, . . .
.

(3.19)

We apply the achieved numerical scheme (3.18) to (3.1) we obtain:

S n = S 0 + }δ
ΘnP1(S 0, A0, I0) +

n∑
i=1

Γn−iP1(S i, Ai, Ii)

 ,
An = A0 + }δ

ΘnP2(S 0, A0, I0) +

n∑
i=1

Γn−iP2(S i, Ai, Ii)

 ,
In = I0 + }δ

ΘnP3(S 0, A0, I0) +

n∑
i=1

Γn−iP3(S i, Ai, Ii)

 ,
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with

P1 (S , A, I) = Λ − S
(
µ +

βI2

α+γI+I2 + qβA
)
,

P2 (S , A, I) = φS
(

βI2

α+γI+I2 + qβA
)
− (δ + µ)A,

P3 (S , A, I) = (1 − φ)S
(

βI2

α+γI+I2 + qβA
)
− (η + µ + m)I.

(3.20)

3.4. Graphical representations
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Figure 1. Graphical representation of the existence of the PE in different cases where
for (A) the assumption (A2) holds which guarantees the coexistence PEs. For (B) we the
nonexistence of the PE. For (C) we have the existence and the uniqueness of the PE. For (D)
we have the existence of three PEs.

Figure 1: In this figure we consider the following set of parameters

Λ = 0.01, β = 0.5, γ = 0.1, q = 0.5, φ = 0.1, µ = 0.005, δ = 0.05, η = 0.05, m = 0.05,

where for (A) we have considered α = 0.05, and we obtained Λ0 = 0.011, B0 = 0.0511, B1 = 0.3912,
B2 = −0.3726, hence we get S − = 0.5095 < Λ

µ
= 2. In this case we get the second axiom in

Theorem 3.1.
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For (B) we considered α = 0.2 hence we get Λ0 = 0.011, B0 = 0.2011, B1 = 0.4594, B2 = −0.3726,
hence we get S − = 0.6191 < Λ

µ
= 2. In this case we get the non existence of PEs.

Now we consider the following set of parameters

Λ = 0.1, α = 0.02, β = 0.5, γ = 0.1, µ = 0.09, δ = 0.05, η = 0.05, m = 0.05,

where for (C) we have considered q = 4.5, φ = 0.1 and we obtained Λ0 = 0.014, B0 = 0.04,
B1 = 0.7828, B2 = −0.7622, hence H′(S ) > 0 which verifies the first axiom in Theorem 3.1. In this
case we get the second axiom in Theorem 3.1.

For (D) we have considered q = 1.5, φ = 0.55 and we obtained Λ0 = 0.0121, B0 = 0.08,
B1 = 1.255, B2 = −1.0531, hence we obtain the results obtained in the third axiom in Theorem
3.1. In this case we get the second axiom in Theorem 3.1.

B
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1
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0
 
SN

-

Figure 2. The existence of saddle-node bifurcation.

Figure 2: In this figure we consider the following set of parameters

Λ = 0.2, β = 0.5, γ = 0.1, q = 1.5, φ = 0.54, µ = 0.05, δ = 0.05, η = 0.05, m = 0.05,

where the system (3.1) undergo saddle-node bifurcation at B0 = BS D−
0 = 0.6776.

Figure 3: We consider the following set of parameters

Λ = 0.1, α = 0.02, β = 0.5, γ = 0.1, q = 1.5, φ = 0.55, µ = 0.09, δ = 0.05, η = 0.05, m = 0.05,

and the initial conditions

S (0) = 1, A(0) = 1, I(0) = 1.
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Figure 3. The temporal behavior of the solution of the system (3.1) in the case of the
existence of three PEs shown in Figure 1 (D), where we get the stability of the equilibrium
E∗1 = (0.1341, 0.51456, 0.28098)

Figure 4. The temporal behavior of the solution of the system (3.1) in the case of the
existence of two PEs shown in Figure 1 (A).

Figure 4: In this figure we consider the following set of parameters

Λ = 0.01, β = 0.5, α = 0.05 γ = 0.1, q = 0.5, φ = 0.1, µ = 0.005, δ = 0.05, η = 0.05, m = 0.05,

where for (A) we have considered, and we obtained Λ0 = 0.011, B0 = 0.0511, B1 = 0.3912, B2 =
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−0.3726, and the initial conditions

S (0) = 1, A(0) = 1, I(0) = 1.

In this case we get the stability of the equilibrium E∗1 = (0.2122, 0.18237, 0.84927), where we
obtained the persistence of the disease.

Figure 5: In this figure we consider the following set of parameters

Λ = 1.1, β = 0.01, α = 0.05 γ = 0.1, q = 0.05, φ = 0.1, µ = 0.5, δ = 0.5, η = 0.5, m = 0.5,

and the initial conditions
S (0) = 1, A(0) = 1, I(0) = 1.

In this case we get the stability of the equilibrium E0 = (2.1948, 0, 0), which highlights the
extinction of the disease.
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Figure 5. The extinction of the infection in the case of the stability of the DFE.

Remark 3.5. To mention that the parameters values used in this research are used only for discussing
the mathematical finding through this research, and it can be used for predicting the disease in the
case of availability of information’s on the studied disease.

4. Discussion and conclusions

We dealt in this research with a new mathematical model that considers two different classes of
infected persons, namely, symptomatic infected class, and asymptomatic infected class with a nonlinear
incidence function. The main goal is to study the bifurcating solution of the system (3.1) in the presence
of the fractional derivative operator. In fact, it is obtained that the system (3.1) has important different
types of bifurcation, as saddle-node bifurcation that appears at B0 = BS B

0 . This type of bifurcation is
known as well by backward bifurcation (which consists the coexistence of two equilibria as in Figure 2)
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for epidemiological models (see [28,29]). Further, it is obtained that the system (3.1) can undergo Hopf
bifurcation at the endemic equilibria, where the possibility of having this kind of bifurcation has been
shown using Cardon’s method for solving third order equation. As a result, we obtained the aspects
highlighted in Theorem 3.4. Next, for plotting the solutions of the system (3.1) we build our numerical
scheme using the trapezoidal product-integration rule. The method of proving Hopf bifurcation can
be applied for other paper as [30–33], where they studied the stability of the positive equilibria only,
which it can be very helpful in showing the existence of Hopf bifurcation for a fractional system with
three equations. In future works, including random walk (or stochastic effect) into the model (3.1) can
generate important behavior, and can be considered as a good subject of interest.
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