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Abstract: The acceleration of a vehicle is important information in vehicle states. The vehicle
acceleration is measured by an inertial measurement unit (IMU). However, gravity affects the IMU
when there is a transition in vehicle attitude; thus, the IMU produces an incorrect signal output.
Therefore, vehicle attitude information is essential for obtaining correct acceleration information.
This paper proposes a convolutional neural network (CNN) for attitude estimation. Using sequential
data of a vehicle’s chassis sensor signal, the roll and pitch angles of a vehicle can be estimated
without using a high-cost sensor such as a global positioning system or a six-dimensional IMU.
This paper also proposes a dual-extended Kalman filter (DEKF), which can accurately estimate
acceleration/angular velocity based on the estimated roll/pitch information. The proposed method
is validated by real-car experiment data and CarSim, a vehicle simulator. It accurately estimates the
attitude estimation with limited sensors, and the exact acceleration/angular velocity is estimated
considering the roll and pitch angle with de-noising effect. In addition, the DEKF can improve the
modeling accuracy and can estimate the roll and pitch rates.

Keywords: sensor fusion; state estimation; vehicle dynamics; convolutional neural network; dual ex-
tended Kalman filter; vehicle roll and pitch angle; vehicle acceleration and angular velocity

1. Introduction

In recent decades, the vehicle controller has been developed significantly for stability
and user convenience. Typically, the electronic stability controller (ESC) or active roll
stabilization (ARS) are used for ensuring vehicle stability in chassis controller, adaptive
cruise control (ACC), or lane keeping system (LKS) as well as for ensuring convenience in
advanced driver assistant system (ADAS). To improve the performance of these controllers,
vehicle states must be estimated with a high accuracy. The commonly required and
important state information of aforementioned controllers are acceleration and angular
velocity. In a vehicle, the inertial measure unit (IMU) measures the acceleration and angular
velocity using an inertial force. However, if a transition in attitude (roll and pitch) occurs,
the gravitational force is reflected in the sensor value. The IMU cannot distinguish between
gravitational force and inertial forces; therefore, a change in the attitude of the vehicle
causes a fatal error in the IMU.

Several studies have been conducted to overcome the errors in these accelerometers
and to estimate the exact state of the vehicle. In [1,2], the adaptive Kalman filter was
designed to minimize the effect of the accelerometer offset errors. In addition, the Kalman
filter was used to estimate the accelerometer offset and vehicle velocity [3–5]. However,
the accuracy of estimating vehicle states was limited because of a lack of information of the
vehicle attitude.
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Several studies have been conducted to estimate the accurate vehicle attitude in vari-
ous ways. Using IMU or GPS or vehicle dynamics, researchers tried to estimate the vehicle
roll and pitch angle. In addition, due to the recent developments in artificial intelligence
and neural networks, data-driven estimators have been used for state estimation [6]. These
estimators have the advantage of having high accuracy by training the data directly in
situations where accurate mathematical modeling is difficult. The literature review is
discussed separately in Section 2.

This paper proposes a novel vehicle attitude estimator using a convolutional neural
network (CNN), based on the advantages of a data-driven estimator. Figure 1 shows
the architecture of the proposed algorithm. First, we select the features based on vehi-
cle roll and pitch dynamics, importance judgment and sensor usability. By using the
selected features sequentially [7], the three-dimensional IMU and vehicle sensor build a
CNN-based regression model that can estimate the vehicle roll and pitch angles without
GPS. Moreover, a dual extended Kalman filter (DEKF) is designed to estimate the exact
acceleration/angular velocity based on the estimated roll and pitch angles with removing
the effect of gravitational force. The proposed model is based on the sprung mass six-
degree-of-freedom (6-DOF) model and increases the modeling accuracy while estimating
the tire cornering stiffness simultaneously. The performance of the proposed algorithm
was verified using real car experiment data and MATLAB/Simulink with CarSim, a vehicle
simulator. A CNN conducted training and verification using data collected from various
driving conditions as an experimental vehicle with RT-3002 which is a high-accuracy GPS-
inertial navigation system (INS) from Oxford Technical Solutions Ltd. The performance of
the DEKF was verified with a scenario in which postural changes occur using CarSim and
MATLAB/Simulink.

Figure 1. Architecture overview.

The remainder of this paper is organized as follows. Section 2 describes the related
literature review. Section 3 explains the methodology including neural network and DEKF.
Section 4 describes the results of performance verification. Section 5 summarizes the study
and contributions.

2. Literature Review

Several studies have been conducted to estimate the accurate vehicle attitude in
various ways. In [8], authors proposed an observer which can estimate the land vehicle’s
roll and pitch by using an IMU and the kinematics model. Also, the adaptive Kalman filter
was proposed based on IMU aided by vehicle dynamics [9]. However, these methods have
a low accuracy in dynamic situations. This problem was attempted to be solved in [10–13],
based on the Kalman filter by compensating for the external acceleration that interfered
with the estimation of the attitude, but the accuracy was limit.

Therefore, many researchers have proposed sensor fusion method using not only IMU
but fusion with global positioning system (GPS). Representatively, the method in which
IMU and GPS fusion with Kalman filter [14–16] or sliding mode observer [17] can be used.
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These methods can increase the accuracy, but they require high-cost sensors such as GPS
and are highly affected by GPS performance.

Accordingly, vehicle attitude estimator studies were conducted without the use of
GPS, based on the characteristics of the vehicle dynamics. Using vehicle roll dynamics,
a dynamic observer design based on a reliable rollover index [18] was proposed. Also,
the Kalman filter [19] and the robust observer [20] based on vehicle roll dynamics which
estimate roll angle were proposed. Alternatively, using lateral dynamics, the research
which estimate road bank angle [21,22] was proposed. However, these methods exhibited
limited accuracy in transient situations. A method for estimating both roll and pitch
attitudes using a six-dimensional IMU and bicycle model [23,24] was also studied. These
methods exhibited a high accuracy, but they have a short validation range and required
hard-to-get data such as six-dimensional IMU.

Several recent studies have also been conducted to estimate the vehicle roll and
pitch angle using neural network. In [25–27], the vehicle roll angle estimation method
using sensor fusion with a neural network and Kalman filter was proposed. Furthermore,
a vehicle roll and road bank angle estimation method based on a deep neural network was
introduced [28]. However, the pitch attitudes were not estimated, and the six-dimensional
IMU data such as roll rate or vertical acceleration were required, which complicated the
estimation. Literature reviews are summarized in Table 1.

Table 1. Literature review summarizing.

References Methodology Model

[8] Linear observer IMU kinematic model

[9] Kalman filter
IMU + Vehicle dynamics
(bicycle model and wheel

model)

[10–13] Kalman filter IMU external acceleration
model

[14–16] Kalman filter IMU + GPS model
[17] Sliding mode observer IMU + GPS model
[18] Dynamic observer Vehicle roll dynamics
[19] Kalman filter Vehicle roll dynamics
[20] Dual Kalman filter Vehicle roll dynamics

[21,22] Linear observer Vehicle lateral dynamics
(bicycle model)

[23,24] Linear observer, Sliding mode
observer

Vehicle lateral dynamics
(bicycle model) + IMU

[25–27] Kalman filter + neural
network

Vehicle roll dynamics + fully
connected layer

[28] Neural network Fully connected layer

3. Methodology
3.1. Data-Driven-Based Estimator (Neural Network) Design
3.1.1. Feature Selection

Feature selection is based on vehicle dynamics, sensor usability, and attention mecha-
nism. The purpose of neural network is to design a regression model for calculating the
roll and pitch angles, so select the primary feature candidates for the vehicle’s roll and
pitch dynamics. Vehicle roll dynamics [29] can be written as:

ΣMx = hRmsgsinφ− 1
2

ksl2
s sinφ− 1

2
bsl2

s
.
φsinφ + ΣFy(hCG − hR) (1)

ΣFy = 2Cα f

(
δ−

vy + l f
.
ψ

vx

)
+ 2Cαr

(
−

vy − lr
.
ψ

vx

)
+ msgsinφ. (2)
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where Mx is the moment respect to the roll axis, hR is the height of the from center of
gravity to roll center, ms is the vehicle sprung mass, g is the gravity acceleration, φ is the
roll of vehicle, ks is the stiffness of the suspension, ls is the length of the wheel track, bs is
the damping coefficient of the suspension, and hCG is the height of the center of gravity
from the ground.

The lateral force applied to the vehicle can be expressed by (2) based on the bicycle
model. Cα f and Cαr are the cornering stiffness values of each front and rear tire, respectively,
δ is the steering angle, vx and vy are the velocities of each x and y axes, respectively, l f and

lr are the length of each front and rear wheel axis from the center of gravity, and
.
ψ is the

yaw rate.
The vehicle pitch dynamics can be written as [29]:

ΣMy = −ksl2
f sinθ − ksl2

r sinθ − bsl2
f

.
θcosθ − bsl2

r
.
θcosθ − (ΣFdrive − ΣFbrake)hCG (3)

ΣFdrive =

[
Nt f ηt f

re f f
Te −

{
(Ie + It)N2

t f + IdN2
f + Iw

} ax

r2
e f f

]
(4)

ΣFbrake =
2Pbrake AcaliperµpadRb

re f f
(5)

where My is the moment with respect to the pitch axis and θ is the pitch of the vehicle.
The traction force applied to the vehicle can be expressed by (4) based on the vehicle

drive-line dynamics. Nt f is the gear ratio of the transmission and differential gears, ηt f is
the efficiency of the power transfer from the engine to the wheel axis, re f f is the effective
radius of the tire, Te is the engine torque, Ie, It, Id, Iw are the inertia of each engine, trans-
mission, differential gear, and wheel, respectively, and ax is the longitudinal acceleration of
the vehicle.

Brake force applied to the vehicle is given by (5). Pbrake is the pressure of the master
cylinder, Acaliper is the area of the brake pad caliper, µpad is the friction coefficient of the
brake pad, and Rb is the distance from the wheel center to the brake pad.

Based on (1)–(5), we can choose only variables, except for static parameters such as
the vehicle mass. As a result, a total of 13 feature candidates were selected, including the
acceleration and yaw rate. Subsequently, seven features were selected considering the
availability of sensors in the experimental vehicle. Table 2 shows the selected features.
Based on these, we conducted an analysis of importance based on the attention mecha-
nism [30]. The results of the importance analysis are presented in Appendix A. According
to Appendix A, the final features were selected same as Table 2.

Table 2. Selected features considering sensor usability.

Feature Name Description

Ax Vehicle longitudinal acceleration from IMU
Ay Vehicle lateral acceleration from IMU

Yaw Rate Vehicle yaw rate from IMU
Brake Pres Brake pressure from the master cylinder
Str Angle Steering wheel angle
Throttle Engine throttle valve opening degree (0~1)

ΣWheelSpd (Vx) Sum of the wheel rotation speed

3.1.2. Network Design

Before configuring a 2-d input to the CNN, we calculate φstatic,pseudo and θstatic,pseudo
reflecting the static roll and pitch angles using feature sensor values. The pseudo values
are written as:

φstatic,pseudo = e−a·Vx · sin−1
(

ay

g

)
(6)
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θstatic,pseudo = e−b·Vx e−c·θthrottle e−
d

Pbrake · sin−1
(
− ax

g

)
(7)

where a,b,c,d are the constant design parameters. (5) and (6) are similar to the road bank
and the slope angle, respectively when the vehicle’s wheel speed is zero. If the vehicle’s
wheel speed increases, (5) and (6) become zero.

The neural network architecture is shown in Figure 2. The network is composed of
CNN part and fully connected layer (FCL) part in parallel configuration. The input array is
composed of a mux of each sequential feature sensor data including (5), (6). The sequential
information is 2 s for 0.01 s, therefore the input array size is (200 × 9). CNN part uses
all inputs, namely all-time series data in the past 2 s, but FCL part uses only the last
row of the input array, meaning only current step data. This means that the CNN part is
designed with the intention of estimating dynamic vehicle body changes while driving
and FCL part is designed to estimate the roll and pitch angles in static scenarios. The CNN
part comprises four convolution layers and two fully connected layers. The first layer
converts the input matrix into a square matrix and shuffles the sensor placement order.
Then, it passes through the three convolution layers, and then pass the one convolution
layer with large size filter and wide strides for compressing the data. Next, unfold to fully
connected layer and make the last layer’s size (256 × 1). In FCL part, there are four layers
and final layer’s size is also (256 × 1). The two final layers are concatenated, and then the
regression model is constructed, which calculates two outputs using one fully connected
layer. Hyperparameters of the neural network such as the number of filters or activation
function are described in Appendix B.

Figure 2. Neural network architecture.

3.2. Dual Extended Falman Filter Design
3.2.1. State Space Model

The state space model is based on the vehicle 6-DOF sprung mass model [31,32]
for expressing the six-dimensional acceleration and angular velocity. The dynamics are
composed based on the Euler rigid body equation and the force or moment of each axis
which is given by each dynamic [29]. Figure 3 shows the six-dimensional motion of vehicle
sprung mass. The forces or moment of each axis are given by:

ΣFx = ms

( .
vx + vz

.
θ − vy

.
ψ− hR

..
θ + hR

.
φ

.
ψ
)

(8)

ΣFy = ms

( .
vy + vx

.
ψ− vz

.
φ− hR

..
φ + hR

.
θ

.
ψ
)

(9)
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ΣFz = ms

(
.

vz + vy
.
φ− vx

.
θ − hR

.
φ

2
− hR

.
θ

2
)

(10)

ΣMx = Ix
..
φ +

(
Iz − Iy

) .
θ

.
ψ−mshR

( .
vy + vx

.
ψ− vz

.
φ− hR

..
φ + hR

.
θ

.
ψ
)

(11)

ΣMy = Iy
..
θ + (Ix − Iz)

.
φ

.
ψ (12)

ΣMz = Iz
..
ψ +

(
Iy − Ix

) .
φ

.
θ (13)

where ΣFx, ΣFy, ΣFz are the sum of forces of the x, y, and z axes, respectively. ΣMx, ΣMy, ΣMz
are the sum of moments of the x, y, and z axes, respectively. Ix, Iy, Iz are the moments of
inertia along the x, y, and z axes, respectively. ΣFx, ΣFy, ΣFz, ΣMx, ΣMy, and ΣMz can be
derived from a vehicle model such as a bicycle model. Therefore, the nonlinear state space
equation can be written as:

.
x1 =

(Nt f ηt f
re f f

u1 − ΣFbrake − 1
2 ρCd Ax2

1 −msgsin(x8)
)

{
ms +

(Ie+It)N2
t f +Id N2

f +Iw

r2
e f f

} − x3x5 + x2x6 + hR
.

x5− hRx4x6 (14)

.
x2 =

1
ms

{
ΣFy + msgsin(x7)

}
− x1x6 + x3x4 + hR

.
x4 − hRx5x6 (15)

.
x3 =

1
ms

ks sin(x8)
(

l f − lr
)
+ bs cos(x8)x5

(
l f − lr

)
− x2x4 + x1x5 + hRx2

4 + hRx2
5 (16)

.
x4 = 1

Ix+msh2
R

{
hRmsgsin(x7)− 1

2 ksl2
s sin(x7)− 1

2 bsl2
s x4 cos(x7) + ΣFy(hCG − hR)−

(
Iz − Iy

)
x5x6 + mshR

( .
x2 + x1x6 − x3x4 + hRx5x6

)}
(17)

.
x5 = 1

Iy

{
−
(

l2
f + l2

r

)
ks sin(x8)−

(
l2

f + l2
r

)
bsx5 cos(x8)− (ΣFdrive − ΣFbrake)hCG − (Ix − Iz)x5x6

}
(18)

.
x6 =

1
Iz

{
−

2l f Cα f − 2lrCαr

x1
x2 −

2l2
f Cα f + 2l2

r Cαr

x1
x6 + 2l f Cα f u3 −

(
Iy − Ix

)
x4x5

}
(19)

.
x7 = x4 (20)
.
x8 = x5 (21)

Figure 3. Vehicle sprung mass 6 degree of freedom motion.

ΣFdrive, ΣFbrake, and ΣFy have been described previously. The state vector

x =
[
vx vy vz

.
φ

.
θ

.
ψ φ θ

]
, state input u = [Te Pbrake δ]. ρ is the density of the air, Cd is

the drag coefficient and A is the frontal area of the vehicle.
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State outputs include longitudinal acceleration, lateral acceleration, and yaw rate from
IMU. The roll and pitch angles from the neural network are also included. Thus, the state
output y =

[
ax ay

.
ψ φ θ

]
and it can be written as:

ax =

(Nt f ηt f
re f f

u1 − ΣFbrake − 1
2 ρCd Ax2

1 −msgsin(x8)
)

{
ms +

(Ie+It)N2
t f +Id N2

f +Iw

r2
e f f

} (22)

ay =
1

ms

{
ΣFy + msgsin(x7)

}
(23)

.
ψ = x6 (24)

φ = x7 (25)

θ = x8 (26)

3.2.2. Observability Check

Before designing the estimator, the observability must be checked. The observability
of the nonlinear state space model can be checked by the Lie derivative [33]. When the state
space equation is expressed as

.
x = f (x, u), y = h(x), the Lie derivative and observability

matrix can be written as:

L0
f = h(x)Lk+1

f =
∂Lk

f

∂x
f = ∇Lk

f · f (27)

O =


∇L0

f
∇L1

f
...

∇Ln−1
f


x=x0

(28)

where O is the observability matrix. Using the rank of the observability matrix, the system’s
observability can be seen locally. As a result of checking the rank of the observability matrix,
the observability matrix has full rank in range of vx 6= 0; therefore, this system is locally
observable for the range except vx = 0.

3.2.3. Dual Extended Kalman Filter Module

Among the vehicle dynamics parameters, the cornering stiffness varies under condi-
tions such as the vehicle load. To reduce the errors while modeling, the cornering stiffness
should be estimated.

This study adopts the DEKF as an estimator for reducing the error and increasing the
modeling accuracy. Figure 4 shows the DEKF scheme. The state vector, state input, state
output, and state space equation have been discussed in Section 3.2.1. The DEKF module
works according to the following recursive algorithm [34]:
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Figure 4. Scheme of dual-extended Kalman filter (DEKF).

Parameter prediction:
x̂−p (t) = x̂p(t− 1) (29)

P−p (t) = Pp(t− 1) + Qp (30)

State prediction:
x̂−s (t) = f

(
x̂s(t− 1), u(t), x̂−p (t)

)
(31)

P−s (t) = Fs(t)Ps(t− 1)FT
s (t) + Qs (32)

State update:

Ks(t) = P−s (t)HT
s (t)

[
Hs(t)P−s (t)HT

s (t) + Rs

]−1
(33)

x̂s(t) = x̂−s (t) + Ks(t)
[
y(t)− h

(
x̂−s (t)

)]
(34)

Ps(t) = P−s (t)− Ks(t)Hs(t)P−s (t) (35)

Parameter update:

Kp(t) = P−p (t)HT
p (t)

[
Hp(t)P−p (t)HT

p (t) + Rp

]−1
(36)

x̂p(t) = x̂−p (t) + Kp(t)
[
y(t)− h

(
x̂−s (t)

)]
(37)

Pp(t) = P−p (t)− Kp(t)Hp(t)P−p (t) (38)

where the parameter vector x̂p =
[
Cα f Cαr

]T
, state vector x̂s =

[
vx vy vz

.
φ

.
θ

.
ψ φ θ

]T
; Pp

and Ps are the error covariance matrices for parameters and states, respectively; Qp and Qs
are the process noise covariance matrices for parameter and state estimators, respectively;
Rp and Rs are the output noise covariance matrices for parameter and state estimators,
respectively. Rp and Rs are the same because both the parameter and state estimator
have same output y. Kp and Ks are the Kalman gain matrices for parameter and state
estimators, respectively. Fs and Hs are the Jacobian matrices for the state and output
equations, respectively, and are expressed as follows:

Fs =


∂ f1
∂x1

· · · ∂ f1
∂x8

...
. . .

...
∂ f8
∂x1

· · · ∂ f8
∂x8

 (39)
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Hs =


∂h1
∂x1

· · · ∂h1
∂x8

...
. . .

...
∂h5
∂x1

· · · ∂h5
∂x8

 (40)

In Equations (36) and (38), Hp is the Jacobian matrix of state output for the parameter
estimator and can be expressed as:

Hp =
∂y

∂x̂p
=


∂ax

∂Cα f

∂ax
∂Cαr

...
∂θ

∂Cα f
∂θ

∂Cαr

 (41)

Rp and Rs can be determined by the engineer’s tuning based on sensor noise. Qs and
Qp can also be determined by engineer’s tuning but Qp’s square of each elements is tuned
to approximately 1% of the initial values of the each actual parameter.

4. Results and Analysis

This section presents and discusses the experimental verification results of the algo-
rithms mentioned in Section 3. Neural network and DEKF are discussed separately in
Sections 3.1 and 3.2, respectively. The performance is compared with that of commer-
cial sensors.

4.1. Roll and Pitch Estimator (Neural Network)
4.1.1. Dataset

Sensor data from real-car experiment data were used for training and validating the
neural network. The neural network input data set contained information of a car’s chassis
sensors, and the label data set of roll and pitch angles was obtained from the high-accuracy
GPS-inertial navigation system (INS) RT-3002 (Oxford Technical Solutions Ltd., Bicester,
UK). For training the neural network, a total of 176,259 data sets were used, which logged
about 30 min at 10 ms intervals in various situations and offline validation was performed
in scenarios as shown in Table 3 with the same vehicle. The software used Python and the
framework used TensorFlow 1.6.

Table 3. Roll/pitch estimator validation scenario.

Condition Description

Case 1 - A stationary situation on the uphill

Case 2 Acceleration ±0.5 g or higher
Steering ±5 deg or higher

Rapid acceleration with steering on
downhill slope-quick deceleration

Case 3 Steering ±50 deg or higher
Yaw rate ±30 deg/s or higher

Accelerate-turn-deceleration with
steering on flat road

Case 4 - Common driving

4.1.2. Validation Result and Analysis

The estimation performance was validated using offline sensor data logged in various
cases, as shown in Table 3. The root mean square error (RMSE) was calculated by com-
parison with RT-3002, which was treated as a reference, and with the datasheet of SST810,
which is a commercial inclinometer sensor (Vigor Technology Co., Ltd., Xiamen, China).
Figures 5–8 show the scenario and roll/pitch estimation results for Case 1–4, respectively.
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Figure 5. Validation results of Case 1. (a) Speed and steering profile. (b) Roll/pitch estimation results.

Figure 6. Validation results of Case 2. (a) Speed and steering profile. (b) Roll/pitch estimation results.
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Figure 7. Validation results of Case 3. (a) Speed and steering profile. (b) Roll/pitch estimation results.

Figure 8. Validation results of Case 4. (a) Speed and steering profile. (b) Roll/pitch estimation results.

Table 4 shows the accuracy of the SST810 datasheet and RMSE calculation results of
the estimation results for Case 1–4. Figures 5–8 show that the value of pitch and roll angles
between 0 and 2 s is fixed at zero. This is due to the structure described in Section 3.1.2,
requiring 2 s of sequential data for the input; thus, the values in the initial 2 s cannot be
calculated. The RMSE was therefore calculated in the time zone excluding the initial 2 s.
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Table 4. Root mean square error (RMSE) calculation results of roll/pitch estimator and accuracy of SST810 datasheet.

Case 1 Case 2 Case 3 Case 4

Roll Pitch Roll Pitch Roll Pitch Roll Pitch

RMSE (deg) 0.1133 0.4188 0.0573 0.5422 0.1359 0.0958 0.5140 0.5283
Commercial sensor

accuracy (deg) 1
≤±0.05

(static situation)
≤±0.5

(dynamic situation)
1 From SST810 inclinometer datasheet of Vigor Technology Co., Ltd.

Case 1 shows that the roll RMSE is approximately 0.1◦ and the pitch RMSE is ap-
proximately 0.4◦. There was some offset error, although the vehicle’s speed was zero, i.e.,
a stationary scenario. For commercial sensors, the error rate is 0.05◦ at the static scenario,
but the estimation results show a larger error compared with the commercial sensors.
The neural network estimator in this study uses data of only the chassis sensors of the
vehicle; thus, the performance of sensors has a significant impact on the estimation perfor-
mance. In particular, it can be expected that the IMU’s characteristic bias error affected the
offset errors in the estimation results.

Cases 2–4 include scenarios in which rapid changes in vehicle attitude occur in areas
where acceleration or deceleration occurs. The validation results show high estimation
accuracy in these scenarios. In addition, the noise reduction effect compared to RT-3002
is noticeable in the 15–60 s duration for Case 3; thus, the neural network estimator can
estimate stable output. The performance of the estimator is thus superior compared to the
commercial sensors.

4.2. Acceleration and Angular Velocity Estimator (DEKF)
4.2.1. Validation Environment

The acceleration and angle velocity estimator was validated by simulation using
CarSim, which is a commercial vehicle simulator software. To create an environment
similar to the actual vehicle, Gaussian white noise was added to the sensor value, as shown
in Table 5. To ensure that the errors of the acceleration sensor due to roll and pitch have
been corrected, simulations were conducted in the scenarios shown in Table 6.

Table 5. Sensor configuration for simulation.

Sensor Noise Unit

IMU (ax, ay) 0.1 (RMS) + 10 (%) m/s2

IMU (
.
ψ) 0.01 (RMS) + 10 (%) rad/s

Steering angle 0.05 (RMS) + 10 (%) rad

Engine torque 7 (RMS) N·m
Brake pressure 0.05 (RMS) MPa

Table 6. Acceleration/angular velocity estimator validation scenario.

Condition Description

Case 1 Roll ±30 deg or lower
Pitch ±3 deg or lower

U-turn with 30 degrees of
bank angle

Case 2 Roll ±30 deg or lower
Pitch ±10 deg or lower

Sharp turn at 30 degrees of
bank angle after 10 degrees of

uphill and downhill

Case 3 - Common driving
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4.2.2. Validation Results and Analysis

The correctness performance of ax, ay, and
.
ψ was validated by comparing IMU

sensor values, DEKF estimates, and reference values, while the estimates of roll rates and
pitch rates without sensors were validated by comparing with only the reference values.
The RMSE of the estimated results is calculated based on the reference and compared with
the datasheet of SMI860, which is a commercial six-dimensional IMU from BOSCH Co., Ltd.
In addition, to validate the effects of DEKF’s parameter estimator, the estimated results of
Cα f and Cαr for each case were noted, and the estimated results with and without cornering
stiffness estimation for Case 3 were compared. Figures 9–12 show the simulation scenarios
and results of DEKF.

Figure 9. Simulation results of Case 1. (a) Roll/pitch profile. (b) ax, ay and
.
ψ estimation results.

(c)
.
φ and

.
θ estimation results. (d) Cα f and Cαr estimation results.
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Figure 10. Simulation results of Case 2. (a) Roll/pitch profile. (b) ax, ay, and
.
ψ estimation results.

(c)
.
φ and

.
θ estimation results. (d) Cα f and Cαr estimation results.
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Figure 11. Simulation results of Case 3. (a) Roll/pitch profile. (b) ax, ay, and
.
ψ estimation results.

(c)
.
φ and

.
θ estimation results. (d) Cα f and Cαr estimation results.

Figure 12. Effect of cornering stiffness estimation in Case 3.
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Table 7 shows the accuracy of the commercial sensor, obtained from its datasheet,
and RMSE calculation results of the estimation values for case 1–3. In case 1, there was
a fatal error of sensor value of ay due to roll angle, and case 2 exhibited considerably
varying roll and pitch angles; therefore, the value of ax and ay from sensors may not be
accurate. Figures 9b and 10b confirm that these errors in sensor values are successfully
corrected to obtain estimates close to the reference. In addition, in normal driving scenarios,
as in the 60–65 s duration in Case 3, an ax sensor error by pitch is noted, which has also
been successfully corrected. Furthermore, in all cases, filter effects that reduce noise from
existing sensors can be checked through ax, ay, and

.
ψ. Compared with a commercial

sensor, ax and ay show similar accuracy, whereas
.
ψ shows a significantly higher accuracy.

However, in the case of commercial sensors, there may be errors caused by roll and pitch
angles; therefore, DEKF can have commercial sensor level or higher accuracy even though
correcting those errors.

Table 7. RMSE calculation results of DEKF and accuracy obtained from SMI860 datasheet.

Accuracy

DEKF (RMSE) Commercial Sensor 1

ax (m/s2)
Case 1 0.4325

≤±0.5Case 2 0.8075
Case 3 0.3087

ay (m/s2)
Case 1 0.8232

≤±0.5Case 2 0.4204
Case 3 0.5085

.
ψ (deg/s)

Case 1 0.7391
≤±3Case 2 0.3953

Case 3 0.5844

.
φ (deg/s)

Case 1 5.8499
≤±2Case 2 5.1394

Case 3 1.0542

.
θ (deg/s)

Case 1 1.9251
- 2Case 2 1.7475

Case 3 0.6704
1 From SMI860 IMU datasheet of BOSCH Co., Ltd. 2 SMI860 cannot sense the pitch rate.

The roll and pitch rates could be estimated because they were included in the state
vector, although the sensor values were not included. The roll rate accuracy was occasion-
ally lower than that of commercial sensors depending on the case, and in the case of pitch
rate, it is not comparable because there is no output of commercial sensors, but it can be
confirmed from the RMSE values that the estimated values have a fairly high accuracy.

Figures 9d, 10d and 11d show the estimated cornering stiffness. Figure 12 and Table 8
show the results with and without cornering stiffness estimation in Case 3, which can
improve accuracy by approximately 3–5%, particularly with a greater effect on ay.

Table 8. RMSE of with and without cornering stiffness estimation in Case 3.

RMSE

Without Cornering Stiffness Estimation With Cornering Stiffness Estimation

ay (m/s2) 0.5541 0.5085
.
ψ (deg/s) 0.6131 0.5844
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5. Conclusions and Future Work

In this paper, we proposed a CNN-based neural network to estimate the roll and pitch
angles of a vehicle. A DEKF was used to correct the gravitational effect caused by the roll
and pitch for estimating the exact acceleration and angular velocity.

By using the vehicle’s chassis sensor data as a time series, the neural network could
estimate the roll and pitch angles of the vehicle without a GPS or six-dimensional IMU.
Based on the estimated roll and pitch angels, we designed an extended Kalman filter (EKF)
using the 6-DOF vehicle model. Another EKF was designed, and the two EKFs were used
to estimate the cornering stiffness. We then constructed the DEKF.

Using experimental data obtained using a real car, the proposed roll and pitch esti-
mator was validated, and the DEKF was validated in the CarSim simulation environment.
The roll and pitch estimator showed an improved performance compared to the commer-
cial sensors in dynamic scenarios and also reduced the noise. However, the performance
in static scenarios was weaker. The acceleration and angular velocity estimator could
effectively correct the acceleration sensor error due to roll and pitch with a de-noising
effect. In addition, the roll and pitch rates that could not be obtained from sensors could be
estimated with significant accuracy. By comparing the results before and after including
the cornering stiffness, we found that the accuracy is improved if the cornering stiffness
is considered.

On the other hand, our work has limitations and challenges that should be further
discussed. We plan to consider fusion with other algorithms to improve the attitude
estimation performance in static scenarios. In addition, the proposed method has not been
checked in case of a change in the vehicle weight. It will also be necessary to verify the
performance of the algorithm due to changes in vehicle weight. Furthermore, our proposed
algorithm is hard to apply as an embedded system in vehicle because the neural network
has large capacity. The future work should be conducted to enable algorithm to operate as
real-time in vehicle through simplification and optimization.
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Appendix A. Feature Importance Analysis

Figure A1. Result of feature importance weight analysis.

Table A1. Feature name of each number.

Feature Number Feature Name

1 Ax
2 Ay
3 Yaw Rate
4 Brake Pressure
5 Steering Angle
6 Engine Throttle
7 ΣWheel Speed (Vx)

All features have an importance weight higher than 0.8; therefore, feature reduction is
not performed.

Appendix B. Hyperparameter of Neural Network

Table A2. Details of neural network.

Part Layer Name Filter Size Activation Output Size

CNN
part

1-layer Fully connected Leaky ReLU (200 × 200 × 1)
2-layer Convolution layer (3 × 3 × 1) 8EA 1 Leaky ReLU (200 × 200 × 8)
3-layer Convolution layer (3 × 3 × 8) 16EA 1 Leaky ReLU (200 × 200 × 16)

4-layer Convolution layer (3 × 3 × 16) 32EA
1 Leaky ReLU (200 × 200 × 32)

5-layer Convolution layer (5 × 5 × 32) 32EA
2 Leaky ReLU (40 × 40 × 32)

6-layer Fully connected Leaky ReLU (256 × 1)

FCL
part

1-layer Fully connected Leaky ReLU (256 × 1)
2-layer Fully connected Leaky ReLU (1024 × 1)
3-layer Fully connected Leaky ReLU (1024 × 1)
4-layer Fully connected Leaky ReLU (256 × 1)

Final Layer Final layer Fully connected (2 × 1)
1 1 × 1 stride was used. 2 5 × 5 strides were used.
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