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A B S T R A C T   

This research looked at the unsteady free convection flows of an incompressible viscous fluid with 
heat/sink in a vertical cylinder containing a mixture of 47 nm alumina nanoparticles in water. 
The flow direction is subjected to a perpendicular magnetic field. The generalization entails 
taking into account a new version of the constitutive equation for thermal flux, known as the 
generalized Atangana-Baleanu derivative, which is based on the generalized time-fractional de-
rivative with Mittag-Leffler kernel. Using the Laplace transform and the finite Hankel transform, 
closed forms of analytical solutions for temperature and velocity fields, represented with Bessel 
and generalized G–function of Lorenzo and Hartley functions, are determined. The generalized 
solutions are appropriate for particularizations to yield solutions corresponding to fractional 
derivatives with power-law kernel and exponential kernel. The Mittag-Leffler function is a one- 
parametric function. It is also possible to acquire the usual situation, which corresponds to 
classical Fourier’s law. To compare models based on generalized Atangana-Baleanu, Atangana- 
Baleanu, Caputo, and Caputo-Fabrizio time fractional derivatives, numerical simulations pro-
duced with the program Mathcad are carried out and visually depicted.   

1. Introduction 

Any material that may transform or move from one form to another while keeping or holding the capacity to flow is said to be a 
fluid. Some fluid categories include Newtonian fluid, viscoelastic fluid, and nonlinear relationship between shear stress and shear 
strain due to either time-independent or time-dependent viscosity. The scientific reality that there is no fluid flow in which shear stress 
is proportionate to rate of deformation is no longer valid. 

In the cylinder, the Coriolis force causes liquids and gases to deflect to the right. The Coriolis force is equally as significant as the 
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magnetohydrodynamic forces, inertial forces, and viscous forces in the fundamental flow equations. On any fluid flow on the earth’s 
surface, gravitational force, frictional force, centrifugal force, and pressure gradient force all act. The Coriolis force does not affect all 
transport mechanisms in the atmosphere or the water. The Coriolis force, according to Debnath [1] and Deng et al. [2], can impact 
transport phenomena on the earth’s surface. As a result, it is unrealistic to believe that the Coriolis force has no effect on non-static 
transport phenomena on Earth’s surface. In addition to the Coriolis effect, the earth’s rotation is a major contributor to climatic 
variations on the planet. The Coriolis force may be used to explain the spinning directions of hurricanes, typhoons, tropical cyclones, 
and strong cyclonic storms. Photobioreactors, sewage treatment, and bio-reactors for specific tissues are all examples of Coriolis force 
applications in industry; see Refs. [1,2]. Du and Selig [3] provided an analysis of an incompressible constant momentum integral 
boundary layer ow in three dimensions, with a focus on the importance of rotation as it applies to wind turbine blades. 

With several engineering applications, natural convection flow of viscous incompressible fluids in heated horizontal/vertical plates 
and horizontal/vertical cylinders is a major challenge. As they travel through the environment, hot filaments, also known as vertical 
cylinders in the glass and polymer sectors, cool. Researchers are interested in the unsteady free convection flow of incompressible 
fluids in a heated vertical cylinder because of its many applications in physical sciences and engineering. Several scholars have studied 
fluid flow over vertical cylinders under various physical conditions. As a result, various theoretical, experimental, and computational 
studies on the flow and heat transfer characteristics of circular cylinders have been carried out, giving many results See Refs. [4–6] and 
their references. 

Choi and Eastman [7] used the term “nanofluid” to describe fluid substances appropriately mixed with particles having diameters 
in the nanometer 10− 9 m range. Because they have a significant surface-area-to-volume ratio, particles with a diameter of less than 
100 nm have better optical, mechanical, thermal, chemical, magnetic, and electrical characteristics over ordinary solids. Cooling issues 
and product maintenance may be considered some of the industries’ worries because of ever-increasing heat production. Scientists 
have learned to recognize the unique nature and thermal characteristics of different fluids generated by adding solid particles to save 
energy and process time (on micrometer and millimeter scales). Nanofluids are used in a variety of sectors, including automobile 
engine coolants, cancer therapeutics, nanodrug delivery, syphilis detection, and nanofluid detergent (Wong and De Leon [8]). Nguyen 
et al. [9] performed tests to show how the particle size of water-36nm Al2O3, water-47nm Al2O3, and water-29nm CuO nanoparticles 
influences their dynamic viscosity. When particle volume fractions are less than 4%,othe viscosities of both nanofluids containing 
Al2O3 are identical, according to the findings. The viscosity of water-47nm Al2O3 nanofluid is significantly greater than that of 
water-36nm Al2O3 nanofluid above this interval. On the case of CuO–H2O and Al2O3–H2O nanofluids, little is known about the in-
fluence of heat sinks in thermal management. As the heat transfer rate rises, Ali et al. [10] explored how to keep the temperature at the 
base of a heat sink as low as feasible. It was observed that Al2O3-water nanofluid had a greater heat transfer rate than CuO-water 
nanofluid and pure water. Furthermore, the heat sink has the potential to reduce the amount of heat produced by 89.6% between 
the mini channels. 

In recent years, scholars have shown that fractional calculus approaches, such as the theory of non-integer order derivatives and 
integrals, may successfully describe a variety of phenomena in engineering, bioengineering, physics, and chemistry. Caputo and 
Mainardi [11], Marks and Hall [12], Olmstead and Handelsman [13], Diethelm and Freed [14], mechanical systems susceptible to 
damping, Gaul et al. [15], relaxation and reaction kinetics of polymers, Glockle and Nonnenmacher [16], heat conduction, Hristov [17, 
18] are some of the important problems modeled with the help of fractional differential operators. Diehelm and colleagues [19] have 
compiled a helpful set of numerical methods for Caputo-type derivatives, the Riemann-Liouville integral operator, and Mittag-Leffler 
functions. 

MHD is used in a variety of fluid flows and has a wide range of applications, including medication, oil operations, aviation, MHD 
generators, atomic reactors, and astronomy. Makinde and Animasaun [20] investigated the effects of “autocatalysis compound 
response and nonlinear Sheikholeslami et al. [21] found MHD nanofluid passing through a penetrable medium with thermal dispersion 
and heat generation across a vertical plate. Azam et al. [22], who developed solutions for unsteady MHD cross nanofluid flow 
influenced by nonlinear thermal radiation and zero mass transition conditions, might be incorporated in MHD study. Using Fick’s and 
Fourier’s generalized laws, Shao et al. [23] studied the MHD natural convection flow of a viscous fluid with fractional derivatives. 
Fourier-sine and Laplace integral transformations were used to get the solutions. There are also some current investigations on the 
relevance of MHD in Refs. [24–29]. 

This research looked at the unsteady free convection flows of an incompressible viscous fluid with heat/sink in a vertical cylinder 
containing a mixture of 47 nm alumina nanoparticles in water. The flow direction is subjected to a perpendicular magnetic field. The 
generalization entails taking into account a new version of the constitutive equation for thermal flux, known as the generalized 
Atangana-Baleanu derivative, which is based on the generalized time-fractional derivative with Mittag-Leffler kernel. Using the 
Laplace transform and the finite Hankel transform, closed forms of analytical solutions for temperature and velocity fields, represented 
with Bessel and generalized G–function of Lorenzo and Hartley functions, are determined. The generalized solutions are appropriate 
for particularizations to yield solutions corresponding to fractional derivatives with power-law kernel and exponential kernel. The 
Mittag-Leffler function is a one-parametric function. It is also possible to acquire the usual situation, which corresponds to classical 
Fourier’s law. To compare models based on generalized Atangana-Baleanu, Atangana-Baleanu, Caputo, and Caputo-Fabrizio time 
fractional derivatives, numerical simulations produced with the program Mathcad are carried out and visually depicted. warm ra-
diation on MHD nanofluid flow through the upper surface” of a paraboloid of disturbance. 

2. Preliminary mathematics 

The essential mathematical parts of the two-parametric Mittag-Leffler functions and the generalized time-fractional Atangana- 
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Baleanu derivatives are presented in this section. The next portions of this work will require these mathematical concepts. 

2.1. One-parametric and two-parametric Mittag-Leffler functions 

The Mittag-Leffler function is a one-parametric function that is defined as [30,31]. 

Eϑ(z)=
∑∞

j=0

zj

Γ(ϑj + 1)
, ϑ > 0 (1)  

where, Γ(ς) =
∫∞

0

e− ττς− 1dτ, Re(ς) > 0 is Euler integral of the second kind. 

The two-parametric Mittag-Leffler function generalizes the function Eϑ(z) and is defined by 

Eϑ,ε(z)=
∑∞

j=0

zj

Γ(ϑj + ε), ϑ > 0, ε ∈ ℂ (2) 

It is easy to notice that function (1) is a particular case of function (2), so we have 

Eϑ(z)=Eϑ,1(z) (3) 

Let’s recall some properties of Mittag-Leffler functions. 

Eϑ,ε(z) = zEϑ, ϑ+ε(z) + 1
/

Γ(ε),

Eϑ,ε(z) = εEϑ,1+ε(z) + ϑz
d
dz

Eϑ,1+ε(z),
(4)  

tγE1,1+γ(at)= tγ
∑∞

j=0

(at)j

Γ(j + 1 + γ)
= Et(γ, a) − the Miller − Ross function, (5)  

tγE1+γ,1+γ
(
at1+γ)= tγ

∑∞

j=0

ajt(1+γ)j

Γ[(1 + γ)(1 + j)]
=Rt(γ, a) − the Robotnov function, (6)  

∫z

0

tε− 1Eϑ,ε(btϑ)dt = zεEϑ,ε+1(bzϑ), ε > 0,

∫z

0

tε− 1(z − t)γ− 1Eϑ,ε(btϑ)dt = zε+γ− 1Eϑ,ε+γ(bzϑ)Γ(ϑ), ε > 0, γ > 0,

∫z

0

(z − t)ε− 1ebtdt = zεE1,ε+1(bz)Γ(ε), ε > 0

(7) 

The following special form of the one-parametric Mittag-Leffler function [32]. 

G(t − τ)=Eϑ

[

−

(
t − τ

γ

)ϑ]

, ϑ∈ (0, 1), γ > 0, τ ∈ [0, t], (8)  

along with its derivative 

M
(

t − τ
)

=
∂G(t − τ)

∂τ =
− 1

t − τEϑ,0

[

−

(
t − τ

γ

)ϑ]

,ϑ∈

(

0, 1
)

, γ > 0, τ∈
[

0, t
)

, (9)  

have applications in the theory of fractional-order viscoelasticity and in some problems modeled by fractional differential equations 
with constant coefficients. 

In the reference [32], some numerical approaches for determining numerical values of Mittag-Leffler functions are described. These 
methods are based on Mittag-Leffler functions’ integral representations. The following integral representations will be used in this 
paper: 

If ϑ∈ (0,1], ε∈ ℝ, 0< ρ< |z|, |argz|> ϑπ, z∕= 0, then 
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Eϑ,ε(z) =
∫∞

ρ

K(ϑ, ε, x, z)dx +
∫ϑπ

− ϑπ

P(ϑ, ε, ρ, y, z)dy,

K(ϑ, ε, x, z) =
1

πϑ
x1− ε

ϑ exp
(
− x1/ϑ) x sin(π(1 − ε)) − z sin(π(1 − ε + ϑ))

x2 − 2xz cos(πϑ) + z2 ,

P(ϑ, ε, ρ, y, z) =
ρ1+(1− ε)/ϑ

2πϑ
exp

(
ρ1/ϑ cos(y/ϑ)

)
exp(iφ)

ρ exp(iy) − z
,

φ = ρ1/ϑ sin(y/ϑ) + y(1 + (1 − ε)/ϑ).

(10) 

The integral representation 

∫∞

0

e− st tmαE(m)

ϑ (±btϑ)dt=
m!sϑ− 1

(sϑ ∓ b)m+1, Re(s)> 0, Re(ϑ)> 0, m ∈ ℕ (11)  

coupled with the definition of the Laplace transform of a function Ψ(t), L{Ψ(t)} =

∫∞

0

Ψ(t)exp( − st)dt ogive the following relationship: 

L
{

tmαE(m)

ϑ (±btϑ)
}
=

m!sϑ− 1

(sϑ ∓ b)m+1, Re(s)> 0, Re(ϑ)> 0, m ∈ ℕ (12) 

In this particular instance, m = 0, Eq. (12) becomes 

L{Eϑ(±btϑ)}=
sϑ− 1

sϑ ∓ b
(13)  

2.2. Generalized Atangana-Baleanu time-fractional derivative 

The function 

χ(t, ϑ, ε)= 1
1 − ϑ

Eε

( − ϑ
1 − ϑ

tε
)
, t≥ 0, ϑ ∈ (0, 1), ε> 0 (14)  

is called the generalized Atangana-Baleanu kernel. 
The Laplace transform of the kernel (14) is given by 

L{χ(t,ϑ, ε)}= sε− 1

(1 − ϑ)sε + ϑ
(15) 

Using the Laplace transform, the following properties of the generalized Atangana-Baleanu kernel (14) are found: 

lim
ϑ→0

L{χ(t,ϑ, ε)} = L
{

lim
ϑ→0

χ(t,ϑ, ε)
}

=
sε− 1

sε = L{1},

lim
ϑ→1

L{χ(t,ϑ, ε)} = L
{

lim
ϑ→1

χ(t,ϑ, ε)
}

=
1

s1− ε = L
{ t− ε

Γ(1 − ε)

}
= L{χ0(t, ε)},

lim
ε→0

L{χ(t,ϑ, ε)} = L
{

lim
ε→0

χ(t,ϑ, ε)
}

=
1
s
= L{1},

lim
ε→1

L{χ(t,ϑ, ε)} = L
{

lim
ε→1

χ(t,ϑ, ε)
}

=
1

(1 − ϑ)s + ϑ
= L

{
1

1 − ϑ
e − ϑt

1− ϑ

}

= L{χ1(t,ϑ)},

(16)  

therefore, 
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lim
ϑ→0

χ(t, ϑ, ε) = lim
ε→0

χ(t, ϑ, ε) = 1,

lim
ϑ→1

χ(t, ϑ, ε) = χ0(t, ε) =
t− ϑ

Γ(1 − ϑ)
,

lim
ε→1

χ(t, ϑ, ε) = χ1(t,ϑ) =
1

1 − ϑ
exp

( − ϑt
1 − ϑ

)
,

χ(t,ϑ, ϑ) = χ2(t,ϑ) =
1

1 − ϑ
Eϑ

(
−

ϑ
1 − ϑ

tϑ
)
,

lim
ϑ→1

ε→1

χ(t,ϑ, ε) = δ(t).

(17) 

In the above relations, functions χ0(t,ϑ), χ1(t,ϑ), χ2(t,ϑ) and δ(t) are, respectively Caputo kernel, Caputo-Fabrizio kernel, 
Atangana-Baleanu kernel, and the Dirac’s distribution. 

Definition (The generalized Atangana-Baleanu fractional derivative in Caputo sense). If f ∈ H1(0,T), T > 0, ϑ ∈ [0,1], ε ∈ [0,1],
the generalized Atangana-Baleanu fractional derivative in Caputo sense, of order α of the function f(t) is defined by the relation, 

( GABDϑ,ε
t f

)
(t)= χ(t, ϑ, ε) * ḟ (t) =

∫t

0

χ(t − τ,ϑ, ε)ḟ (τ)dτ (18) 

Using Eqs. (17) and (18), we obtain the following properties of the generalized Atangana-Baleanu time-fractional derivative: 

(
GABD0,ε

t f
)
(t)=

(
GABDϑ,0

t f
)
(t) = 1 * ḟ (t)=

∫t

0

ḟ (τ)dτ= f (t) − f (0), (19)  

(
GABD1,1

t f
)
(t)= δ(t) * ḟ (t)= ḟ (t)=

df (t)
dt

, (20)  

(
GABD1,ε

t f
)
(t)= χ0(t, ε) * ḟ (t)=

( CDε
t f
)
(t) (21)  

(
GABDϑ,1

t f
)
(t) = χ1(t, ε) * ḟ (t) =

( CFDε
t f
)
(t) (22)  

( GABDϑ,ϑ
t f

)
(t) = χ2(t, ϑ) * ḟ (t)=

( ABDϑ
t f
)
(t) (23)  

where, (CDε
t f)(t) denotes the time-fractional Caputo derivative, (CFDε

t f)(t) is time-fractional Caputo-Fabrizio derivative, and (ABDϑ
t f)(t)

denotes the time-fractional Atangana-Baleanu derivative. 
Associated with the generalized Atangana-Baleanu derivative, we define the following fractional integral operator: 

(
Jϑ,ε

t f
)(

t
)
=
(
1 − ϑ

)
f
(
t
)
+ ϑψ0

(
t, ε

)
* f

(
t
)
, ϑ∈

[
0, 1

]
, ε∈

(
0, 1

]
, (24)  

where the kernel ψ0(t, ε) is defined as 

ψ0(t, ε)= tε− 1

Γ(ε) (25) 

It is observed that L{ψ0(t, ε)} = 1
sε, lim

ε→0
L{ψ0(t, ε)} = 1 = L{δ(t)}, therefore, 

lim
ε→0

ψ0(t, ε)= δ(t) (26) 

Using the property (26), the fractional integral operator can be defined for ε = 0. 
The fractional integral operator (24) has the following properties: 

(
J1,0

t f
)
(t) = δ(t)*f (t) = f (t),

(
J1,1

t f
)
(t) = 1*f (t) =

∫t

0

f (τ)dτ.
(27) 

Regarding the generalized Atangana-Baleanu derivative and associated fractional integral operator, we remember the proposition: 
Proposition. The following relationships are fulfilled: 
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( GABDϑ,ε
t

(
Jϑ,ε

t f
))
(t) = f (t) − (1 − ϑ)f (0)χ(t,ϑ, ε),

(
Jϑ,ε

t

( GABDϑ,ε
t f

))
(t) = f (t) − f (0).

(28) 

The demonstration of the above proposition can be found in the reference [33]. 
The generalized fractional integral operator (24) contains the following particular cases: 

ϑ = 1, ε ∈ [0, 1],

10( J1,ε
t f

)
(t) = ψ0(t, ε)*f (t) =

1
Γ(ε)

∫t

0

(t − τ)ε− 1f (τ)dτ,
(29) 

i.e. the well-known Riemann-Liouville fractional integral operator. 

ϑ ∈ [0, 1], ε = 1,

20.
(
Jϑ,1

t f
)
(t) = (1 − ϑ)f (t) + ϑ

∫t

0

f (τ)dτ, (30)  

that is the integral operator associated to the Caputo-Fabrizio derivative. 

ϑ = ε ∈ [0, 1],

30 ( Jϑ,ϑ
t f

)
(t) = (1 − ϑ)f (t) +

ϑ
Γ(ϑ)

∫t

0

(t − τ)ϑ− 1f (τ)dτ,
(31)  

that is the fractional integral operator associated with Atangana-Baleanu fractional derivative. 

3. Mathematical formulation and solution of the problem 

Consider transient free convection flow of an incompressible viscous fluid in an infinite vertical cylinder of radius r0. The z-axis is 
considered along the axis of cylinder in vertical upward direction and the radial coordinate r is taken normal to it. Initially at time t ≤
0, it is assumed that the cylinder is at rest and the cylinder and fluid are at the same temperature T∞. After time t = 0, the cylinder 
begins to oscillate along its axis and induces the motion in the fluid with velocity U0H(t)exp(iωt), where U0 is the characteristic ve-
locity, H(t) is the unit step function and ω is the frequency of oscillation. At the same time, the cylinder temperature raised to Tw which 
is thereafter maintained constant (see Fig. 1). 

Fig. 1. Flow geometry.  
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We assume that the velocity and temperature are the function of ξ and t only. For such a flow, the constraint of incompressibility is 
identically satisfied. It is also assumed that all the fluid properties are constant except for the density in the buoyancy term, which is 
given by the usual Boussinesq’s approximation. Under these assumptions, a well-defined problem is modeled in terms of the following 
partial differential equations: 

ρnf
∂u(ξ, t)

∂t
= μnf

1
ξ

∂
∂ξ

(

ξ
∂u(ξ, t)

∂ξ

))

+ g(ρβT)nf [T(ξ, t) − T∞] − σnf B2
0u
(

ξ, t
)

, (32)  

(
ρcp

)

nf
∂T(ξ, t)

∂t
= −

(
∂
∂ξ

+
1
ξ

)

q(ξ, t) − Q[T(ξ, t) − T∞], (33)  

q(ξ, t)= − knf
∂T(ξ, t)

∂ξ
. (34)  

here T(ξ, t) is the fluid temperature, q(ξ, t) is the thermal flux, g is the acceleration due to the gravity, ρnf is the density of the nanofluid, 
βnf is the thermal expansion coefficient of the nanofluid, μnf is the dynamic viscosity of the nanofluid, (cp)nf is the specific heat of the 
nanofluid at constant pressure and knf is the thermal conductivity of the nanofluid. The thermal-physical properties of nanofluid are 
defined in [34,35]. 

ρnf =(1 − φ)ρbf + φρnp,
μnf

ρnf νbf
=

0.904e0.148φ

1 − φ +
ρnp
ρbf

φ
,

(ρβ)nf =(1 − φ)(ρβ)bf + φ(ρβ)np,
(
ρcp

)

nf = (1 − φ)
(
ρcp

)

bf + φ
(
ρcp

)

np,

Fig. 2. Profile of temperature versus r for ϑ variation at different values of time t.  
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knf

kf
=

knp + 2kbf + 2φ
(
kbf − knf

)

knp + 2kbf − φ
(
kbf − knf

) ,
σnf

σbf
=

(

1+
3(σ − 1)φ

(σ + 2) − (σ − 1)φ

)

, σ =
σs

σf
,

where φ is the nanoparticle volume fraction, the indexes f allude to the fluid, with appropriate initial and boundary conditions: 

u(ξ, 0)= 0, T(ξ, 0)= T∞ ; ξ ∈ [0, r0], (35)  

u(r0, t) =U0H(t)exp(iωt); T(r0, t) =Tw, t > 0 . (36) 

Let us introduce the following dimensionless variables 

ξ* =
ξ
r0
, Ω =

u
U0

, t* =
tνnf

r2
o
, Θ* =

T − T∞

Tw − T∞
, q* =

q
q0
, q0 =

(Tw − T∞)knf

r0
, Q* =

Qr2
o

knf
(37)  

where U0 is a characteristic velocity. Using the above dimensionless variables and parameters and after dropping out the *  notation in 
Eqs. (32)-(36), owe obtain 

Fig. 3. Profile of temperature versus r for ε variation at different values of time t.  
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∂Ω(ξ, t)
∂t

=
∂2Ω(ξ, t)

∂ξ2 +
1
ξ

∂Ω(ξ, t)
∂ξ

+GrΘ(ξ, t) − MΩ(ξ, t); ξ ∈ (0, 1), t > 0, (38)  

∂Θ(ξ, t)
∂t

= −
1
Pr

(
∂
∂ξ

+
1
ξ

)

q(ξ, t) − QΘ(ξ, t), (39)  

q(ξ, t)= −
∂Θ(ξ, t)

∂ξ
. (40)  

u(ξ, 0)= 0, θ(ξ, 0)= 0 ; ξ ∈ [0, 1], (41)  

u(1, t) =H(t)exp(iωt); θ(1, t)= 1, t > 0, (42)  

where M = B0R
̅̅̅̅̅σnf
μnf

√
represents the magnetic parameter, Gr = g(βT)nf r2

o (Tw − T∞)

U0νnf 
is the Grashof number and Pr = (μcp)nf

knf 
is Prandtl number. 

The form of the constitutive equations can be changed to define a medium with new attributes in order to explore a new math-
ematical model. The thermal flux is represented by a time-fractional derivative equation that constitutes an extension of the traditional 
Fourier’s law of heat conduction in the current model as 

q(ξ, t)= −
GABDϑ,ε

t
∂Θ(ξ, t)

∂ξ
, (43)  

where 
GAB

Dϑ,ε
t the generalized Atangana-Baleanu fractional derivative in Caputo sense defined by the relation, 

Fig. 4. Profile of temperature versus r for φ variation at different vales of Q.  
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( GABDϑ,ε
t f

)
(t) = χ(t, ϑ, ε)*ḟ (t) =

∫t

0

χ(t − τ, ϑ, ε)ḟ (τ)dτ;

χ(t,ϑ, ε) = 1
1 − ϑ

Eε

( − ϑ
1 − ϑ

tε
)
, t ≥ 0, ϑ ∈ (0, 1), ε > 0.

Using Eq. (43) in Eq. (39), we obtain 

∂Θ(ξ, t)
∂t

=
1
Pr

GABDϑ,ε
t

(
∂2

∂ξ2 +
1
ξ

∂
∂ξ

)

Θ(ξ, t) − QΘ(ξ, t). (44)  

4. Solution of the problem 

4.1. Temperature distribution 

We applied the Laplace transformation to Eqs. (43) and (39)2, we get 

sΘ(ξ, s)=
[ sε

Pr((1 − ϑ)sε + ϑ)

][∂2Θ(ξ, s)
∂ξ2 +

1
ξ

∂Θ(ξ, s)
∂ξ

]

− QΘ(ξ, s) (45)  

Θ(1, s)=
1
s
, (46)  

where Θ(ξ, s) =

∫∞

0

Θ(ξ, t)e− stdt. 

Fig. 5. (i). Profile of velocity profile with sine oscillation versus r for ϑ variation at different vales of time t. Fig. 5(ii). Profile of velocity profile with 
cosine oscillation versus r for ϑ variation at different values of time t. 
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We get the following result by applying the finite Hankel transform to Eq. (45) and utilizing the boundary condition in Eq. (46). 

ΘH(ξn, s)=
ξnJ1(ξn)sε− 1

Pr(s + Q)((1 − ϑ)sε + ϑ) + ξ2
nsε

, (47)  

where ΘH(ξn, s) =
∫1

0

Θ(ξ, s)ξJ0(ξξn)dξ is the finite Hankel transform of function Θ(ξ, q) and ξn, n = 1,2 … are the positive roots of the 

equation J0(x) = 0, J0 being the Bessel function of the first kind and order zero. 
Eq. (47) can be written in the following equivalent form 

ΘH(ξn, s)=
J1(ξn)

ξn

1
s
−

J1(ξn)

ξn

Pr(s + Q)((1 − ϑ)sε + ϑ)
s
[
Pr(s + Q)((1 − ϑ)sε + ϑ) + ξ2

nsε
], (48) 

Applying the inverse Hankel transform to Eq. (17), get 

Θ(ξ, s)=
1
s
− 2

∑∞

n=1

J0(ξξn)

ξnJ1(ξn)

Pr(s + Q)((1 − ϑ)sε + ϑ)
s
[
Pr(s + Q)((1 − ϑ)sε + ϑ) + ξ2

nsε
]. (49) 

Using series formula Eq. (49) can be written as 

Θ(ξ, s)=
1
s
− 2

∑∞

n=1

J0(ξξn)

ξnJ1(ξn)

∑∞

k=0

( − 1)kξ2k
n

[Pr(1 − ϑ)]k

⎡

⎣ s− 1

(s + Q)
k

sεk− 1

(
sε + ϑ

1− ϑ

)k

⎤

⎦. (50) 

Taking the inverse Laplace transform, we obtain 

Θ(ξ, t)= 1 − 2
∑∞

n=1

J0(ξξn)

ξnJ1(ξn)

∑∞

k=0

( − 1)kξ2k
n

[Pr(1 − ϑ)]k
[
G1,− 1, k(t, − Q) * Gε,εk− 1, k

(
t, −

ϑ
1 − ϑ

)]
. (51) 

Fig. 5. (continued). 
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Ga, b, c(t, d) = L− 1
{

sb

(sa − d)c

}

, R(s) > 0, R(ac − b) > 0,
⃒
⃒
⃒
⃒

d
sa

⃒
⃒
⃒
⃒ < 1, is the generalized G–function of Lorenzo and Hartley. 

For classical case ϑ = 1 and ε = 0, we get ordinary model of temperature distribution as 

Θ(ξ, t) = 1 − 2
∑∞

n=1

J0(ξξn)

ξnJ1(ξn)

∑∞

k=0

( − 1)kξ2k
n

Prk

[
G1,− 1, k(t, − Q)*H(t)

]

= 1 − 2
∑∞

n=1

J0(ξξn)

ξnJ1(ξn)

∑∞

k=0

( − 1)kξ2k
n

Prk

⎡

⎣
∫t

0

G1,− 1, k(τ, − Q)dτ

⎤

⎦.

(52)  

4.2. Velocity field 

Taking Laplace transformation of Eqs. (38) and (42)1, we obtain 

sΩ(ξ, s)=
∂2Ω(ξ, s)

∂ξ2 +
1
ξ

∂Ω(ξ, s)
∂ξ

+ GrΘ(ξ, s) − MΩ(ξ, s), (53)  

Ω(1, s)=
1

s − iω, (54)  

where Ω(ξ, s) =

∫∞

0

Ω(ξ, t)e− stdt. 

Fig. 6. (i). Profile of velocity profile with sine oscillation versus r for ε variation at different vales of time t. Fig. 6(ii). Profile of velocity profile with 
cosine oscillation versus r for ε variation at different vales of time t. 
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Applying finite Hankel transform to Eq. (53) and using boundary condition in Eq. (54) and Eq. (47), we obtain 

ΩH(ξn, s)=
ξnJ1(ξn)

(s − iω)
(
s + ξ2

n + M
)+

GrξnJ1(ξn)sε− 1

Pr(s + Q)((1 − ϑ)sε + ϑ) + ξ2
nsε

1
s + ξ2

n + M
, (55)  

where ΩH(ξn, s) =
∫1

0

Ω(ξ, s)ξJ0(ξξn)dξ is the finite Hankel transform of function u(ξ, q) and ξn, n = 1,2 … are the positive root of the 

equation J0(x) = 0, oJ0 being the Bessel function of the first kind and order zero. 
Eq. (55) can be written in the following equivalent form 

ΩH(ξn, s)=
J1(ξn)

ξn

1
s − iω −

J1(ξn)

ξn

[

1 −
ξ2

n

s + ξ2
n + M

]
1

s − iω+

+GrξnJ1(ξn)
∑∞

k=0

( − 1)kξ2k
n

Prk+1(1 − ϑ)k+1
s− 1

(s + Q)
k+1

sε(k+1)

(
sε + ϑ

1− ϑ

)k+1
1

s + ξ2
n + M

.

(56) 

Applying inverse Laplace transform to Eq. (56), we obtain 

Ω̃H(ξn, t) =
J1(ξn)

ξn
H(t)eiωt −

J1(ξn)

ξn

[
δ(t) − ξ2

ne− (ξ2
n+M)t

]
* H(t)eiωt +

+GrξnJ1(ξn)
∑∞

k=0

( − 1)kξ2k
n

Prk+1(1 − ϑ)k+1G1,− 1, k+1(t, − Q) * Gε,ε(k+1), k+1

(
t, −

ϑ
1 − ϑ

)
* e− (ξ2

n+M)t,

(57)  

here * represent the convolution product. 
Taking inverse Hankel transform of Eq. (57), we obtain 

Fig. 6. (continued). 
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Ω(ξ, t)=H(t)eiωt − 2
∑∞

n=1

J0(ξξn)

ξnJ1(ξn)

[
δ(t) − ξ2

ne− (ξ2
n+M)t

]
* H(t)eiωt +

+2Gr
∑∞

n=1

ξnJ0(ξξn)

J1(ξn)

∑∞

k=0

( − 1)kξ2k
n

Prk+1(1 − ϑ)k+1G1,− 1, k+1(t, − Q) * Gε,ε(k+1), k+1

(
t, −

ϑ
1 − ϑ

)
* e− (ξ2

n+M)t.

(58) 

For classical case ϑ = 1 and ε = 0, we get ordinary model of velocity filed as 

Ω(ξ, t)=H(t)eiωt − 2
∑∞

n=1

J0(ξξn)

ξnJ1(ξn)

[
δ(t) − ξ2

ne− (ξ2
n+M)t

]
* H(t)eiωt +

+2
Gr
Pr

∑∞

n=1

ξnJ0(ξξn)

J1(ξn)
H(t) * e− (Q+ξ2

n/Pr)t * e− (ξ2
n+M)t.

(59) 

For the case, when there is no magnetic effect, consider M = 0 in Eqs. (58) and (59), we obtain 

Ω(ξ, t)=H(t)eiωt − 2
∑∞

n=1

J0(ξξn)

ξnJ1(ξn)

[
δ(t) − ξ2

ne− ξ2
nt
]

* H(t)eiωt +

+2Gr
∑∞

n=1

ξnJ0(ξξn)

J1(ξn)

∑∞

k=0

( − 1)kξ2k
n

Prk+1(1 − ϑ)k+1G1,− 1, k+1(t, − Q) * Gε,ε(k+1), k+1

(
t, −

ϑ
1 − ϑ

)
* e− ξ2

nt.

(60) 

For classical case ϑ = 1 and ε = 0, we get ordinary model of velocity filed as 

Fig. 7. (i). Profile of velocity profile with sine oscillation versus r for M variation at different vales of time t. Fig. 7(ii). Profile of velocity profile with 
cosine oscillation versus r for M variation at different vales of time t. 
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Ω(ξ, t)=H(t)eiωt − 2
∑∞

n=1

J0(ξξn)

ξnJ1(ξn)

[
δ(t) − ξ2

ne− ξ2
nt
]

* H(t)eiωt +

+2
Gr
Pr

∑∞

n=1

ξnJ0(ξξn)

J1(ξn)
H(t) * e− (Q+ξ2

n/Pr)t * e− ξ2
nt.

(61)  

4. Numerical results and discussions 

In this section, we presented the numerical simulation of unsteady free convection flows of an incompressible viscous fluid with 
heat/sink in a vertical cylinder containing a mixture of 47 nm alumina nanoparticles in water with effect magnetic field. The 
generalization entails taking into account a new version of the constitutive equation for thermal flux, known as the generalized 
Atangana-Baleanu derivative, which is based on the generalized time-fractional derivatives with Mittag-Leffler kernel. The generalized 
solutions are appropriate for particularizations to yield solutions corresponding to fractional derivatives with power-law kernel and 
exponential kernel. The Mittag-Leffler function is a one-parametric function. It is also possible to acquire the usual situation, which 
corresponds to classical Fourier’s law. To compare models based on generalized Atangana-Baleanu, Atangana-Baleanu, Caputo, and 
Caputo-Fabrizio time fractional derivatives, numerical simulations produced with the program Mathcad are carried out and visually 
depicted. The defaults values for fractional and physical parameters are ϑ = 0.1, ε = 0.4, Gr = 2, M = 0.2 Q = 0.3, φ = 0.01, Pr =

4.76.
The effects of fractional parameters ϑ and ε on temperature distribution and velocity profiles are presented in Figs. 2, 3 and 5(i), 5 

(ii), 6(i) and 6(ii) for different values of time t. The important point in these graphs is that we sketch the graphs for no derivative, 
Caputo fractional derivative, Caputo-Fabrizio fractional derivative and Atangana-Baleanu fractional derivative as a special case of the 
generalized Atangana-Baleanu fractional derivative. It is observed from Fig. 2(a) for small values of time t = 0.1 temperature increased 
by increasing the values of fractional parameter ϑ while for t = 0.4 in Fig. 2(b) near the boundary the temperature decreased by 
increasing the values of ϑ but the influence is opposite in the middle of the cylinder. For t = 1 the temperature decreased by increasing 
the value of ϑ see Fig. 2(c). The effect of fractional parameter ϑ on velocity profile for sine and cosine oscillations are presented in Fig. 5 
(i) and (ii). For small value of time t = 0.1 for sine oscillation in Fig. 5(i)(a) it is noted that near the boundary of the cylinder the velocity 
is decreased by increasing the values of fractional parameter ϑ while the influence is different in the middle of the cylinder. From Fig. 5 

Fig. 7. (continued). 
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(i)(b) and 5(i)(c) we found that the velocity is decreased my increasing the values of fractional parameter ϑ. The same influence for the 
cosine oscillation in Fig. 5(ii). An interesting influence of fractional parameter ε on temperature distribution is presented in Fig. 3. For t 
= 0.1 the temperature decreases by increasing the values of ε. The temperature increased by increasing the values of ε. The effect of 
fractional parameter ε on velocity profile for sine and cosine oscillation is presented in Fig. 6(i) and (ii). The following observation are 
deduced that for t = 0.1 the velocity near the cylinder decreased for sine and cosine oscillations while the influence is opposite far from 
the boundary of the cylinder. For t = 1 the velocity is increased by increasing the values of fractional parameter ε. The critical values for 
these phase changing are around t = 0.4, see Fig. 6(i, ii)(b). 

The effects of volume fraction φ and heat source/sink Q on temperature distribution is presented in Fig. 4. It is observed that 
temperature increased by increasing the values of φ. Also, the temperature layer difference decreased by increasing the values of Q. 
The effect of magnetic parameter M on velocity profiles are presented in Fig. 7(i) and (ii) which shows that velocity decreases by 
increasing the value of M as expected. In Fig. 8(i) and (ii) the effect of heat source/sink is presented. Which has an interesting influence 
on velocity profiles. 

5. Conclusions 

The concluding observations are:  

F0D8 For small values of time the temperature increased by increasing the values of fractional parameters while the influence is 
changed by increasing the time.  

F0D8 For small value of time with sine/cosine oscillations near the boundary of the cylinder the velocity is decreased by increasing the 
values of fractional parameters while the influence is different in the middle of the cylinder. we found that the velocity is 
decreased my increasing the values of fractional parameters.  

F0D8 The temperature increased by increasing the values of φ.  
F0D8 The temperature layer difference decreased by increasing the values of Q.  
F0D8 The velocity decreases by increasing the value of M. 
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