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ABSTRACT Model predictive control (MPC) has been widely adopted for cooperative adaptive cruise con-
trol (CACC) due to its superior performance in achieving fuel-efficient driving while satisfying constraints
such as inter-vehicle distance. The core of an MPC-based algorithm is to predict the vehicle’s behavior
using a dynamic model, and the space-domain vehicle dynamic model is frequently implemented in recent
research along with the time-domain vehicle dynamic model. This paper presents a comparative performance
analysis between the space-domain and the time-domainmodels in theMPC framework for the car-following
problem. AnMPC design process and analysis method for the high-speed car-following scenario is suggested
and presented for equivalent performance comparison between the two approaches. In order to analyze trends
between speed tracking and fuel-saving performance, which are conflicting objectives as car-following
performance, a bi-objective cost function is proposed and manipulated by various weightings. It is observed
that the space-domain model presents stable tracking performance, and the time-domain model shows
better fuel efficiency. However, the space-domain model with road information is superior in tracking and
fuel efficiency compared to the time-domain model with limited road information. Pareto analysis was
implemented to visualize and describe performance differences in various situations regarding tracking error,
fuel efficiency, and road grade information levels.

INDEX TERMS Cooperative adaptive cruise control, car-following problem, model predictive control,
multi-objective optimization.

I. INTRODUCTION
The car-following problem with an autonomous driving
system has been actively researched because of increased
attention and advancement in cooperative adaptive cruise
control (CACC) with a real-time control system. Among
the various approaches to the car-following problem, Model
Predictive Control (MPC) has been widely adopted for its
constraint handling capability and optimal solutions [1]–[4].
Even though MPC-based CACC requires high computational
power and vehicle-to-vehicle communication (V2V), the lat-
est advances in embedded processors and communication
technologies enable simple implementation [1], [5]–[7].

The associate editor coordinating the review of this manuscript and
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The essence of MPC is to handle multi-objective cost
functions and state/input constraints by predicting the future
behavior of a system. For instance, MPC-based approaches
in [8], [9] perform fuel-efficient driving while considering
the signal and traffic status of the upcoming intersections.
In [10], [11], researchers merged heading road information,
such as road grade and curvature to achieve advanced fuel
efficiency. Likewise, in the car-following problem, the MPC
technique can improve fuel consumption, tracking error, rid-
ing comfort, and accomplish defensive and ecological driving
by predicting the behavior of vehicles and satisfying various
constraints [12]–[16].

As examined in these MPC applications, the vehicle
dynamics model is necessary to predict the vehicle’s behav-
ior, and a majority of CACC applications have been utilizing
the conventional modeling evolving in the time domain [2],
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[8], [17]–[21]. However, since the road information, such as
grade and curvature, is usually a function of position, the
time-domain vehicle model needs additional position estima-
tion to exploit the road grade for the prediction, which usually
causes estimation errors [2]. This position error degrades
the accuracy of road information and increases uncertainties
in driving and constraints handling, making energy-efficient
driving challenging [22]. Because of this challenge, some
CACC works based on the time-domain vehicle model [3],
[23] assume flat road or constant grade conditions when pre-
dicting the vehicles’ behavior; thus, the difference between
time-domain and space-domain vehicle models emerges.

Many researchers recently have started to actively use the
space-domain vehicle model in order to take advantage of
road grade information [9], [10], [24]–[28], which can be
acquired easily than before via the global positioning system
(GPS) [29], [30]. Since the road grade significantly influ-
ences the control sequences, knowing the future road infor-
mation has a significant advantage in reducing disturbances
and errors in vehicle behavior prediction [2]. More accurate
estimation of the rolling and grading resistance from the road
information enables the MPC-based algorithm to compute
the optimal control sequence [30]. Besides the more accu-
rate road information, another benefit of the space-domain
model is that the position of the ego vehicle can be omitted
in the state vector of the vehicle dynamics, thus mitigating
the computational burden of the controller [31]. However,
since the space-domain model updates the vehicle’s state
by calculating a square root term, the optimizer needs to
handle the additional computation burden or inaccuracy in the
solution [32]. On the other hand, the time-domain model can
be a linear equation that guarantees reduced computation bur-
den but decreases prediction accuracy by ignoring resistance
forces. In [2], it is mentioned that safety constraints in the
car-following problem can be handled more easily in the time
domain, but this paper suggests that their argument depends
on the case.

As described, the time-domain and space-domain vehicle
models have their pros and cons. However, to the best of
the authors’ knowledge, there has been no comparative study
examining the performance difference between domain vehi-
cle models. To fill this gap, this paper constructs two MPC
frameworks based on the time-domain and space-domain
vehicle models and suggests a comparison method to reveal
the difference between the two MPC frameworks.

Many pieces of MPC-based work focus on reducing fuel
consumption during the car-following or vehicle platooning
scenarios [5], [10], [33], [34]. For fuel-efficient driving, some
works construct a cost-function only with a stand-alone fuel
consumption model [25], [35], [36], and others exploit a
multi-objective cost function [2], [37]–[39], [39], [40]. Note
that the strategy of minimizing fuel consumption usually
results in the ego vehicle drifting away from the preced-
ing vehicle within the boundary of inter-vehicle distance,
so it contradicts with reducing tracking errors. To explore
a trade-off between speed tracking performance and fuel

consumption when inter-vehicle distance constraints exist,
we adopt a bi-objective cost function comprised of speed
tracking error and desired acceleration. Distinctive features of
each MPC framework are identified by a relative weighting
between the two objectives. Furthermore, macroscopic trends
of the optimal solutions are examined using the concept
of Pareto optimality [41] that presents a trade-off in the
bi-objective optimization problem with different road grade
information.

In this paper, a highway car-following scenario with
inter-vehicle distance constraints is considered for the numer-
ical simulations. The reason we focused on the highway
scenario is that it makes the simulation focus on presenting
fuel efficiency and tracking performance without consid-
ering signal and traffic status. In car-following scenarios,
the inter-vehicle distance is typically regulated by the time
headway boundary [30], [42]. However, depending on which
domain model is adopted, the headway boundary should
be implemented differently. Because the time-domain model
uses time as an independent variable, it cannot explicitly be
expressed in the state vector but only inferred by the steps.
In the case of the space-domain model, the relation is just the
opposite and the headway is explicitly expressed in the state
vector as time, making it easy to track. This paper explains
the difference between each model in the headway constraint
handling and compares its consequences.

The main contributions of this paper are threefold. First,
to enable an equivalent performance comparison between the
two approaches, we suggest the methodology, design process,
and high-speed car-following scenario. Second, performance
differences between the time-domain and space-domainMPC
frameworks are analyzed through parametric studies. Specif-
ically, the trade-off trends between fuel efficiency and speed
tracking performance that are subject to road grade availabil-
ity are discussed using Pareto analysis. Third, based on the
simulation results and analysis, we suggest which modeling
approach is better for different car-following scenarios from
a speed tracking and fuel efficiency perspective. To reveal
the conclusion, if the inter-vehicle distance is constrained in
terms of time headway in the car-following problem, then the
space-domain approach can produce a lower speed tracking
error compared to the time-domain approach.

The rest of this paper is organized as follows. In section 2,
the time-domain and space-domain vehicle models are
defined, and a fuel-consumption model is introduced.
Section 3 describes the design process of the MPC frame-
works for a highway car-following scenario with inter-vehicle
distance constraints. Section 4 shows the simulation results of
each MPC framework, followed by performance comparison
and analysis through obtaining Pareto fronts. Section 5 sum-
marizes and discusses themain results and observations of the
paper. Lastly, the conclusion of this paper ismade in section 6.

II. MODELING
This section introduces two sets of vehicle longitudinal
dynamics models expressed in either time or space domains.
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FIGURE 1. Schematic diagram of a car-following scenario using
time-domain and space-domain vehicle models.

Although they depict the same phenomena fundamentally,
their mathematical expressions differ because they employ
different independent variables, either time or space. Hence,
a vehicle’s state evolves over the corresponding independent
variable according to the employed domain. The continuous
vehicle dynamics is discretized using a zero-order-hold con-
version, and propagated numerically using the forward Euler
method [18], [21], [43]–[45]. To mitigate the numerical error
from the discretization and integration methods, we adopt a
0.2 second sampling interval which is smaller than the values
in the references. In addition to the dynamic models, a fuel
consumption model, which provides a reasonable estimation
of fuel consumption based on the speed and acceleration of
the ego vehicle at each step, is introduced. The total fuel
consumption of each MPC framework can be calculated by
accumulating the instantaneous fuel consumption, and the
performance of each approach will be compared in terms of
fuel efficiency.

A. TIME-DOMAIN VEHICLE MODEL
As can be seen from the upper section of Fig. 1, the vehicle’s
state in the time domain is updated at every time instant.
Because the preceding vehicle has a preplanned speed pro-
file for the scenario, only the ego vehicle’s motion will be
calculated through the time-domain vehicle model, which is
defined as

ai = ades,i −
1
m
Ri, (1a)

vi+1 = vi + ai1t, (1b)

si+1 = si +
vi + vi+1

2
1t, (1c)

where ai, vi, and si are the acceleration, speed, and distance
traveled at each instant, i, respectively, and the sampling time
is fixed as 1t . Note that ades,i is the desired acceleration of
the ego vehicle, which will be computed through the MPC
framework. Note that the distance traveled at every instant, si,
is calculated to evaluate the safe distance between the ego and
preceding vehicles. If there is no safety constraint to consider,
then the computation of the distance traveled is unnecessary.

Resistance forces acting on the ego vehicle, Ri, are given by

Ri =
1
2
ρACdvi2 + Crmg cos θ (si)+ mg sin θ (si), (2)

where m is the mass of the ego vehicle, g is gravitational
acceleration at sea level, A the is front area of the ego vehicle,
Cr is the rolling friction coefficient between the ground and
wheels, Cd is the aerodynamic drag coefficient, and ρ is
the air density at sea level. These six values are considered
constants.

Overall, if the time-domain state vector is defined as xi ≡
(vi, si), the vehicle model in the time domain can be briefly
expressed as

xi+1 = f (xi, ai, θ(si)) . (3)

Since the road grade, θ (s), is the position-dependent function,
it requires predicting the vehicle position for estimating the
corresponding road information at each time instant, and
this causes estimation errors [2]. This is one of the major
drawbacks of employing the time-domain vehicle model for
car-following applications. In the simulation section, how
the road information would affect car-following performance
will be evaluated by simulations with various information
levels of road grade.

B. SPACE-DOMAIN VEHICLE MODEL
The vehicle model expressed in the space domain is given as

aj = ades,j −
1
m
Rj, (4a)

vj+1 =
√
v2j + 2aj1s, (4b)

tj+1 = tj +
21s

vj+1 + vj
, (4c)

where aj, vj, and tj are the acceleration, speed, and elapsed
time at each distance instant j, respectively, and the resistance
force, Rj, is computed by using (2). 1s is the sampling
distance, whose numerical value will be selected to have a
similar sampling rate to the time-domain driving cycle. Note
that the variables in the space-domain model have the same
physical meaning as those in the time-domain model. For
example, vj and aj are physical quantities that are derivatives
with respect to time, not space. Moreover, the elapsed time, tj,
is calculated and saved to constrain the inter-vehicle distance
between the ego and preceding vehicles when a certain value
of time headway is provided. The space-domain discrete
vehicle dynamic model can be briefly expressed as

yj+1 = f
(
yj, aj, θ(sj)

)
, (5)

where the space-domain state vector is defined as yj ≡
(
vj, tj

)
.

This expression will be used to construct the space-domain
MPC framework.

The space-domain model differ from the time-domain
model in two aspects. First, unlike the time-domain model,
it consists of nonlinear equations. The square root term in
(4b) may induce computational error or require using an addi-
tional constraint in the MPC framework to maintain positive
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values. In addition, because the speed should be placed on
the denominator to calculate the elapsed time, one cannot
transform the space-domain vehicle model into a state-space
representation. The road grade, illustrated in the bottom of
Fig. 1, is position-dependent and therefore easily accessible
with the position data.

C. FUEL CONSUMPTION MODEL
To calculate the total amount of fuel consumption of the
ego vehicle during the car-following scenario, we adopt the
Virginia Tech comprehensive power-based fuel consumption
model (VT-CPFM), whose mathematical expression is pre-
sented in [46], [47]. Since both (3) and (5) provide the speed
and acceleration of the ego vehicle at every time or space
instant, we can easily compute instantaneous fuel consump-
tion at the corresponding instance by using the VT-CPFM.
The instantaneous fuel consumption, Fc,i, is modeled as a
function of vehicle power, Pi, at every instant.

FCi =

{
f0 + f1P+ f2P2i , ∀Pi ≥ 0,
f0, ∀P < 0,

(6a)

Pi =
(
Ri + 1.04 mai

3600ηd

)
vi, (6b)

where f0, f1, and f2 are vehicle model constants that need to
be calibrated for each vehicle. The resistance forces, Ri, in the
vehicle power calculation are identical to those in (2). Note
that instant indices i and j here are interchangeable depending
on the adopted domain.

III. MODEL PREDICTIVE CONTROL FRAMEWORKS
In this section, we present two MPC frameworks based on
the domain of interest for vehicle modeling: time-domain and
space-domain. Then, the control problem in each framework
is formulated to minimize speed tracking errors and fuel con-
sumption simultaneously while constraining the inter-vehicle
distance. The main distinction between the frameworks is
the physical expression of the inter-vehicle distance, which
brings differences in the handling of time headway boundary.

A. TIME-DOMAIN MPC FRAMEWORK
TheMPC-based car-following problem in the time-domain is
designed as

min Ji =
k+Np∑
i=k

[
(1− ω)

(
vi − v

p
i

)2
+ ωa2des,i

]
+ cα2, (7a)

subject to xi+1 = f (xi, ai, θ(si)) , (7b)

vmin ≤ vi ≤ vmax , (7c)

amin ≤ ades,i ≤ amax , (7d)

vithl < spi − si < vi
(
thu + α

)
, (7e)

where superscript p and Np refer to the preceding vehicle
and predefined prediction horizon, respectively. A strategy
commonly solicited in the car-following problem is fuel
economy driving, which demands a cost function to carry

a fuel consumption model as well as an elaborate engine
model. In order to mitigate the computational burden in test
runs, the desired acceleration of the ego vehicle is exploited
instead. The simulation results in the following section verify
that there is a near-linear relationship between acceleration
and fuel consumption. In addition, to explore the difference
between the time-domain and space-domain models in the
MPC framework, we impose a relative weighting between
the speed tracking error and the desired acceleration. Dif-
ferent trends of each approach are investigated through a
series of simulations where a weighting parameter, ω, varies
from 0 to 1.

The inter-vehicle distance between the ego and preceding
vehicles is constrained by an induced time headway boundary
as indicated in (7e). Since time is an independent variable
here, it converts a given time headway boundary into distance
information. This conversion causes redundant margins in the
inter-vehicle distance, which will be presented in the simu-
lation section. The lower bound, thl , stipulates the minimum
safe distance, and the upper bound, thu , is added to prevent the
inter-vehicle distance from growing excessively. However,
imposing hard constraints on both sides of the boundary of
inter-vehicle distance may result in infeasible solutions; thus,
we introduce a slack variable α, which is another optimization
variable to be implemented through theMPC framework. The
slack variable alleviates the upper bound of inter-vehicle dis-
tance, turning into a soft constraint. Since the slack variable
stays close to zero most of the time, it needs to be multiplied
by a large constant, c, so that it can penalize the cost function.
The dashed blue arrows in the top of Fig. 1 indicate the
inter-vehicle distance (space headway) in the time domain.
(7c) and (7d) provide the boundaries of hard constraints on
vehicle speed and acceleration.

B. SPACE-DOMAIN MPC FRAMEWORK
The MPC-based car-following problem in the space-domain
is constructed as

min Jj =
q+Np∑
j=q

[
(1− ω)

(
vj − v

p
j

)2
+ ωa2des,j

]
+ cα2,

(8a)

subject to yj+1 = f
(
yj, aj, θ(sj)

)
, (8b)

vmin ≤ vj ≤ vmax , (8c)

amin ≤ ades,j ≤ amax , (8d)

thl < tj − t
p
j < thu + α. (8e)

It has similar a structure as the time-domain MPC frame-
work except for two aspects. First, the most notable differ-
ence is the mathematical description of the time headway
boundary for constraining the inter-vehicle distance. Since
the space-domain vehiclemodel calculates the elapsed time at
every distance instant by using (4c), the boundary condition
of the time headway can be directly converted into distance
information as indicated in (8e). Hence, it is important to
know that the dashed red arrows in Fig. 1 represent the
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TABLE 1. Vehicle model and simulation parameter values.

time headway at each distance instant, not the inter-vehicle
distance.

IV. NUMERICAL SIMULATION
Numerical simulations have been performed to evaluate
the performance difference between the time-domain and
space-domain MPC frameworks in the car-following prob-
lem. In this section, the car-following performances of each
approach are assessed based on the root-mean-square (RMS)
value of speed tracking error, RMS value of desired acceler-
ation, and the time headway.

The simulation parameters are provided in Table 1. The
parameters to be utilized in the vehicle model and the fuel
consumption model are adopted from [36]. Sampling time
and sampling distance are determined as 0.2 second and
4.5 meters, respectively. Those sampling intervals allow the
discrete vehicle dynamics to describe the vehicle behavior
well. The prediction horizon, Np, is selected as 50 steps so
that the ego vehicle predicts 10 seconds or 225 meters ahead.
The control horizon, Nc, is set identically to the prediction
horizon. Furthermore, the control frequency is defined iden-
tically to the sampling frequency of the driving cycle, so that
the receding horizon is shifted for one step every cycle, and
the prediction and optimization are repeated until the horizon
reaches the end of the driving cycle. The weighting factor,
c, is selected as 1000 by trial and error so that the slack
variable, α, can penalize the cost function at a level similar
to the primary cost values. The lower bound of the time
headway follows the two-second rule distributed by the U.S.
Department of Transportation [48]–[50], and the upper bound
is decided to be five seconds.

In order to improve convergence and computational effi-
ciency, we exploit the warm-start method. Warm-start pro-
cedures are designed to discover advanced starting points
for optimization in order to reduce the number of iterations
needed to get the best result [51]–[53]. The solver calculates
an optimal acceleration profile over the prediction horizon,

FIGURE 2. Driving cycle and road grade information used for simulations
in this paper. (a) HWFET cycle assumed as speed profile of the preceding
vehicle. (b) Road grade of US12 utilized as the corresponding road profile
for the HWFET cycle.

Np, and implements one control step such that Np− 1 unused
solutions still remain. The remaining solutions are utilized as
initial guess for the next step’s optimization problem.

A nonlinear solver in MATLAB R©, fmincon, is adopted to
formulate and solve the multi-objective car-following prob-
lem. The interior-point method is exploited due to more sat-
isfactory convergence performance and faster computational
speed than the SQP method. The simulations are performed
using a Windows 10 operating system with a 3.5 GHz 4-core
Intel R© Xeon R© processor and 16 GB DDR4 RAM memory.

A. DRIVING CYCLE
The highway fuel economy test (HWFET) cycle developed by
the U.S. environmental protection agency (EPA) is adopted
for the preplanned speed profile of the preceding vehicle.
Fig. 2 (a) shows the part of the HWFET cycle in which
the speed is greater than 10 m/s. We assume a high-speed
driving cycle to provide the similar number of samples to both
approaches, since sampling time and distance are constant
over the driving cycle. In order to find out the influence of
the road grade on each domain approach, we assume a driving
cycle with varying road grades [16], [30]. However, because
we could not obtain the corresponding data from a web-based
search, we decided to exploit the road grade of the US12
(Fig. 2 (b)) highway as the corresponding road grade to the
HWFET. Note that we have upsampled the original HWFET
to have a rate of 5 Hz so that discrete dynamics can describe
the vehicle motion precisely.

Both MPC frameworks require individual driving cycles
defined in each domain. Fig. 3 shows time interval, δt , ver-
sus the distance traveled according to the different sampling
distances. The sampling distance, 1s, is set to 4.5 meters to
retain a similar sampling time to 0.2 second (5 Hz).

VOLUME 9, 2021 162295



Y. Lee et al.: Comparative Study on MPC Design for Highway Car-Following Scenarios: Space-Domain and Time-Domain Model

FIGURE 3. Time interval profiles of the HWFET according for three
different sampling distances.

FIGURE 4. Sampling rate of each domain approach in the low-speed
region of the HWFET.

Fig. 4 demonstrates the reason why the space-domain
model does not fit to a low-speed driving cycle. The blue dots
are the upsampled HWFET data, and the red diamonds are the
driving cycle for the space-domain model with a sampling
distance of 4.5 meters. In contrast to the time-based data
points, the number of space-based data points for the first
6 seconds is only six, which indicates that the space-domain
model cannot be used for aggressive driving unless a variable
sampling distance is adopted.

B. SIMULATION ASSUMPTIONS
Simulation assumptions are as follows [14]:

1) The ego vehicle knows the preceding vehicle’s future
status, such as speed, elapsed time, and distance trav-
eled through V2V communication.

2) Only the forward longitudinal motion is considered.
3) There is no time delay in the ego vehicle’s dynamics.

In general, the time delay includes actuator delay, communi-
cation delay, computing delay, and sensor delay [54]. In order
to justify the no-delay assumption, we analyze the effect of
the time delay on vehicle behavior based on the discrete
second-order dynamics model [18], [45],

ai+1 =
(
1−

1t
τ

)
ai +

1t
τ
ades,i. (9)

Furthermore, a discrete time delay, D = τ/1t = 3, which
is obtained based on controller parameters, internal stability,
and string stability, is adopted [55]. Simulation results in
Fig. 5 confirm that distance/speed errors caused by the time
delay can be bounded by certain values. The RMS distance
error of the worst case, τ = 0.6 s, is about 7 meters, which

FIGURE 5. The effect of the time delay, τ , on vehicle dynamic behavior.
(a) Distance error depending on various delays. (b) Speed error
depending on various delays.

is within the safety distance margin for a time headway of
2 seconds. Therefore, we ignore the time delay in our study.

Instead of the dichotomous assumption that only the
space-domain approach can access the road information,
we divide availability of the road grade into three levels
to evaluate the impact of road grade on the car-following
performance in both approaches:

1) Full information on the road grade: the exact value
of the road grade at every instant is available within
the prediction horizon regardless of which domain is
adopted.

2) Partial information on the road grade: only the road
grade at the first instant in the prediction horizon is
available so that the rest of the road grade is assumed
to be identical to the road grade of the first instant.

3) No information on the road grade: road grade is not
available; a flat road is assumed during the prediction.

The same initial condition should be provided regardless of
which domain is adopted so that the simulations can be fairly
compared. The ego vehicle’s initial speed is set to be the same
as the preceding vehicle’s in both domains, v(t0) = vp(t0)
and v(s0) = vp(s0). In order to satisfy the inter-vehicle
distance constraints from the beginning, two vehicles are
initially separated, either temporally or spatially. For the time-
domain approach, the initial time headway between the ego
and the preceding vehicle is set as the lower bound of the time
headway,

spi=1 = s(t0)+ vp(t0)× thl . (10)

On the other hand, for the space-domain framework, it is
assumed that the ego vehicle leaves a few seconds after the
departure of the preceding vehicle,

t0 = tpj=1 + t
h
l . (11)
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FIGURE 6. The effect of the weighting parameter, ω, on the car-following
performance of using the time-domain approach when the road grade is
fully given.

Physically, (10) and (11) are representing the same initial
condition regardless of which domain is adopted.

C. SIMULATION RESULTS: INDIVIDUAL TRAJECTORY
This section presents the ego vehicle’s trajectories generated
using the MPC frameworks. To analyze the performance
difference between the two approaches, the availability of
the road grade, and the relative weighting of the bi-objective
function vary from run to run.

Figs. 6 and 7 show how the following vehicle’s trajectory
changes according to the various weighting parameters, ω.
The ego vehicle is assumed to know the exact road grade over
the prediction horizon in both cases. The first common ten-
dency is that as the weighting parameter increases, meaning
that minimizing required acceleration is more weighted than
minimizing the speed-tracking errors, speed tracking error
and average time headway are getting larger. Accordingly,
the ego vehicle drifts away from the preceding vehicle until
it reaches the maximum allowable distance such that the
time headway profile almost reaches the upper bound. Since
the slack variable, α, alleviates the upper bound of the time

FIGURE 7. The effect of the weighting parameter, ω, on the car-following
performance using the space-domain approach when the road grade is
fully given.

headway, occasions exceeding five seconds do not cause a
constraint violation.

Significant differences in trends of the inter-vehicle dis-
tance and the time headway histories can be found in com-
paring between the second and fourth rows in Figs. 6 and 7.
The time headway profiles of the space-domain approach
tend to be more regulated than those of the time-domain
approach. This phenomenon is attributed to either direct or
indirect implementation of the inter-vehicle distance as sug-
gested in (7e) and (8e). The space-domain model computes
and saves the elapsed time at every instant so that it can
directly use the time information to satisfy the time headway
boundary. In contrast, if time is the independent variable,
the time headway boundary cannot be implemented directly,
so it needs to be converted into the distance traveled to
constrain the inter-vehicle distance. Consequently, the time
headway and inter-vehicle distance are better constrained by
the space-domain and time-domain approaches, respectively.

The trajectories generated by intermediate weighting
parameters (red lines) are located in between extreme cases
(blue and yellow lines) in Figs. 6 and 7. Note that the
intermediate weighting parameter (red lines) for each MPC
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FIGURE 8. The effect of the road grade information on the car-following
performance of time-domain approach when the weighting parameters,
ω = 0.86.

framework is the minimum value that touches the upper
bound of the time headway history. Table 2 summarizes
the car-following performance of each domain approach
quantitatively depending on the operation type. RMS(verr ),∑
FC , µ(th), and σ (th) are the RMS value of speed tracking

error, total fuel consumption, average time headway, and
standard deviation of time headway, respectively. The RMS
speed errors in all three cases have a lower value in the
space-domain approach. Accordingly, the fuel consumption
is slightly better in the time-domain approach, but not signif-
icantly.

The effect of road grade information on the car-following
performance is shown in Figs. 8 and 9. The intermediate
weighting parameter of 0.86 from the red lines in Figs. 6
and 7 is selected for this experiment; thus, the blue lines
in Figs. 8 and 9 are identical to the red lines in Figs. 6
and 7.We deduce that if the intermediate weighting parameter
has the trajectory to barely satisfy the upper bound of time
headway in the full road grade information condition, it could
break the upper bound with limited information on the road
grade. The time headway upper bound is exceeded in the
no road grade information condition, indicated in the red

FIGURE 9. The effect of the road grade information on the car-following
performance of space-domain approach when the weighting parameters,
ω = 0.86.

rectangular box in the third row in Fig. 8. In contrast, a similar
incident does not happen in the space-domain approach, and
this is because the space-domain approach directly constrains
the time headway between the vehicles such that the time
headway history barely breaks the given threshold.

Another observation from Figs. 8 and 9 is that there is no
noticeable difference between the trajectories generated by
the full and partial information conditions. This phenomenon
happens because the relative heavy weighting on the track-
ing error makes MPC less affected by the model predic-
tion that is accomplished using the road grade information.
More speculation about the relation between the tracking
performance and road grade availability will be provided
and examined using Pareto analysis in the following section.
Table 3 summarizes the car-following performance of each
domain approach quantitatively depending on the road grade
information level.

D. SIMULATION RESULTS: PARETO OPTIMALITY
In this section, the optimal solutions’ macroscopic trend
depending on the relative weighting is examined by exploit-
ing the concept of Pareto optimality. More specifically, the

162298 VOLUME 9, 2021



Y. Lee et al.: Comparative Study on MPC Design for Highway Car-Following Scenarios: Space-Domain and Time-Domain Model

TABLE 2. Overview of simulation results using the three different
weighting parameters for each approach.

TABLE 3. Overview of simulation results using the three different road
grade information levels for the time-domain and the space-domain
approaches.

bi-objective cost function is designed to minimize the speed
tracking error and the desired acceleration. The conflicting
relationship between them is revealed through changing the
weighting parameter, ω, linearly from 0 to 1.

Fig. 10 displays the simulation results of the time-domain
approach when the true road grade is available. The red aster-
isk indicates a backward propagation result of the HWFET,
which is assumed as the driving cycle of the preceding vehi-

FIGURE 10. A 51-run simulation using the time-domain MPC framework
when the weighting parameter ω on a2

des increases from 0 to 1, and the
true road grade is available. (a) Pareto front showing the trade-off in the
bi-objective cost function, (b) A near-linear relationship between desired
acceleration and fuel consumption, (c) The correlation between RMS
speed tracking error and time headway.

cle. The required acceleration and fuel consumption of the
HWFET are computed based on the vehicle dynamics mod-
els, (1) and (4), and the fuel consumption model, (6), respec-
tively. The gap between the red asterisk and the leftmost
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FIGURE 11. Pareto fronts of the time-domain MPC framework with three
levels of the road grade availability.

point (ω = 0) of the Pareto front is inevitable due to the
safety distance, which is given as the lower bound of the time
headway. Fig. 10 (a) demonstrates the fact that one objective
cannot be improved without deteriorating the other. On ther
other hand, Fig. 10 (b) justifies the cost function design in
(7a) and (8a). Since a near-linear relationship exists between
the quadratic acceleration term and fuel consumption, the
a2 term can replace an elaborate fuel consumption model,
so we keep using RMS acceleration as a fuel consumption
indicator throughout this section. Fig. 10 (c) reveals another
relationship between time headway and speed tracking error,
which means that adverse tracking performance results in the
ego vehicle drifting away from the preceding vehicle.

Fig. 11 shows the impact of road grade availability on
the performance of the time-domain MPC framework. Note
that the solid blue line in Fig. 11 is identical to the one at
Fig. 10 (a).
The partial information case’s Pareto front starts from the

same point as the full information case, and its RMS accel-
eration stops decreasing when it reaches about 0.615 m/s2.
The first phenomenon is attributed to three factors: 1) the first
instant’s road grade in the partial information case is identical
to the one in the full information case, 2) the prediction
horizon is receding every one step, and 3) in the case of
the tracking error minimization-oriented operation, the solver
focuses more on the tracking rather than reducing the desired
acceleration. Consequently, the partial information and the
full information cases produce the same performance. On the
other hand, when the weighting parameter increases, the
solver places more reliance on the road information to reduce
the desired acceleration. As a result, no improvement in RMS
acceleration can be achieved with the limited information on
the road grade; instead, the RMS speed tracking error deteri-
orates as the weighting on the desired acceleration increases.
Fig. 12 supports the reason for such behavior in the partial
information case. The longer the prediction horizon, the more

FIGURE 12. Pareto analysis of the time-domain approach showing the
effects of the prediction horizon length on partial information case.

incorrect road data will be used to predict the vehicle motion,
resulting in inefficient fuel/energy consumption

The no information case requiresmore desired acceleration
than the full information case to achieve the same speed
tracking performance. This is because the solver calculates
the desired acceleration without knowing the road grade.
However, it can be noticed that the no information case can
achieve a smaller RMS acceleration than the partial informa-
tion case when higher weighting on the desired acceleration
is imposed. This means that if one wants to minimize the
desired acceleration using an MPC-based algorithm, the flat
road assumption can be a better option than providing the
wrong road information throughout the prediction horizon
except for the first step.

Likewise, Fig. 13 presents the optimal solution’s macro-
scopic trends in the space-domain MPC framework. The
overall tendencies of Figs. 10 and 13 are similar to each other,
but there are a few notable differences between them. First,
the minimum and maximum RMS speed tracking error of
the space-domain approach is smaller than that of the time-
domain approach. Unlike the time-domain approach, themin-
imum average time headway of the space-domain approach
touches the lower boundary, as shown in the individual
trajectory plots in Fig. 7. Consequently, the space-domain
approach can achieve the same performance as the preceding
vehicle for the minimum tracking error operation. This phe-
nomenon occurs due to the difference in the way of constrain-
ing the inter-vehicle distance between the two approaches.
On the other hand, there is no significant difference in fuel
consumption.

Fig. 14 illustrates the Pareto fronts in the space-domain
approach that differ depending on the road grade cases.
Comparing Figs. 11 and 14, it is observed that both
approaches share several features in common. The costs in
the bi-objective function conflict with each other, the partial
information case has a higher limit in the RMS acceleration,
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FIGURE 13. A 51-run simulation using the space-domain MPC framework
when the weighting parameter ω on a2

des increases from 0 to 1, and the
true road grade is available. (a) Pareto front showing the trade-off in the
bi-objective cost function, (b) A near-linear relationship between desired
acceleration and fuel consumption, (c) The correlation between RMS
speed tracking error and time headway.

and the space-domain MPC framework without road grade
information can produce better fuel-efficient driving than in
the partial information condition. However, there exist a few

FIGURE 14. Pareto fronts of the space-domain MPC framework with
three levels of road grade availability.

differences as well. Unlike the no-grade information case
in the time-domain approach, the one in the space-domain
approach 1) does not exceed the RMS acceleration value of
the preceding vehicle, and 2) has a lower bound in terms of
RMS acceleration of around 0.61 m/s2.
To elaborate on this phenomenon from the viewpoint of

speed tracking error, the near-linear relationship between
tracking error and time headway that is revealed from Figs. 10
and 13 is used. Figs. 15 and 16 display the time headway
histories of two extreme cases that differentiate themselves
from the others depending on the adopted domain, weight-
ing parameter, and road grade condition. When ω = 1,
the time headway profile of the no information case in the
time-domain approach repeatedly crosses the upper bound
while that of the space-domain approach is well managed
within the upper boundary.

Table 4 summarizes the simulation results shown in
Figs. 15 and 16. One can notice that the time headway histo-
ries of the space-domain approach achieve significantly low
standard deviations comparedwith the time-domain approach
when ω = 0. In the case of ω = 1, the standard deviation of
the space-domain approach is 36% smaller than that of the
time-domain approach.

E. PARETO ANALYSIS
In order to quantitatively assess the Pareto fronts of each
approach, we exploit the concept of utopia point (UP). The
utopia point is obtained by optimizing all individual objec-
tives in a multi-objective cost function separately [56]–[58].
Because all individual objectives cannot be minimized simul-
taneously and independently, the utopia point is unattainable
and does not belong to the Pareto front. Instead, one can find
the closest point from the utopia point to a feasible optimal
solution on the Pareto front, which is called a compromised
solution (CS).
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FIGURE 15. Time headway histories of two extreme cases using the
time-domain approach.

TABLE 4. Overview of each simulation’s time headway history according
to different domains, weighting parameters, and road grade cases.

Let J1,min and J2,min be the minimum values of each objec-
tive in our bi-objective cost functions, (7a) and (8a). Then, the
utopia point is found as

UP =
(
J1,min, J2,min

)
, (12)

and the Euclidean distance from the utopia point to lth opti-
mal solution can be computed in the sense of 2-norm [56],
[57].

Dl = ‖
(
J l1, J

l
2

)
−
(
J1,min, J2,min

)
‖ (13)

where l = 1, 2, · · · ,N . An optimal solution with the min-
imum D becomes the compromised solution. The utopia
point implies a feasible lower boundary that an operation

FIGURE 16. Time headway histories of two extreme cases using the
space-domain approach.

TABLE 5. Overview of Pareto fronts assessment that shows the utopia
point, compromised solution, and optimal weighting parameter according
to road grade availability and domain adopted.

can achieve, and the compromised solution indicates the
well-balanced feasible solution of the problem.

Table 5 summarizes the Pareto fronts assessment. The
compromised solutions of the space-domain approach are
slightly better those of the time-domain approach. Espe-
cially, the more limited road grade we have, the lower
the ω value of the CS. This means that achieving
fuel-efficient driving is a challenging task without road grade
information.
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V. DISCUSSION
This section summarizes and discusses the results obtained
in this paper. The time and space-domain MPC frame-
works demonstrate satisfactory performance in that they can
achieve either fuel-efficient or minimum tracking error trajec-
tories while satisfying the inter-vehicle distance constraints.
Regardless of the adopted domain, the simple quadratic accel-
eration term shows a linear relationship with fuel consump-
tion as displayed in the second row of Figs. 10 and 13, so it
can replace the complex fuel consumption model and reduce
the computation time.

The two types of MPC frameworks show different per-
formances depending on how car-following constraints are
set. An important difference between the models comes from
whether they are linear or nonlinear. The linearity in the
time-domain vehicle dynamics model brings a computational
advantage. The time-domain MPC framework takes about
0.19 seconds to compute each step. In contrast, the nonlin-
earity in the space-domain vehicle dynamics model requires
additional computation such that it takes about 0.22 seconds
for the computation of each step, which is 14% higher than
the time-domain approach.

A. FEATURES OF THE TIME-DOMAIN APPROACH
We assume that the time-domain vehicle dynamics model
can predict only with current road grade information for
practical reasons. The performance of MPC with such partial
information is compared to the cases with no and full grade
information.

• In the case of minimizing the tracking error, it shows
similar performance whether the road information is
fully or partially provided. The blue and red lines in the
second rows of Figs. 8 and 11 prove this phenomenon.

• In the case of partial road information, even with the
increased weight on the acceleration term, at some
weighting point, the fuel efficiency cannot be improved
anymore, and the tracking performance starts to deteri-
orate. This is shown by the red line of Fig. 11.

• This also proves that prediction with inaccurate informa-
tion can even deteriorate the performance of the MPC-
based algorithm. In the same vein, a longer prediction
horizon does not guarantee improved fuel efficiency,
or rather, the longer prediction horizon can even dete-
riorate fuel efficiency, which is presented in Fig. 12.

• Model prediction assuming a flat road can be a better
option for achieving fuel-efficient driving compared to
the partial road grade assumption, as demonstrated in
Fig. 11.

B. FEATURES OF THE SPACE-DOMAIN APPROACH
Several notable aspects in the space-domain approach are
observed as follows.

• The space-domain approach has better time headway
tracking performance than the time-domain approach,
as illustrated in Figs. 7 and 16, and compared in Table 4.

• If theMPC framework is solely focusing on tracking per-
formance without considering fuel efficiency, the time
headway can achieve the lower limit of the inter-vehicle
distance constraint, which is supported by the low RMS
tracking error in Table 5.

In summary, we conclude that one should consider the
application’s purpose and available information before select-
ing either the time-domain or the space-domain vehicle
models. First, for applications that aim to maintain a con-
stant inter-vehicle distance between vehicles [59], [60], the
time-domain approach performs better than the space-domain
approach. On the other hand, if an application’s purpose is
maintaining a constant time headway between vehicles [61]–
[63], then the space-domain approach is recommended.
When an application focuses on fuel efficiency, the designer
should recognize that the performance of the time-domain
approach is greatly affected by the road grade information.
Even though this tendency is also true in the space-domain
approach, we do not have to worry about it due to easy
access to road information. Lastly, suppose the application
wants tominimize speed-tracking errors. In that case, a space-
domain approach can be a better solution than a time-domain
approach regardless of the road grade information level.

VI. CONCLUSION
This paper present the distinctions between two MPC frame-
works based on the time-domain and space-domain vehicle
models for autonomous highway driving. The design pro-
cess and analysis method are suggested and demonstrated
for equivalent performance comparison. In order to ana-
lyze trends between speed tracking and fuel-saving perfor-
mance, which are conflicting car-following objectives, a bi-
objective cost function is proposed and manipulated by vary-
ing the weighting parameter. It is found that the space-domain
approach presents stable tracking performance, and the
time-domain approach shows better fuel efficiency. However,
the space-domain approach utilizing road information excels
in tracking and fuel efficiency compared to the time-domain
model with limited road information. Pareto analysis was
conducted to visualize and describe performance differences
in various situations regarding tracking error, fuel efficiency,
and road grade information levels. Based on the results,
a selection strategy for the domain is proposed in developing
an MPC-based algorithm for car-following problems with
inter-vehicle distance constraints.
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