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ABSTRACT An integration scheme for sideslip angle estimation is proposed where a deep neural network
and a simple kinematics-based model are combined in an unscented Kalman filter. The deep neural network
contains two modules: a sensor filtering network designed to overcome the limitations of the kinematics-
based model and a deep ensemble network to estimate the sideslip angle and its uncertainty. Both networks
use recurrent neural networks with long short-term memory to analyze sequential sensor data. The networks
were trained using only input signal sets that can be obtained from on-board sensor measurements. The
filtering network reduces the noise and bias of the input signals to match the model used for the unscented
Kalman filter. Next, the initial estimate and its uncertainty obtained from the deep ensemble network
are utilized as a new measurement in the unscented Kalman filter, inducing an adaptive measurement
variance. The algorithm was verified through both simulation and experiment, and the results demonstrate
the effectiveness of the proposed algorithm.

INDEX TERMS Sideslip angle estimation, kinematic model, unscented Kalman filter, deep ensemble,
uncertainty, sensor filtering network.

I. INTRODUCTION
Modern vehicles are equipped with several components
to improve their safety and stability [1]. Among these,
many functions concern the lateral stability of the vehicle
[2]–[5]. In particular, state variables related to vehicle motion
cannot be easily measured by on-board sensors and their
estimation has been the focus of intensive research in past
decades, resulting in many works in the literature. These
include a comparative study on the sideslip angle estima-
tion [6], the longitudinal velocity estimation [7], and roll
angle estimation [8]. The focus of this work considers
the information about lateral state, especially the sideslip
angle, β. To obtain a direct measurement of the sideslip angle,
expensive and bulky sensors such as optical or RTK-GPS
sensors are needed. Therefore, adequate strategies of indirect
estimation are required to overcome this problem.

The associate editor coordinating the review of this manuscript and
approving it for publication was Francesco Piccialli.

To address this problem, extensive studies have been
conducted on methods for estimating the sideslip angle.
For conventional methods, there are several model-based
Kalman filtering (KF) approaches that utilize kinematics- and
dynamics-based models. First, the kinematics-based model
considers the movement of a vehicle without considering
the forces [9]. The representative model is expressed con-
sidering the velocity, lateral acceleration, and yawrate [10].
However, the sideslip angle is in an integrated form in the
sensor results. Thus, it is vulnerable to noise and bias, which
accumulate over time, resulting in a large estimation error.
Therefore, dynamics-based models with numerous degrees
of freedom have been considered to enhance model accuracy
and estimation performance. For example, two DOF single-
track model and higher-order DOF vehicle models [11]–[15]
have been utilized for estimator design. The advantage of
using dynamics-based models is that the quality of mod-
els improves the estimation quality of the states. However,
as the model complexity increases, the number of parameters
to estimate also increases. In addition, the uncertainty and

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 149681

https://orcid.org/0000-0002-8251-7104
https://orcid.org/0000-0002-1631-7024
https://orcid.org/0000-0002-7141-9330
https://orcid.org/0000-0002-7179-7841


D. Kim et al.: Integrated Deep Ensemble-Unscented Kalman Filter for Sideslip Angle Estimation

non-linearity of the models make the estimation problem very
difficult.

Recently, sideslip angle estimation methods [16]–[21]
based on artificial neural networks (ANNs) and deep neural
networks (DNNs) have seen dramatic progress. Melzi et al.
designed a simple ANN using a single hidden layer to verify
its performance [16]. Chindamo et al. also used the ANN to
verify the estimation performance by means of the CarSim
simulator [17]. Boada et al. designed an adaptive neuro-fuzzy
inference system (ANFIS) [18]. This method improves the
estimation performance in comparison to the simple ANN
by combining the advantages of the steady performance of
fuzzy logic and the generalization of ANN. Ghosh et al. used
a multilayer long short-term memory (LSTM) network [19]
to exploit the characteristic that previous inputs can be used
to obtain the current state. Graeber et al. proposed a hybrid
approach to sideslip angle estimation using recurrent neural
network (RNN) and kinematic vehicle models [20]. They
used the derivative of the sideslip angle, β̇, obtained from
the kinematic model, as a new input feature of the RNN to
improve the performance. Bonfitto et al. employed a clas-
sification neural network to identify road conditions, and
then designed three regression neural networks for use under
different road conditions that were identified by the former
network [21].

Nonetheless, there still exist limitations of learning-based
models such that the estimation of learning-based methods
is always considered to be reliable. Kim et al. considered
uncertainty of learning-based method and designed various
Kalman filter algorithms based on a dynamicmodel [22]. But,
this approach requires significant computational burden due
to the dynamic model. In addition, dynamic models that deal
with forces and torques require considerable knowledge of
parameters that can change over time.

In this paper, two independent approaches are combined to
overcome these limitations. First, a sensor filtering network
is proposed to overcome the limitation of the kinematics-
based model which does not require vehicle parameters, tire-
road friction coefficients, or a tire model. The sensor filtering
network is utilized to match the calculated β̇ from the filtered
data to the actual value while reducing the noise and bias of
the original sensor data. Next, the deep ensemble method is
used to obtain a robust estimate and its uncertainty [23]. The
information on uncertainty is valuable because the estimate
can be less reliable when tested in an unfamiliar environment.
To address this, the uncertainty is utilized as a measurement
variance value of the adaptive unscented Kalman filer (UKF).
This method can improve the reliability of the estimate when
uncertainty is low, and otherwise, the model with the filtered
sensor inputs is considered to be more reliable. The contribu-
tions of this study can be summarized as follows:
• A novel sideslip angle estimation method is proposed
that combines the DNN and UKF with a simple
kinematics-based model.

• The filtering network is designed to overcome the limi-
tations of the kinematic-based model.

• The deep ensemble network with LSTM is utilized to
analyze sequential sensor data, in addition to providing
a robust estimation and the estimation uncertainty.

• The feasibility of the proposed method was validated
under various road surface conditions using the com-
mercial software CarSim, which uses high-dimensional
vehicle dynamics. In addition, verification was car-
ried out through real-car experiment in some limited
environments.

The remainder of this paper is organized as follows.
In Section 2, the deep learning models comprising the sensor
filtering and deep ensemble networks are described. Next,
Section 3 explains the integration of both deep learning and
kinematics-basedmodels with theUKF in detail. In Section 4,
the proposed algorithm is verified in simulation. Then, the
proposed algorithm is verified in experiment in Section 5.

II. DEEP LEARNING MODELS
A. PRELIMINARIES
In this study, RNN and deep ensemble methods are used for
precise sideslip angle estimation. First, an RNN is utilized
to analyze the sequential data. A basic RNN has a vanish-
ing gradient problem; therefore an LSTM network is used
instead [24]. Next, a deep ensemble is used in this study
as it uses multiple models to derive outcomes. This method
improves the estimation performance and makes the estimate
more robust. In our work, the deep ensemble network devel-
oped by Lakshminarayanan et al. [23] is used to estimate the
sideslip angle and its uncertainty. From each network of
the entire ensemble model, the estimate (µ) and standard
deviation (σ ) of the estimate are obtained given the sensor
input (S). Then, the final estimate (µf ) and standard deviation
(σf ) are calculated as follows:

µf =

∑
i µi(Si)
N

(1)

σ 2
f =

∑
i(σ

2
i (Si)+ µ

2
i (Si))

N
− µ2

f (2)

where N is the number of networks and subscript i indicates
the index of a single network. As the standard deviation
should always have a positive value, the softplus function is
applied as follows.

softplus(σf ) = log(1+ exp(σf )) (3)

B. DEEP LEARNING ARCHITECTURE
The deep learning models are divided into two modules. The
first module filters sensor data to make it available for the
kinematics-based model. The filtering network is composed
of denoising and debiasing networks as shown in Fig. 1; both
have one LSTM layer with a 32-dimensional cell state. The
output of each denoising LSTM cell is connected to a fully-
connected layer with 32 hidden units, whereas in the case of
the debiasing LSTM, only the end of LSTM is connected to a
fully-connected layer. The sensor data input for the filtering
network, SSF , includes velocity (vx), yawrate (ψ̇) and lateral
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FIGURE 1. Sensor filtering network.

acceleration (ay) for 10 steps in the interval of 0.1 s. The
noisy and biased measurements at timestamp n are modeled
as follows [25]:

vx,n = vtruex,n + w
vx
n (4)

ψ̇n = ψ̇
true
n + bψ̇n + w

ψ̇
n (5)

ay,n = atruey,n + b
ay
n + w

ay
n (6)

where bψ̇n and b
ay
n are quasi-constant biases and wvxn ,w

ψ̇
n , and

w
ay
n are zero-mean Gaussian noises.
The sensor data with noise and bias are input to the denois-

ing LSTM which provides denoised sensor signals, Sn, with
biases. The output of the debiasing LSTM, Vb, is utilized to
obtain the final filtered sensor signals, S̃SF , which are used to
calculate the derivative of the sideslip angle using (9) through
the kinematics-based model.

To train the sensor filtering network, the loss function is
composed of the following three terms:

LSF = c1|Sn − SSF | + c2|β̇true − ˜̇β| + c3
bs∑
i=1

|Vb,i − Vb,i−1|

(7)

where β̇true and β̇ indicate the true value of the derivative of
the sideslip angle and the estimated value from the sensor
filtering network, respectively, and bs is the batch size. c1, c2,
and c3 are weights for each loss.
The first loss term is used to reduce the difference between

the initial unfiltered sensor values and denoised sensor values.
This loss prevents the output of the denoising network from
deviating significantly from the original value. The second
term reduces the difference between the true and calculated
value from the sensor signals obtained from the network. The
last term restricts the bias value from fluctuating because
quasi-constant biases are assumed in (5) and (6). Through
these processes, the sensor signals are trained to be modified
to match well to the kinematics-based model.

The second module is used to estimate the sideslip angle
and its uncertainty. The module consists of fully connected
layers and an LSTM. Input features, SDE , are a combination
of the steering wheel angle (δ), velocity (vx), yawrate (ψ̇)

FIGURE 2. Network for sideslip angle and its uncertainty estimation.

and lateral acceleration (ay). A total of 10 sequential data
points, with an interval of 0.1 s, is used as the input of each
fully-connected layer as shown in Fig. 2. Each input feature
passes through two fully-connected layers with 128 hidden
units, and the result is connected to the one-layer LSTM
with a 256-dimensional cell state. Next, by passing the output
of the LSTM to a fully-connected layer, an estimate and its
uncertainty are obtained. Finally, by incorporating the results
from each ensemble network using (1) and (2), the final
sideslip angle estimate and standard deviation are calculated.

To train the deep ensemble network, negative log likeli-
hood (NLL) loss is used as follows [26]:

Lnll =
log(σ 2)

2
+

(y− µ)2

2σ 2 +
1
2
log(2π) (8)

where y is the true value, µ is the estimated value and σ is the
standard deviation of the estimate. As the NLL loss captures
predictive uncertainty, if the unseen input data is given, the
deep ensemble provides the estimate with large uncertainty
accordingly.

Two networks are trained independently and the standard
ADAM optimizer [27] is used. For the filtering network, the
learning rate is set to 0.0001 with a batch size of 32 and
10000 training iterations. Then, the learning rate is set to
0.001 for the deep ensemble network with a batch size
of 256 and 20000 training iterations.

III. INTEGRATION OF DEEP LEARNING-BASED AND
MODEL-BASED SIDESLIP ANGLE ESTIMATION
A. KINEMATICS-BASED MODEL
A kinematics-based model considers only the motion of vehi-
cle without any information regarding tire-road friction or
other dynamic properties of the vehicle. A typical kinematics-
based model can be expressed as a numerical integration of
sensor signals comprising yawrate (ψ̇), vehicle velocity (vx)
and lateral acceleration (ay) as follows:

β̇ =
ay
vx
− ψ̇ (9)

However, there is a critical drawback of using a kinematics-
based model. As sensor signals are always accompanied by
noise or bias, the kinematics-based model cannot be perfectly
accurate, resulting in poor estimation performance [9]. This
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problem is investigated using a sensor filtering network in this
study.

B. INTEGRATED METHOD
The extend Kalman filter (EKF) uses a linearization process;
thus, the performance worsens when the non-linearity gets
stronger. In contrast, the UKF uses a non-linear function
without a linearization process. First, the system state, xt ,
and measurement, zt , are expressed using the state transition
function, g, and measurement model, h, as follows:

xt = g(ut , xt−1)+ wt (10)

zt = h(xt )+ εt (11)

where ut is the input, and wt and εt are the process and
measurement noise, respectively. The non-linear function g in
our work uses the kinematic model in (9). The measurement
model h is the linear function which simply assigns the input
given to itself. The state vector becomes x = [β], the input
vector becomes u = [vx , ψ̇, ay]T , and the measurement vec-
tor becomes z = [βDE ] which is the sideslip angle estimate
from the deep ensemble network. These vectors are utilized
in Algorithm 1 to estimate the sideslip angle.

Then, the UKF uses sigma points that are symmetri-
cally distributed near the estimated state. For n-dimensional
Gaussian with the mean value (µ) and covariance (6), the
resulting 2n + 1 sigma points (X [i]) are chosen as follows:

X [0]
= µ (12)

X [i]
= µ+ (

√
(n+ λ)6)i, i = 1, . . . , n (13)

X [i]
= µ− (

√
(n+ λ)6)i, i = n+ 1, . . . , 2n (14)

where λ = α2(n+ κ)− n, α and κ are scaling parameters.
Then, to recover the mean and covariance of the Gaussian

distribution, each sigma point is given a weight as follows:

w[0]
m =

λ

n+ λ
(15)

w[0]
c =

λ

n+ λ
+ (1− α2 + ζ ) (16)

w[i]
m = w[i]

c =
1

2(n+ λ)
, i = 1, . . . , 2n (17)

where ζ contains prior information of the distribution. wm is
used to compute the mean and wc is used to recover the
covariance of the Gaussian.

The mean (µ′) and covariance (6′) of the Gaussian dis-
tribution can be recovered from the sigma points explained
above and are shown in (18) and (19):

µ′ =

2n∑
i=0

w[i]
m ξ

[i] (18)

6′ =

2n∑
i=0

w[i]
c (ξ [i] − µ′)(ξ [i] − µ′)T (19)

where ξ [i] = g(X [i]).

Algorithm 1 Deep Ensemble and Sensor Filtering Network
Based Unscented Kalman Filter
1: function DEEP_UKF(µt−1, 6t−1, µt , zt , SDE,t , SSF,t )
2: βDE,t , σβDE ,t = fDE (SDE,t )
3: S̃SF,t = fSF (SSF,t )

4: z̃t =
(

zt
βDE,t

)
5: Q̃t =

(
Qt 0
0 wβσ 2

βDE ,t

)
6: Xt−1 = (µt−1, µt−1 + γ

√
6t−1, µt−1 − γ

√
6t−1)

7: X̄ ∗t = g(S̃SF,t ,Xt−1)
8: µ̄t =

∑2n
i=0 w

[i]
m X̄ ∗[i]t

9: 6̄t =
∑2n

i=0 w
[i]
c (X̄ ∗[i]t − µ̄t )(X̄ ∗[i]t − µ̄t )T + Rt

10: X̄t = (µ̄t , µ̄t + γ
√
6̄t , µ̄t − γ

√
6̄t )

11: Z̄t = h(X̄t )
12: ẑt =

∑2n
i=0 w

[i]
m Z̄

[i]
t

13: St =
∑2n

i=0 w
[i]
c (Z̄ [i]

t − ẑt )(Z̄
[i]
t − ẑt )

T
+ Q̃t

14: 6̄
x,z
t =

∑2n
i=0 w

[i]
c (X̄ [i]

t − µ̄t )(X̄
[i]
t − µ̄t )

T

15: Kt = 6̄
x,z
t S−1t

16: µt = µ̄t + Kt (z̃t − ẑt )
17: 6t = 6̄t − KtStKT

t
18: return µt , 6t
19: end function

All processes of the standard UKF are outlined in
Lines 6-17 of the Algorithm 1 if Q̃t , z̃t and S̃t,SF are changed
to Qt , zt and ut , respectively [28].

The deep learning-based and model-based methods are
combined as shown in Fig. 3. From the deep ensemble net-
work, the sideslip angle estimate, βDE , and standard devia-
tion, σβDE , are extracted. This process can be seen in Line 2 of
Algorithm 1, where fDE (·) denotes the deep ensemble model.
The obtained values are utilized as the measure and noise
variance values. The standard deviation, σβDE , provides valu-
able information to the model such that the reliability of the
new measure can be adaptively considered in the UKF.

Next, the sensor filtering procedure is explained in Line 3,
where fSF (·) denotes the sensor filtering network. The output
of the network is the input vector for the UKF system. This
process overcomes the limitations of the kinematics-based
model by filtering out the original biased and noisy sensor
data.

IV. SIMULATION
To verify the feasibility of the proposed estimation method,
CarSim,MATLAB/Simulink and Tensorflow [29] are utilized.
From CarSim, the dataset needed for training the network is
obtained by constructing the simulation environment. Then,
the UKF algorithm is designed using MATLAB/Simulink.
Finally, deep learning models are designed and trained in the
Tensorflow environment. The test scenarios include different
driving maneuvers or different surface condition compared to
the dataset used in the training phase.
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FIGURE 3. Overall architecture of the proposed method.

A. TRAINING DATASET
Collecting a dataset is an important process. A high-quality
dataset can be used to train a model to deal with a wide range
of situations. In our training dataset, two road surfaces are
included, i.e., a dry asphalt road with tire-road friction (µ) of
0.85, and a slippery road with tire-road friction of 0.3. Sine
wave steering, swept steering, and ramp steering maneuvers
are considered to construct the dataset. The velocity is set
between 20 and 120 kph, and the steering angle range is
between−120◦ and 120◦. For the sine wave steering maneu-
ver, the frequency of the steering wheel angle is set to 0.2 or
0.5 Hz. In the swept steering scenario, the frequency is set to
be varied between 0.2-0.5 Hz.

To emulate sensor data from on-board sensors, Gaussian
noise with variances of 0.04◦, 0.03 m/s, 0.04 ◦/s, and
0.01m/s2 are added to steeringwheel angle, velocity, yawrate
and lateral acceleration, respectively. In addition, biases of
0.1 ◦/s and 0.2 m/s2 are added to yawrate and lateral accel-
eration, respectively.

B. TEST DATASET
The scenarios for the test dataset to verify the performance
of the algorithm are listed in Table. 1. The first scenario
includes a double lane change (DLC) maneuver at µ = 0.3.
In the next two scenarios, sine wave steering is performed
at µ = 0.85 and µ = 0.3. In the 2nd and 3rd scenarios, the
frequency of the steering wheel angle is set to 0.25 Hz, which
is different from that in the training dataset. The velocity is
accelerated at 1 m/s2 in both scenarios. The last scenario
includes a new surface condition (µ= 0.2), and step steering
is applied with a maneuver that is not used in the training
phase.

C. RESULTS OF FILTERING NETWORK
Figs. 4 and 5 compare the results of β̇ with and without
the filtering network in all test scenarios. The plots include
real β̇ value from CarSim (red solid), β̇ estimate without
the filtering network (gray dashed) and β̇ estimate with the
filtering network (blue dash-single dotted). The result using
the filtering networkmatches better with the ground truth than

TABLE 1. Simulation scenarios for test dataset.

TABLE 2. Filtering network results for β̇ for test scenarios in simulation.

the result without the filtering network, indicating a better
accuracy of sensor inputs for the kinematics-based model
used in our work. The performance of the filtering network is
summarized in Table. 2. Metrics for validation are selected as
the root mean square error (RMSE) and mean absolute error
(MAE). The results with the proposed network show better
performance in all test scenarios.

D. RESULTS OF SIDESLIP ANGLE ESTIMATION
In this subsection, the results of the proposed method are
explained in detail. Figs. 6, 7, 8 and 9 show the results of
the sideslip angle estimation. In each figure, the top graph
shows the real β value obtained from CarSim (red solid),
the estimate from the deep ensemble (black dashed), βDE ,
and the estimate with uncertainty values (green solid), βDE ±
σβDE . The graph in the middle shows the β estimation results
without the filtering network (blue dash-single dotted) and
with the filtering network (green solid). As can be seen in
the bottom graph, the estimation performance improves when
the filtering network is utilized and this indicates that the
filtering network improves the suitability of sensor inputs for
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TABLE 3. Simulation results for β for test scenarios.

use with the kinematic model. Furthermore, the uncertainty
of deep ensemble network is high at about 6 s in Fig. 9. The
performance of the proposed method is improved by giving a
greater weight to the UKF result. The final estimation results
in terms of RMSE and MAE are summarized in Table. 3. The
proposed algorithm is also compared in simulation with the
other algorithms [17], [19] reported in the related literature.
In general, the integrated deep ensemble and UKF provides
robust estimation results for the test scenarios than various
artificial networks only approaches. In addition, the results
using the filtering network show better performance than the
others in terms of both metrics.

V. EXPERIMENT
For experimental verification, the test vehicle is equipped
with a Correvit S-Motion optical sensor from Kistler as
shown in Fig. 10. The optical sensor determines the lon-
gitudinal and lateral velocities to calculate the sideslip
angle precisely. All the data from the on-board sensors of
steering wheel angle, velocity, yawrate and lateral acceler-
ation is logged through the Controller Area Network (CAN)
interface.

A. DATASET
For the data collection using the test vehicle, various maneu-
vers in a velocity range of 40 ∼ 130 kph and a steer-
ing wheel angle range of −100 ∼ 100◦ are conducted.
For the maneuvers, lane change, sine wave steering and
random steering in various speed ranges are selected. The
training and test datasets consist of different scenarios.
The experimental scenarios for test dataset are listed in
Table. 4. The first scenario includes the random steer-
ing maneuver on dry asphalt road with the velocity range
of 40 ∼ 60 kph. In the second scenario, DLC (Double Lange
Change) maneuver is performed with steering wheel angle of
−60∼ 60◦ at the speed of 75∼ 100 kph. For the last scenario,
the slalom maneuver is performed with steering wheel angle
between −60 ∼ 60◦ at the speed of 40 ∼ 70 kph.

B. RESULTS OF FILTERING NETWORK
The same filtering network architecture which is used in the
simulation section is used for training. Fig. 11 compares the

FIGURE 4. Filtering network results for β̇ for test scenario 2 in simulation.

FIGURE 5. Filtering network results for β̇ for test scenario 4 in simulation.

result of β̇ with and without the filtering network in test
scenarios 1. The result with the filtering network shows better
performance than the result without the filtering network. The
experimental results of the filtering network are summarized
in Table. 5 in terms of RMSE and MAE. The results with
the proposed network show better performance in all test
scenarios.

C. RESULTS OF SIDESLIP ANGLE ESTIMATION
In this subsection, the experimental result of the proposed
method is explained in detail. Fig. 12 shows the result
of the sideslip angle estimation. As seen in the bottom
enlarged graph, the estimation performance improves when
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FIGURE 6. Simulation results for sideslip angle estimation for test
scenario 1.

FIGURE 7. Simulation results for sideslip angle estimation for test
scenario 2.

TABLE 4. Experimental scenarios for test dataset.

the filtering network is utilized. This indicates that the fil-
tering network improves the suitability of sensor inputs
for use in the kinematic model in the real-car experiment.

FIGURE 8. Simulation results for sideslip angle estimation for test
scenario 3.

FIGURE 9. Simulation results for sideslip angle estimation for test
scenario 4.

FIGURE 10. Experimental setup and acquisition system.

The uncertainty of the deep ensemble is large along with an
inaccurate estimate at the time about 19.7 s. The proposed
method uses the uncertainty information into the adaptive
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TABLE 5. Filtering network results for β̇ for test scenarios in experiment.

TABLE 6. Experimental results for β for test scenarios.

FIGURE 11. Filtering network results for β̇ for test scenario 1 in
experiment.

UKF, resulting in better performance. The final estimates for
the sideslip angle are summarized in Table. 6. The proposed
algorithm is also compared in experiment with the other
algorithms [17], [19]. The experimental results demonstrate
that the proposed approach integrating deep ensemble with
UKF provides least errors in the sideslip angle estimation.
The estimation performance without the filtering network
is the worst in most cases compared to the methods using
the deep ensemble or filtering network. This indicates that
using the raw sensor data to a simple kinematic model
in the UKF provides large error in the estimation result.

FIGURE 12. Experimental results for sideslip angle estimation for test
scenario 1.

The proposed method is run with an average computation
time of 15 ms on a PC (Intel(R) Core(TM) i7 at 4.00 GHz,
16.00-GB memory).

VI. CONCLUSION
This paper presents a novel framework integrating deep
learning-based and model-based methods to estimate the
vehicle sideslip angle. A sensor filtering network is designed
to ensure that the input sensor signals work well for the
kinematics-based model. Then, a deep ensemble network
provides a sideslip angle estimate and its uncertainty. The
estimate and its uncertainty from the network are utilized as
measurement inputs of the UKF. The proposed algorithm is
first validated in a simulation by means of CarSim. Then,
a real-car experiment is also carried out using an optical sen-
sor for validation purpose. Both simulation and experimental
results demonstrate that the proposed approach shows better
performance in sideslip angle estimation than deep ensemble
only and integrated method without the filtering network.
Future work will validate this method under more diverse
driving maneuvers and road conditions.
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