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1 Introduction and summary

Recently, topological insulators (TIs) have attracted considerable interest in theoretical
research and potential applications. One of the most decisive factors that characterize
TIs is the existence of gapless surface-state protected by time reversal symmetry(TRS).
See [1, 2] for reviews. Since the underlying physics is sensitive to TRS and the band
structure, it is important to adjust the band gap for application of TIs. So one may try
to break the TRS to control TIs naturally. One way to achieve TRS breaking is doping
TIs with magnetic impurities. Such a method has already been realized in numerous
experiments, which provided reliable data for various materials [3–7].

Even though the bulk of a TI is an insulator, currents still flow on the surface of TIs.
Therefore, the referred experimental data were obtained by measuring magnetoconductance
under magnetic doping. These experiments show a crossover from weak anti-localization
(WAL) to weak localization (WL) as the magnetic doping concentration increases and also
there is a novel phase transition distinguished by hysteresis behavior of magnetoconduc-
tance. From now on, we will refer to this hysteric phase as HMC phase.

One of the interesting phenomena is that the hysteric behavior occurs at a certain
magnetic impurity density. For example, Cr doped BiTe topological insulator shows this
phenomenon [3, 4]. There is no hysteric behavior in the magnetoconductance before the
doping parameter x of Cr is greater than x = 0.14. However, when the doping parameter
is greater than x = 0.14, the spontaneous magnetization appears and hence the hysteric
behavior of magnetoconductance begins to appear. The details of this mechanism are
still mysterious but several researchers proposed that this phenomenon comes from the
strong correlation between the lattice and the magnetic order of the impurities. When the
interaction becomes strong, we cannot analyze the system in perturbative calculation, we
need new method for it. While it is difficult to understand the hysteric behavior, there has
been significant progress in the non-hysteric WAL and WL phases including the crossover,
e.g., [8–10] based on Hikami-Larkin-Nagaoka model [11]. There are studies on magnetic
properties of topological insulator using field theory methods [12, 13].
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There is a holographic study about the crossover between WAL and WL phases [14, 15]
by adding Chern-Simons like coupling with impurity and gauge field. In theses works, we
introduce two types of linear-axion fields, whose nomenclature will be explained later. One
type of axion field interacts with gauge field via Chern-Simons term and the other one
does not. Two types of axion fields can be interpreted as a magnetic and non-magnetic
impurity. Following standard gauge/gravity technique, we calculate magnetoconductance
and we find that the results well agree with the experimental data of the surface state of
the TIs with magnetic impurity. However, the model does not show any hysteric behavior
even for the large impurity density limit.

Of course it would be fantastic to find a model covering the crossover and the phase
transition. However even the phase transition from WL phase to HMC phase has been less
studied. In this note we are devoted to constructing a simplest holographic model showing
this phase transition. Holographic method is based on AdS/CFT correspondence [16, 17]
which provides a powerful tool to study various strongly coupled field theories. Later, this
method has been widely applied to various research areas. In particular, topics of condensed
matter physics are considered as major applications of the correspondence, e.g. [18–21].
Also, the magnetic property of holographic matters has been studied using various gravity
models, e.g. [19, 22–24].

Recently, we constructed a four-dimensional gravity model describing spontaneous
magnetization and we obtained hysteric magnetization curves of the dual 2+1 dimensional
system [25]. This model is suitable for describing magnetic property of two-dimensional
surface material. In this paper we study an extended model by adding an matter field
ψI to the previous one. This field is the previously mentioned linear-axion field since
it is linear in spatial boundary coordinate xi and breaks a shift symmetry. This linear-
axion field is known to explain the effect of momentum relaxation from impurity or lattice,
e.g., [26–34]. Thus main goal of the present work is to show that the system undergoes
the phase transition from WL phase to HMC phase by increasing this impurity. This
phase transition is originated from Z2 symmetry breaking associated with a scalar operator
condensation at low temperature. The detailed discussion on this Z2 symmetry breaking
was provided in [25]. Since the only difference of the present model from the previous study
is consideration of the linear-axion field which has nothing to do with the Z2 symmetry,
the discussion of [25] can be applied to this extended case.1

Before discussing the phase transition, it is very important to clarify that this impurity
dual to the linear-axion field can really be identified with the magnetic impurity. As one
can see in (2.1), the linear-axion field is not coupled to the magnetic field directly so it does
not seem clear that this axion field carries magnetic moments in the dual system. However,
the axion field can interact indirectly with the magnetic field through bulk back-reaction.
In order to confirm this, we compute the spontaneous magnetization and susceptibility in
the HMC and WL phases, respectively. The figure 7 shows that the susceptibility and
the magnetization increase as the impurity density β increases. In this figure we control

1In the presence of external magnetic field, it is important to take into account time reversal transfor-
mation for each field. We will give simple comment and future direction for this issue in conclusion.
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Figure 1. This shows the phase diagram near the zero temperature. The brown dots denote
T/
√
q = 3× 10−4. The corresponding transport coefficients are shown in figure 2 and 3. The blue

and red dots represent β/√q = 0.35 and 0.4, respectively. Their transport coefficients are shown in
figure 4 and 5.

only β with fixed charge density without other sources, so it is justified that the impurity
strength β changes magnetic properties through nontrivial bulk back-reaction. Thus our
model shed a light on holographic construction of magnetic impurity.

As we introduced earlier, the magnetic conductance is the observable which distin-
guishes the HMC phase from the non-hysteric WL phase in experiments, e.g. [3, 4]. Thus
we derive the conductivity formulas, (3.7) and (3.14), by using a holographic method. This
holographic conductivity is usually given by horizon data of black branes. See [28, 31, 32,
35] for examples of derivation for different models. Since the phase transition comes from
the spontaneous magnetization, it is possible to construct the phase diagram in terms of the
impurity density and temperature for a given charge density q using a numerical method.
The phase diagram is provided in figure 1, where it is shown that larger β, describing more
impurities, or lower temperature triggers the phase transition. This implies that the axion
field which is non-magnetic itself enhances spontaneous condensation of scalar field which
is magnetic.2 In the present work, we are devoted to analysis of the low temperature region
to study low-lying excitations around a ground state.

We plot the hysteresis curves of the magnetoconductance in figure 2 and 4 under
varying the impurity density and the temperature. These figures show occurrence of but-
terfly and loop shapes in longitudinal conductivity and Hall resistivity as β increases or
the temperature decreases. These hysteric shapes of magnetoconductance can be found in
various experimental data. It is desirable to compare our result to magnetoconductance
data in [3, 4]. It seems that our holographic calculation realizes the phase transition be-

2We observe the emergence of spontaneous condensation by impurity in other model which will be
reported soon.
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tween WL phase and HMC phase qualitatively. We speculate that the boundary system
of the model corresponds to the single magnetic domain of the material. Thus, in order to
compare real experimental data quantitatively, the hysteric magnetoconductance should
be averaged over all the fragments. Such a research including fragmentation average could
be an interesting study but it is beyond the scope of the present work.

In addition to these electric conductivities, we also study hysteresis curves of the
Seebeck coefficient S and the Nernst signal N which have never been measured yet in the
TIs, to our knowledge. These quantities are also important to see the magnetic properties
of materials, such as, anomalous Hall effect. The Seebeck coefficient and the Nernst signal
can be written in terms of the transport coefficient as follows:

S ≡ (ρ · ᾱ)xx , N ≡ (ρ · ᾱ)xy , (1.1)

where ρij is the resistivity and ᾱij is the thermoelectric coefficient.3 The appearance of
the hysteric behavior of these quantities is shown in figure 3 and 5. As one can see in the
figures, S and N show butterfly curves and hysteresis loops in the HMC phase, respectively.
It would be interesting to see if such hysteric Seebeck and Nernst coefficients appear in the
same parameter regions of [3, 4]. Our derivation of the holographic conductivities is the
first study to describe hysteric conductivities. The result is summarised in (3.7) and (3.14).
This is one of the main results in the present work.

The order parameters of this phase transition are definitely the areas of butterfly shape
and hysteresis loop of the transport coefficients in the phenomenological point of view. The
physical meaning of these areas is not so clear, however one may expect that these areas
are related to the magnetic work given by the area of the magnetization hysteresis loop.
Also, it can be conjectured that these phenomenological order parameters may be related
to real scalar hair and magnetization of the black brane in the holographic point of view.
It can be an intersting study about the relation between the bulk and boundary quantities.

This paper is organized as follows. In section 2, we introduce a simplest holographic
model to describe the magnetic hysteresis and the impurity. In section 3, we derive DC
transport coefficients σij and ᾱij in the presence of magnetic field, axion field and real
scalar hair. In section 4, we discuss our result and future directions. In appendix, we obtain
the magnetization using the scaling symmetry technique. This independent check of the
magnetization confirms that the magnetization current (3.12) is the correct expression.

2 Hysteric black brane with real scalar hair

As we discussed in the introduction, magnetic phenomena associated with the surface state
of TIs are conjectured as strong correlation effects between the lattice and the magnetic
order. Therefore, we consider gauge/gravity correspondence as a main tool to study the
surface state. More explicitly, we find a dual gravity model describing the non-hysteric
phase and the HMC phase on the surface of TIs. Since the gapless surface state implies
the relativistic symmetry at a finite temperature, one may consider a black brane whose
boundary has SO(2, 1) isometry.

3i and j run over x and y.
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Figure 2. The figures show the longitudinal conductivity and Hall resistivity at T/√q = 3× 10−4.
These data correspond to the brown dots in figure 1. In (a), we subtract the reference value of the
conductivity so the presented value is defined by ∆σxx = σxx − (σxx)H=0. These are very similar
to experimental data in figure 3 of [4].
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Figure 3. This figures show the Seebeck and the Nernst coefficients with T/
√
q = 3 × 10−4 for

the brown dots in figure 1. Here we subtracted the reference value for the Seebeck coefficient
(∆S ≡ S − (S)H=0). These are our novel predictions which can be checked by experiments.
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Figure 4. (a) and (c) corresponds to blue dots in figure 1 while (b) and (d) corresponds to red
dots in figure 1. ∆σxx is the subtracted conductivity like figure 2. These are also comparable to
experimental data in figure 3 of [4].
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Figure 5. (a) and (c) corresponds to blue dots in figure 1 while (b) and (d) corresponds to red
dots in figure 1. These are our novel predictions which can be checked by experiments.
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On the other hand, the boundary system is a 2+1 dimensional system with finite
charge density together with certain impurities. The gravity dual of this system is an
Einstein-Maxwell-Axion model in 3+1 dimension. Previous studies have shown that this
model fits experimental data of 2-dimensional Dirac materials very well in certain range of
parameter [40]. In addition, we introduce a neutral scalar field to the system which couples
to the gauge field through a Chern-Simons like interaction which breaks TRS when scalar
field is condensed. We speculate the dual boundary system is a 2+1 dimensional Dirac
material with TRS breaking. Therefore, one can naturally expect that this gravity model
can describe the surface state of topological insulator with impurities related to magnetic
properties of the dual material.

In order to identify the physical quantities in both the gravity model and the corre-
sponding 2+1 dimensional system, we use the standard holographic renormalization [36–
38]. The model admits an analytic solution for the non-hysteric phases. This solution is
nothing but the dyonic black brane with an linear-axion field which is linear in the bound-
ary spatial coordinates. On the other hand, a set of numerical solutions can be considered
as the HMC phase. These numerical solutions are dyonic black branes with the linear-axion
field and a real scalar hair. A set of these solutions forms a magnetization hysteresis curve.
These curves without the linear-axion field were studied in [25].

A hairy black brane solution appears below a certain critical temperature. It carries
nonvanishing magnetization even in the absence of the magnetic field. This nonvanish-
ing magnetization is accompanied by vacuum expectation value of a real scalar operator
as a consequence of the Z2 symmetry breaking in the dual field theory. Below the crit-
ical temperature, the free energy of the system has two global minima corresponding to
two hairy black branes with positive and negative magnetizations, respectively. Once the
system takes a global minimum spontaneously, the system follows a local minimum by
turning on and varying the magnetic field. As a result, hysteresis curves of magnetization
can be generated due to slowly-varying magnetic field. See [25] for more details for this
phenomenon.

A dual system under consideration has two spatial dimensions and a U(1) current
with an external magnetic field. So we consider a holographic model with a bulk Maxwell
field in asymptotically AdS4 spacetime. Also, since the system undergoes the spontaneous
magnetization, we include a real scalar field which can break Z2 symmetry of the magne-
tization [25]. In addition to these, the momentum relaxation should come to the system
in order to have finite DC conductivities. Therefore we start with the following gravity
action:

SB = 1
16πG

∫
d4x
√
−g

(
R+ 6

L2 −
1
4F

2 − 1
2(∂φ)2 − 1

2m
2
φ φ

2 − 1
2

2∑
I=1

(∂ψI)2
)

− 1
16πG

∫
d4x

η

4 φ ε
MNPQFMNFPQ , (2.1)

where L is the AdS radius and ψI describes the momentum relaxation. In addition η

represents the strength of the interaction among the real scalar, the electric field and the
magnetic field. In the numerical calculation, we choose η = −0.1 for convenience.
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In order to find black brane solutions admitted by this action, we take the following
ansatz:

ds2 = −U(r)
L2 e2W (r)−2W (∞)dt2 + r2

L2

(
dx2 + dy2

)
+ L2dr2

U(r)
ψI = (β x, β y) , φ = φ(r)

A = At(r)dt+ H2 L (x dy − y dx) . (2.2)

By solving the Maxwell equation, one can obtain

A′t (r) = eW (r)−W (∞)L
3

r2 (q − 2 η φ (r) H) , (2.3)

where q is an integration constant representing the charge density of black brane. When
φ = 0, one can find an analytic solution given by U(r) = r2 − β2

2 −
M
r + (q2+H2)

4r2 and
W (r) = 0, where we take a unit with 16πG = L = 1. This solution describes the non-
hysteric phase.

Although it is difficult to find an analytic solution with nonvanishing φ(r), it is possible
to obtain numerical solutions. To do this numerical task, one may take dimensionless
parameters and functions as follows:

r̃ = r

rh
, U(r) = r2

hu(r̃), β̃ = L2

rh
β, m2

φ = − 2
L2

w(r̃) = W (r), ϕ(r̃) = φ(r), q̃ = L4

r2
h

q, H̃ = L4

r2
h

H, (2.4)

where we took the mass square of the scalar field as −2/L2 for convenience. One may
try other values of the mass. So the real scalar field φ can be dual to a dimension two
operator(∆ = 2) O. Then the equations of motion are given by:

u′ + u

(1
4 r̃
(
ϕ′
)2 + 1

r̃

)
− ηϕH̃q̃

r̃3 +
H̃2

(
η2ϕ2 + 1

4

)
r̃3 + q̃2

4r̃3 + β̃2

2r̃ −
(
ϕ2

2 + 3
)
r̃ = 0 (2.5)

w′ − 1
4 r̃
(
ϕ′
)2 = 0 (2.6)

ϕ′′ −
ϕ′
(
−4ηϕH̃q̃ + ϕ2

(
4η2H̃2 − 2r̃4

)
+ H̃2 + q̃2 + 2β̃2r̃2 − 4ur̃2 − 12r̃4

)
4ur̃3

+ 2ηH̃q̃
ur̃4 −

ϕ
(
4η2H̃2 − 2r̃4

)
ur̃4 = 0 . (2.7)

One can see that any dimensionful quantity doesn’t show up in the equations of motion.
By solving the above equations of motion near the boundary of AdS space, the asymptotic
behavior of fields can be written as follows:

u(r̃) ∼ r̃2 + 1
4
(
J̃2 − 2β̃2

)
− M̃

r̃
+

2
(
H̃2 + 2Õ2 + q̃2

)
− J̃2

(
β̃2 + γ̃2

)
+ J̃4

8r̃2 + · · ·

w(r̃) ∼ w(∞)− J̃2

8r̃2 + J̃Õ
3r̃3 + · · ·

ϕ(r̃) ∼ J̃

r̃
− Õ
r̃2 + J̃3

8r̃3 + · · · (2.8)
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Figure 6. (a) Charge density dependence of chemical potential for different external magnetic field
with ϕ(1) = 0.2 and β = 0.33. (b) Charge density dependence of chemical potential for different
condensation with β = 0.33 and H = 1.

On the other hand, we impose the following regularity condition to avoid singular
configurations at the horizon:

ϕ′ (1) =
8
(
−2η2ϕ (1) H̃2 + ηH̃q̃ + ϕ (1)

)
2
(
β̃2 − ϕ (1)2 − 6

)
+ H̃2

(
4η2ϕ (1)2 + 1

)
− 4ηϕ(1)H̃q̃ + q̃2

. (2.9)

This can be achieved by an expansion of the fields near the horizon. This condition makes
the fields regular near the horizon (r̃ = 1). Also, the temperature and entropy density can
be found from mostly horizon data:

T = U ′(rh)
4πL2 e

W (rh)−W (∞) = rh
u′(1)
4πL2 e

w(1)−w(∞) , s = r2
h

4GL2 . (2.10)

Thanks to the equations of motion, one can rewrite u′(1) in terms of other parameters as
follows:

u′(1) = 3− 1
4
(
2β̃2 + H̃2 + q̃2

)
+ ϕ(1)2

(1
2 − η

2H̃2
)

+ ηϕ(1)H̃q̃ . (2.11)

Since we integrated the gauge field already, At doesn’t appear explicitly. Together with
At(rh) = 0, one can obtain the chemical potential by using (2.3):

µ = 1
L
At(∞) = rh

L2 µ̃ = rh
L2

∫ ∞
1

dr̃ew(r̃)−w(∞)
(
q̃

r̃2 −
2ηH̃ϕ (r̃)

r̃2

)
. (2.12)

The numerical results of chemical potential (2.12) are drawn in figure 6. In the figure,
chemical potential is almost linearly increasing in the absence of the external field or
condensation according to (2.12). When we turn on the external field or condensation,
chemical potential is slightly deviated from the linear line, but the linear behavior does not
change in the parameter regime of this paper.

Following the AdS/CFT dictionary, the bulk scalar field φ corresponds to the expec-
tation value 〈O〉 and the corresponding source J of an operator O. They are identified as
follows:

J = rh
L2 J̃ , 〈O〉 = r2

h

16πL2 Õ . (2.13)
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The powers of rh represent the dimensions of the source and the operator in the dual field
theory. Since we would like to consider a simplest construction, we pick solutions with
J = 0. Using the above consideration, it is possible to find solutions of the equations of
motion numerically. The obtained solutions have been used to draw the phase diagram in
figure 1 and to evaluate the magnetoconductance in figure 2–5.

3 Holographic conductivity

Now, we try to find DC conductivities in the dual field theory using holographic approach
developed in [26, 28, 31, 32, 39, 40]. These holographic conductivities can be obtained by
solving the equations of motion linearly responding to an external electric field, (Ex,Ey).
Thus we consider relevant metric fluctuations as follows:

ds2
(1) = 2λ

{
δgtx(r)dtdx+ δgty(r)dtdy + r2δhrx(r)drdx+ r2δhry(r)drdy

}
, (3.1)

where λ is a formal expansion parameter. Together with this fluctuation, the matter fields
also has corrections given by

A(1) = λ
{
(−ExLt+ δAx(r))dx+ (−EyLt+ δAy(r))dy

}
(3.2)

for the gauge field and

ψI(1) = λ(δψx(r), δψy(r)) (3.3)

for the linear-axion fields ψI . From the vector property of the fluctuation, one can see that
there is no real scalar (φ) fluctuation at the linear level.

To find the first order solution in λ, we have to impose an appropriate boundary
condition at the horizon. The correct boundary conditions is nothing but the in-going
boundary condition and the explicit form is as follows:

δgtx(r) = δg0
tx +O (r − rh) , δgty(r) = δg0

ty +O (r − rh)

δhtx(r) ∼ L2

r2U(r)δg
0
tx, δhty(r) ∼

L2

r2U(r)δg
0
ty ,

δAx(r) ∼ −Ex
L

4πT log(r − rh), δAy(r) ∼ −Ey
L

4πT log(r − rh) , (3.4)

where “∼” means up to the singular term near the horizon. In addition ψI can be taken
as a regular field near the horizon.

On the other hand, the holographic U(1) current and the heat current through
gauge/gravity duality are given by4

Jµ = lim
r→∞

L

16πG
(√
−gFµr − η φ εrµνσFνσ

)
, (3.5)

Qµ = T tµ − µJµ , (3.6)

4µ runs over 0,1,2.
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where T tµ denotes components of the holographic energy-momentum tensor Tµν . Jµ and
Tµν are obtained by derivatives of the on-shell action with respect to 1

LAµ(∞) and the
boundary metric.

In fact, Jµ is independent of the radial coordinate r due to the Maxwell equation.
Therefore, one can find the holographic current in terms of horizon behavior of the fields.
The resultant expression Jµ depends on the constants, δg0

tx and δg0
ty appearing in (3.4).

By solving (x, r) and (y, r)-components of the first order Einstein equation in λ with the
regularity condition (3.4), one can find δg0

tx and δg0
ty in terms of the other parameters.

Plugging the expression of δg0
tx and δg0

ty into the holographic current Jµ in (3.5), one can
obtain the electric conductivity defined by J i = σijEj as follows:

σxx = L2

16πG
Nxx
Dxx

, σxy = L2

16πG
Nxy
Dxx

, σyx = −σxy , σyy = σxx , (3.7)

where

Dxx = e2w(∞)
(
q̃ − 2ηϕ(1)H̃

)2
H̃2 + e2w(1)

(
H̃2 + β̃2

)2

Nxx = e2w(1)β̃2
(
β̃2 + H̃2

)
+ β̃2ew(∞)+w(1)

(
q̃ − 2ηϕ(1)H̃

)2

Nxy = β̃2H̃ew(∞)+w(1)
(
q̃ − 2ηϕ(1)H̃

)
+ H̃e2w(∞)

(
q̃ − 4ηϕ(1)H̃

) (
q̃ − 2ηϕ(1)H̃

)2

− e2w(1)
(
β̃2 + H̃2

) (
2ηϕ(1)β̃2 + 4ηϕ(1)H̃2 − H̃q̃

)
. (3.8)

On the other hand, in order to obtain the heat current Qi ≡ T ti − µJ i, we define the
bulk heat current as follows:

Q̂i ≡ 1
16πGL2 U(r)2e3W (r)−3W (∞)δij

(
gtj(r)

U(r)e2W (r)−2W (∞)

)′
− 1
L
At(r)J i . (3.9)

Using the equations of motion at the linear level, one can verify that

(
Q̂i
)′

= −εij
(
m̄−

(
ηL

4πGφAt
)′)

Ej , (3.10)

where

m̄ = L4

8πGe
W (r)−W (∞)

(
η qφ(r)
r2 − H

(
1 + 4η2φ(r)2)

2r2

)
. (3.11)

Taking integration from the horizon to the boundary of AdS space, the following relation
can be evaluated:

Q̂i(∞) = Q̂i(rh)− εijMHEj with MH =
∫ ∞
rh

dr m̄. (3.12)

One can also show that the heat current Qi is same with the bulk current Q̂i at the
boundary of the AdS space, i.e, Qi = Q̂i(∞). Therefore, the holographic heat current Qi

is given by the horizon quantities and the magnetization current. Here it is important to
note that the magnetization current, given by the last term, provides the explicit form of
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magnetization MH. Usually the magnetization can be obtained by the first law of black
hole thermodynamics but we didn’t use the first law. Thus, this evaluation of the heat
current is another derivation of magnetization without using the first law. In appendix
we find the expression of the magnetization (A.19) using the scaling symmetry technique.
Such an independent check confirms that our derivation of heat current leads to the correct
expression.

Therefore, the holographic heat current Qi is given by the horizon quantities and the
magnetization current. However the magnetization current is the bound current which
can not be measured. Thus, the transport coefficient can be read off from Q̂i(rh). The
subtracted heat current can be found as follows:

Qi + εijMHEj = − 1
16πGL2 e

W (rh)−W (∞)U ′(rh)gti(rh) = − 1
4GTδg

0
ti. (3.13)

Using the explicit expression of δg0
ti determined by the Einstein equation, we arrive at the

final form of the thermo-electric coefficient:5

ᾱxx = L2

4G
Nxx
Dxx

, ᾱxy = L2

4G
Nxy
Dxx

, ᾱxx = ᾱyy , ᾱyx = −ᾱxy (3.14)

where

Nxx =
(
q̃ − 2ηϕ(1)H̃

) (
ew(∞)+w(1)

(
β̃2 + H̃2

)
− H̃2e2w(∞)

)
,

Nxy = H̃

(
e2w(∞)

(
q̃ − 2ηϕ(1)H̃

)2
+ ew(∞)+w(1)

(
β̃2 + H̃2

))
. (3.15)

In the expressions (3.7) and (3.14), one can see that we need the asymptotic value
of w(r̃). However, it is possible to find the solution satisfying w(∞) = 0 by a shooting
method. So the magnetoconductance (σij and ᾱij) is given by the horizon data of black
brane. We plot the numerical results in figure 2–5 in the unit of 16πG = L = 1. The
figures present the magnetoconductance with various parameters corresponding to dots in
the phase diagram of figure 1.

As an important argument, we explain how the impurity density β can be related to
magnetic properties in figure 7. The impurity density β in (2.2) does not interact with the
magnetic field directly but it can interact with the magnetic field via bulk back-reaction
indirectly, as we mentioned in the introduction. In order to see such an interaction, one can
take into account relevant physical quantities. Since there is no spontaneous magnetization
in the non-hysteric phase, one may consider the susceptibility given by

χ = ∂MH
∂H

|H=0 = − L2

16πG
1
rh
, (3.16)

where we took H = 0 to make comparison parallel with the spontaneous magnetization in
the HMC phase. In this case, we can get the relation between the magnetic susceptibility
and the other parameters using (2.10) and (2.11) as

q2

4 χ
4 + β2

2 χ2 − 4πTχ− 3 = 0. (3.17)

5Thermoelectric conductivities are defined by J i = σijE
j , Qi = ᾱijTE

j − εijMHEj .
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Figure 7. (a) shows the susceptibility (3.16) in the WL phase. To see increasing behavior clearly,
we subtract the reference value so the presented curves for ∆χ ≡ χ − χβ=0. The brown curve
(T/√q = 1.5× 10−2) added to show the coincidence of the other curves is just from the small pa-
rameter differences. (b) shows the spontaneous magnetization in the HMC phase. The spontaneous
magnetization begins to appear at certain critical impurity densities and grows with increasing im-
purity.

Here, we can clearly see that the impurity density β directly affects to the magnetic sus-
ceptibility. We can get analytic solution of the algebraic equation (3.17) which is very
complicated. We expand the solution of (3.17) in small impurity density limit;

∆χ|β�1 ∼

3
√

3−
(√

3 + 2
)
π2T 2

6
√

2 33/4 + · · ·

 β2

q
+O(β

4

q2 ) for T/√q � 1

∼
( 9

128π3T 3 + · · ·
)
β2

q
+O(β

4

q2 ) for T/√q � 1, (3.18)

where ∆χ ≡ χ− χβ=0. The results of full solution are shown in figure 7(a).
On the other hand, the spontaneous magnetization MH without other sources for a

fixed charge density is the most relevant quantity to see the magnetic effect from β in the
HMC phase. The numerical results are shown in figure 7(b). In summary, the susceptibility
and the magnetization increase with increasing β. Therefore, we conclude that β is indeed
related to magnetic properties. Even though it is not still clear this impurity really plays
a role of magnetic impurity, this may help to construct magnetic impurities in holographic
models.

4 Conclusion

In this paper we constructed a model which shows a novel phase transition between the
non-hysteric WL phase and the HMC phase. To describe this phase transition, we derived
the holographic magnetoconductance formulas (3.7) and (3.14) for the hairy black brane
with the linear-axion field and the real scalar hair. Using these formulas and numerical
solutions, we confirm that the electric conductivity σij shows the phase transition reported
in the earlier experiments [3, 4]. Also, we evaluated the Seebeck coefficient and the Nernst
signal. These quantities also show the hysteric behavior in the HMC phase. As far as we
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know, this result has not yet been measured in TI experiments. These observables are also
interesting to see the magnetic properties of materials. We hope to see the measurement
near future and compare it to our result.

One of important issues of this paper is to identify the impurity and to clarify whether
this impurity actually plays a role of magnetic impurity. The experimental data show the
phase transition with increasing obvious magnetic impurity. To our knowledge, there is no
holographic construction for a magnetic impurity relevant to our case. However, the axion
parameter really changes the susceptibility and the magnetization with fixed the other
external sources. This guarantees that the linear-axion strength β affects the magnetic
moment of the dual system, as well as it describes a usual impurity.

Also, due to the external magnetic field, TRS is broken. So we need to know the
time reversal transformation of each field including the linear-axion. In order to figure
out this issue in a symmetry perspective, the time dependent fluctuation of black brane
backgrounds should be studied. However, in this note we only consider DC transport
coefficients obtained by static fluctuations (3.1)–(3.3). One of our future project is to
obtain AC transport coefficients. To find the quantities, the time-dependent fluctuation
should be investigated. So we leave analysis of TRS properties of the linear-axion as a
future study.

In our consideration we didn’t turn on the source J of the real scalar operator O to
simplify the problem. However an extension using this source is another interesting subject.
It can be regarded as another kind of impurity density. This is very similar to hysteric
conductivities measured in a different kind of topological insulators that show hysteric
conductivities as soon as the source is turned on [5–7].

In addition we consider only the phase transition between the WL phase and the HMC
phase. In a preliminary study which is not revealed in this paper, we found that the full
solution space has more various types of numerical solutions. So we leave further analysis
on the full solution space as one possible future study. Other extensions with additional
matter fields are also possible and interesting to understand underlying physics of this
hysteric phase transition. We hope that these generalizations of the present model could
describe the corssover and the phase transition among all the phases (WAL, WL and HMC
phases) in the near future.

A Magnetization from scaling symmetry technique

In this section we introduce another way to obtain the magnetization. This will confirm
the magnetization obtained by consideration of the heat current in section 3. In order to
get the magnetization, we use a scaling symmetry technique developed in [25, 41–45]. This
technique is based on a scaling symmetry in a reduced action. So we start with the reduced
action using (2.2). Then the bulk action (2.1) can be written as

SB =
∫
drd3xLred =

∫
drd3s (L0 + Lbs) , (A.1)
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where L0 and Lbs are given as follows:

L0 = r2eW (∞)−WA′2t
32πGL2 + eW−W (∞)

8πGL4

(
3r2 − 1

4L
2m2r2φ2 − 1

4r
2Uφ′2 − r U ′ − U

)
(A.2)

Lbs = −e
W−W (∞)

32πG

(
2β2 + H

2L4

r2

)
+ HLA

′
tη φ

8πG . (A.3)

Here we discarded some total derivative terms which doesn’t spoil the following consi-
deration.

Now let us assign the following transformation to each field:

δ0U = σ
(
2U − rU ′

)
, δ0e

W lo = σ

(
−2eW − r

(
eW
)′)

,

δ0φ = σ
(
−rφ′

)
, δ0At = σ

(
−2At − rA′t

)
, (A.4)

where σ is a small parameter. L0 is invariant under the scaling transformation δ0 up to
total derivative as follows:

δ0L0 = (−rL0)′ , (A.5)

where we used the equations of motion for W (r) from the action L0. Together with δ0, one
can add the following parameter transformation:

δcH = 2σH , δcβ = σβ . (A.6)

The above transformation compensates the scaling invariance of the full reduced action, i.e.

(δ0 + δc)Lred = (−rLred)′ . (A.7)

Then this transformation is an approximated symmetry and the violation can be compen-
sated by the parameter variation δc.

Using the equations of motion for the fields, we arrive at a partially conserved charge
(PCC) equation as follows:

C′ = −1
2δcLred , (A.8)

where the PCC C is defined by

C ≡ 1
2

(
δ0Lred
δ0Ψ′ δ0Ψ + rLred

)
. (A.9)

Ψ denotes the collective field of
{
U, eW , φ, At

}
. The explicit form of PCC in terms of the

ansatz (2.2) is

C = eW−W (∞) (r3Uφ′2 + 2r2U ′ − 4rU
)

32πGL4 − LqAt
16πG. (A.10)

The PCC equation (A.8) is a consequence of the broken scaling symmetry by Lbs.
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Now, (A.8) can be integrated over from rh to UV cut-off Λ.

C(Λ) + 1
2

∫ Λ

rh

drδcLred = C(rh) , (A.11)

where C(rh) turns out to be s T . The asymptotic value of PCC (A.10) is

C(Λ) = Λ̃r3
hβ̃

2

16πGL4 +
r3
h

(
3M̃ − 2J̃Õ

)
16πGL4 − µq̃r2

h

16πGL2 +O
( 1

Λ̃

)
, (A.12)

where Λ̃ = Λ/rh. Using all the above expressions and the asymptotic behavior (2.8) of
fields with J̃ = 0, it turns out that (A.11) gives us the thermodynamic relation

E + P = µQ+ sT , (A.13)

where E , P and Q are the energy density, the pressure and the charge density of the dual
field theory, respectively. They can be evaluated by holographic renormalization with the
counter terms:

Sct = − 1
16πG

∫
r=Λ

d3x
√
−γ

(
4
L

+ φ2

2L −
L

2
(
∇ψI · ∇ψI

))
, (A.14)

where γ is the determinant of the induced metric γµν from the ADM decomposition (ds2 =
γµν +N2dr2).

More explicitly, the holographic energy density E = T tt given by

T tt = r3
hM̃

8πGL4 . (A.15)

from the boundary energy-momentum tensor Tµν . In addition the holographic charge
density Q is defined by Q ≡ r2

hq̃

16πGL2 . See (3.5) for the expression of the holographic current
whose time-component is equivalent to Q. Since the system is a homogeneous system, the
pressure is nothing but the minus Euclidean on-shell action density W, i.e. P = −W . The
pressure consists of three parts:

P = Pint + βMβ +HMH . (A.16)

Each term is given as follows:

Pint = T xx = r3
hM̃

16πGL4 (A.17)

Mβ = β̃ r2
h

16πGL2

[
1−

∫ Λ̃

1
dr̃
(
ew(r̃)−w(Λ̃) − 1

)]
(A.18)

MH = rh
8πG

∫ Λ̃

1
dr̃ ew(r̃)−w(Λ̃)

{
q̃

(
ηϕ (r̃)
r̃2

)
− H̃

(
4η2ϕ (r̃)2 + 1

2r̃2

)}
, (A.19)

where Pint can be regarded as the internal pressure. In additionMβ is the dual thermody-
namic variable to β. Also, MH denotes the magnetization which is thermodynamic dual
to the external magnetic field H. This expression is the same form of magnetization from
the heat current (3.12). Therefore this magnetization from the magnetic pressure provides
an independent consistency check for the magnetization included in the heat current.
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