
applied
sciences

Article

A Study on the Anomaly Detection of Engine Clutch
Engagement/Disengagement Using Machine Learning
for Transmission Mounted Electric Drive Type Hybrid
Electric Vehicles

Yonghyeok Ji 1, Seongyong Jeong 1, Yeongjin Cho 2, Howon Seo 2, Jaesung Bang 2, Jihwan Kim 3

and Hyeongcheol Lee 3,*

����������
�������

Citation: Ji, Y.; Jeong, S.; Cho, Y.; Seo,

H.; Bang, J.; Kim, J.; Lee, H. A Study

on the Anomaly Detection of Engine

Clutch Engagement/Disengagement

Using Machine Learning for

Transmission Mounted Electric Drive

Type Hybrid Electric Vehicles. Appl.

Sci. 2021, 11, 10187. https://doi.org/

10.3390/app112110187

Academic Editors: Sławomir

Nowaczyk, Mohamed-Rafik

Bouguelia and Hadi Fanaee

Received: 6 October 2021

Accepted: 28 October 2021

Published: 30 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea;
youg0839@hanyang.ac.kr (Y.J.); jeongsy0930@hanyang.ac.kr (S.J.)

2 Electrification Control Development Team 1, Hyundai-Kia R&D Center, 150 Hyundaiyeonguso-ro,
Namyang-eup, Hwaseong-si 18280, Korea; yj_cho@hyundai.com (Y.C.); howon.seo@hyundai.com (H.S.);
aeromec@hyundai.com (J.B.)

3 Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea;
iminai@hanyang.ac.kr

* Correspondence: hclee@hanyang.ac.kr; Tel.: +82-2-2220-1685

Abstract: Transmission mounted electric drive type hybrid electric vehicles (HEVs) engage/disengage
an engine clutch when EV↔HEV mode transitions occur. If this engine clutch is not adequately
engaged or disengaged, driving power is not transmitted correctly. Therefore, it is required to verify
whether engine clutch engagement/disengagement operates normally in the vehicle development
process. This paper studied machine learning-based methods for detecting anomalies in the engine
clutch engagement/disengagement process. We trained the various models based on multi-layer
perceptron (MLP), long short-term memory (LSTM), convolutional neural network (CNN), and
one-class support vector machine (one-class SVM) with the actual vehicle test data and compared
their results. The test results showed the one-class SVM-based models have the highest anomaly
detection performance. Additionally, we found that configuring the training architecture to determine
normal/anomaly by data instance and conducting one-class classification is proper for detecting
anomalies in the target data.

Keywords: fault detection; anomaly detection; hybrid electric vehicle; transmission mounted electric
drive; engine clutch engagement/disengagement; machine learning; multi-layer perceptron (MLP);
long short-term memory (LSTM); convolutional neural network (CNN); one-class SVM

1. Introduction

A transmission mounted electric drive (TMED) type hybrid electric vehicle (HEV) is
a parallel hybrid electric vehicle with a structure in which an engine clutch is mounted
between an engine and a motor that is connected to a transmission input shaft. In this
vehicle structure, the engine clutch is released in EV driving mode, which drives the vehicle
only with the motor. The engine clutch is coupled in HEV driving mode, which drives the
vehicle with the engine and motor together [1]. According to a power distribution strategy,
a hybrid control unit (HCU) drives the vehicle in EV mode or HEV mode [2–5]. Therefore,
EV↔HEV mode transitions can occur when the vehicle is driving, and the engine clutch
is engaged or disengaged. If the engine clutch is not adequately engaged or disengaged,
power is not transmitted correctly. Thus, it is necessary to verify whether engine clutch
engagement/disengagement operates normally in the vehicle development process.

Studies on fault or anomaly detection for vehicle powertrains have been carried out
by various approaches. They can be classified by rule-based methods [6–12], mathematical

Appl. Sci. 2021, 11, 10187. https://doi.org/10.3390/app112110187 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9058-3876
https://doi.org/10.3390/app112110187
https://doi.org/10.3390/app112110187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110187
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110187?type=check_update&version=1

Appl. Sci. 2021, 11, 10187 2 of 21

model-based methods [13–26], and data-driven methods that use signal processing or
machine learning [27–43].

First, in the case of using simple rules, Chen proposed a hybrid electric bus’s fault
detection method for a HEV by checking the accelerator pedal signal, battery voltage signal
range, and logical operation relationship between powertrain components for different
driving modes [7]. Ferreira proposed an anomaly score considering activation frequency
of diagnostic trouble codes (DTC) by revising binary cross-entropy [10]. When a DTC is
activated, the anomaly score is low for frequently activated DTCs and high for infrequently
activated DTCs due to different weighting factors for each DTC code. In addition, the fault
detection methods with simple logic based on hardware redundancies were proposed [8,11].
Song proposed a fault detection algorithm based on the current flowing through IGBT for
an electrical powertrain configuration with hardware redundancies [8]. Pan proposed an
internal short circuit fault detection method for lithium-ion battery cells using two current
sensors with a symmetrical loop circuit topology [11]. In the case of using mathematical
models, the method of using a linear mathematical model of a powertrain component, the
method of estimating sensor values using state observers such as Extended Kalman Filters
(EKF), Luenberger Observers [15,17,19], and the method based on structural analysis of
the target system [18], etc., were proposed. Tabbache proposed a fault-tolerant control
strategy for a speed sensor of an EV induction motor using the maximum likelihood voting
technique [15]. Roubache conducted fault detection for an EV induction motor using EKF
and back-stepping control [17]. Meyer proposed an inter-turn short circuit fault detection
and fault degree identification method using moving horizon observer for the Toyota
Prius traction motor [19]. In the case of using data-driven techniques, methods using
frequency analysis [27,31,34,40], methods using frequency analysis and neural networks
together [41], and methods using machine learning such as one-class SVM, Hidden Markov
model, and Gaussian mixture model [28,33,36,42], etc., were proposed. Akin proposed
a frequency analysis-based fault detection method used at the motor’s zero speed [27].
Källström analyzed powertrain vibrations through time-frequency signal processing to
detect a wheel loader clutch fault during the shifting process [31]. Moosavian analyzed
the effects of piston scratches on engine vibration using short-time Fourier transform
(STFT) and continuous wavelet transform (CWT) [34]. Xu detected engine misfire faults
by analyzing the instantaneous angular speed of the engine in the frequency domain [40].
Ewert proposed a fault detection method for motor bearing faults using a machine learning
technique based on multi-layer perceptron (MLP), radial basis function (RBF), and self-
organizing map (SOM) networks [41]. Nair proposed a machine learning based fault
detection method for battery sensors of HEV that used one-class support vector machine
(SVM) and k-means clustering together [33]. Kordes detected faults of sensor data in a
controller area network (CAN) bus using machine learning with the features by extracting
features using cause and effect rules [36]. Jiang conducted fault diagnosis for an EV battery
using variational mode decomposition and clustering [42]. In particular, in [44], the authors
diagnosed faults of vehicle powertrain by using mathematical models and a neuro-fuzzy
network together.

So far, studies aimed at detecting fault or anomalies on vehicle powertrains have
been conducted mainly on individual parts such as the motor, battery, and transmission.
Little research has been conducted on detecting anomalies in the system operation level of
the powertrain control. In [6,22,26], the authors conducted studies to detect anomalies by
examining vehicle data trends. In [10,36], the authors detected relatively simple anomalies
through DTC signals or a tendency to increase/decrease between data. However, there is a
limit to these applications to the verification of complicated control functions. In [32], the
authors also studied to detect anomalies by examining vehicle data trends with machine
learning. The classifier resulted in relatively low precision, and the precision results were
different according to the test data.

Therefore, this paper studied the anomaly detection method for complicated HEV
powertrain control functions. In particular, we examined the methods for detecting anoma-

Appl. Sci. 2021, 11, 10187 3 of 21

lies in the engine clutch engagement/disengagement process required for EV↔HEV mode
transitions, which is a crucial function of TMED type HEVs. We used data-driven methods
to make it easy to apply to various vehicle data in the future. Additionally, previous
studies’ rule-based methods and mathematical model-based methods have limitations in
applying them to target control function. The rule-based techniques are difficult to apply
to complex control functions because they use simple rules generally. In addition, it is not
easy to construct a mathematical model for the engine clutch engagement/disengagement
process. As noted earlier, little research has been conducted on detecting anomalies in the
system operation level of the powertrain control. Therefore, we used the basic and most
widely used learning architecture. We used multi-layer perceptron (MLP), long short-term
memory (LSTM), convolutional neural network (CNN), and one-class support vector ma-
chine (one-class SVM) to train the models for anomaly detection and compared the trained
models. MLP is the most basic neural network architecture, and CNN and LSTM are the
most widely used learning architectures recently. To investigate the performance of the
trained model for actual vehicle data, we used real vehicle test data. As a result of the
study, we found that the one-class classification method is the most effective.

This paper is organized as follows. Section 2 introduces the structure of TMED type
HEVs and the engine clutch engagement/disengagement process in more detail. Section 3
describes the basic data preprocessing for model training and testing, and Section 4 explains
the anomaly detection model training methods. Section 5 shows the test results for the
trained models, and the conclusions are described in Section 6.

2. Target Vehicle and Data
2.1. Target Vehicle

This paper’s target vehicle is a TMED type parallel HEV with the following powertrain
structure. This structure is one in which we were able to obtain actual vehicle data. In
Figure 1, MG1 represents the BSG (belt-driven starter and generator), MG2 represents the
main traction motor, ENG represents the engine, BAT represents the high voltage battery,
TM represents the transmission, and FD represents the final drive.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 21

Therefore, this paper studied the anomaly detection method for complicated HEV
powertrain control functions. In particular, we examined the methods for detecting anom-
alies in the engine clutch engagement/disengagement process required for EV↔HEV
mode transitions, which is a crucial function of TMED type HEVs. We used data-driven
methods to make it easy to apply to various vehicle data in the future. Additionally, pre-
vious studies’ rule-based methods and mathematical model-based methods have limita-
tions in applying them to target control function. The rule-based techniques are difficult
to apply to complex control functions because they use simple rules generally. In addition,
it is not easy to construct a mathematical model for the engine clutch engagement/disen-
gagement process. As noted earlier, little research has been conducted on detecting anom-
alies in the system operation level of the powertrain control. Therefore, we used the basic
and most widely used learning architecture. We used multi-layer perceptron (MLP), long
short-term memory (LSTM), convolutional neural network (CNN), and one-class support
vector machine (one-class SVM) to train the models for anomaly detection and compared
the trained models. MLP is the most basic neural network architecture, and CNN and
LSTM are the most widely used learning architectures recently. To investigate the perfor-
mance of the trained model for actual vehicle data, we used real vehicle test data. As a
result of the study, we found that the one-class classification method is the most effective.

This paper is organized as follows. Section 2 introduces the structure of TMED type
HEVs and the engine clutch engagement/disengagement process in more detail. Section 3
describes the basic data preprocessing for model training and testing, and Section 4 ex-
plains the anomaly detection model training methods. Section 5 shows the test results for
the trained models, and the conclusions are described in Section 6.

2. Target Vehicle and Data
2.1. Target Vehicle

This paper’s target vehicle is a TMED type parallel HEV with the following power-
train structure. This structure is one in which we were able to obtain actual vehicle data.
In Figure 1, MG1 represents the BSG (belt-driven starter and generator), MG2 represents
the main traction motor, ENG represents the engine, BAT represents the high voltage bat-
tery, TM represents the transmission, and FD represents the final drive.

Figure 1. Powertrain structure of the target vehicle.

Parallel HEV structures can be classified into P0, P1, P2, P3, and P4 depending on the
motor’s position, as shown in Figure 2. In the case of P0 and P1 structures, vehicle electri-
fication can be possible at a low cost, but the fuel efficiency improvement effect is rela-
tively low. In contrast, P2–P4 structures can improve fuel efficiency more, but they are
characterized by high system complexity and high construction cost [45]. The target vehi-
cle structure, TMED type HEV, can be seen as a P0 + P2 structure and has the advantages
of improving high fuel efficiency using a P2 motor and enabling engine start/generation
using the P0 motor.

Figure 1. Powertrain structure of the target vehicle.

Parallel HEV structures can be classified into P0, P1, P2, P3, and P4 depending on
the motor’s position, as shown in Figure 2. In the case of P0 and P1 structures, vehicle
electrification can be possible at a low cost, but the fuel efficiency improvement effect is
relatively low. In contrast, P2–P4 structures can improve fuel efficiency more, but they are
characterized by high system complexity and high construction cost [45]. The target vehicle
structure, TMED type HEV, can be seen as a P0 + P2 structure and has the advantages
of improving high fuel efficiency using a P2 motor and enabling engine start/generation
using the P0 motor.

Appl. Sci. 2021, 11, 10187 4 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 21

Figure 2. Parallel HEV structures classification.

2.2. Target Data
The TMED type HEV shown in Figure 1 drives the vehicle using MG2 in EV driving

mode and drives the vehicle mainly using the engine and MG2 in HEV driving mode.
According to a power distribution strategy, an HCU drives the vehicle in EV mode or
HEV mode. Therefore EV↔HEV mode transitions can occur when the vehicle is driving.
For an HEV→EV mode transition, an HCU gives an EV mode transition command, and
then an engine clutch is disengaged with a clutch pressure drop. Additionally, an
EV→HEV mode transition is accomplished through the following process [46].
1. Cranking an engine using MG1 or MG2;
2. Speed synchronization of both sides of the engine clutch (engine and traction motor

speed synchronization);
3. Engine clutch engagement and transition to HEV mode.

This paper tried to detect anomalies related to this engine clutch engagement/disen-
gagement occurring in EV↔HEV mode transitions.

Table 1 shows the cases of representative anomalous behavior for such data. An en-
gine clutch engagement failure is the case when the speed difference between an engine
and a motor occurs at higher than a certain level, although an HCU applies an engine
clutch command to be fully engaged. The engine clutch disengagement failure is the case
when the speed difference between an engine and a motor occurs lower than a certain
level because the clutch is not released correctly, although an HCU applies an engine
clutch command to be released. The clutch pressure command following failure is the case
when the clutch pressure does not follow a clutch pressure command from the HCU or
TCU (transmission control unit). We collected actual vehicle test data, including the fol-
lowing anomalous behavior cases, and trained the models to detect anomalies with these
data.

Table 1. Representative anomalous behaviors in engine clutch engagement/disengagement.

Case Description

Engine clutch
engagement failure

The speed difference between an engine and a motor ex-
ceeds a certain level, although an HCU applies an engine
clutch command to be fully engaged.
(This case is that the engine clutch is not fully engaged as
intended. For the target vehicle, as the engine clutch con-
nects the engine and the motor, there should be no speed
difference between the engine and the motor when HCU
commands the engine clutch as full engagement in normal
conditions.)

Engine clutch
disengagement failure

The speed difference between an engine and a motor is
less than a certain level over a certain time, although an
HCU applies an engine clutch command to be re-
leased/open and an engine operating mode command to
be off for EV mode.

Figure 2. Parallel HEV structures classification.

2.2. Target Data

The TMED type HEV shown in Figure 1 drives the vehicle using MG2 in EV driving
mode and drives the vehicle mainly using the engine and MG2 in HEV driving mode.
According to a power distribution strategy, an HCU drives the vehicle in EV mode or HEV
mode. Therefore EV↔HEV mode transitions can occur when the vehicle is driving. For an
HEV→EV mode transition, an HCU gives an EV mode transition command, and then an
engine clutch is disengaged with a clutch pressure drop. Additionally, an EV→HEV mode
transition is accomplished through the following process [46].

1. Cranking an engine using MG1 or MG2;
2. Speed synchronization of both sides of the engine clutch (engine and traction motor

speed synchronization);
3. Engine clutch engagement and transition to HEV mode.

This paper tried to detect anomalies related to this engine clutch engagement/
disengagement occurring in EV↔HEV mode transitions.

Table 1 shows the cases of representative anomalous behavior for such data. An
engine clutch engagement failure is the case when the speed difference between an engine
and a motor occurs at higher than a certain level, although an HCU applies an engine
clutch command to be fully engaged. The engine clutch disengagement failure is the case
when the speed difference between an engine and a motor occurs lower than a certain level
because the clutch is not released correctly, although an HCU applies an engine clutch
command to be released. The clutch pressure command following failure is the case when
the clutch pressure does not follow a clutch pressure command from the HCU or TCU
(transmission control unit). We collected actual vehicle test data, including the following
anomalous behavior cases, and trained the models to detect anomalies with these data.

Table 1. Representative anomalous behaviors in engine clutch engagement/disengagement.

Case Description

Engine clutch
engagement failure

The speed difference between an engine and a motor exceeds a certain level, although an HCU applies an engine
clutch command to be fully engaged.
(This case is that the engine clutch is not fully engaged as intended. For the target vehicle, as the engine clutch
connects the engine and the motor, there should be no speed difference between the engine and the motor when HCU
commands the engine clutch as full engagement in normal conditions.)

Engine clutch
disengagement failure

The speed difference between an engine and a motor is less than a certain level over a certain time, although an HCU
applies an engine clutch command to be released/open and an engine operating mode command to be off for
EV mode.
(This case is that the engine clutch is not released as intended in EV mode. As a result, the speed difference is small as
the engine clutch still connects the engine and the motor. In normal conditions, there should be a speed difference
between the engine and the motor because the motor has speed according to the vehicle speed and the engine speed is
zero due to the engine off command.)

Clutch pressure command
following failure

The difference between a clutch pressure command value and a clutch pressure sensor value exceeds a certain level
over a certain time.
(This case is that the engine clutch pressure does not follow a command. In normal conditions, the difference between
the pressure command and pressure sensor value should be small enough. When the pressure command changes
significantly, hydraulic generation delay can slightly increase this difference, but the duration should not be long.)

Appl. Sci. 2021, 11, 10187 5 of 21

3. Data Preprocessing for Model Training and Test
3.1. Data Interpolation

We used the data acquired through actual vehicle tests to train the models that can
detect anomalies. The target data are the signals in the CAN bus related to engine clutch
engagement/disengagement. For example, engine speed, clutch status, clutch hydraulic
pressure command from the HCU or TCU, etc. Because the target signals are transmitted
from various controllers, sampling time and period are slightly different. To synchronize
these sampling times, we defined a time vector with a specific period and then conducted
linear interpolation of the target signals to this time vector.

3.2. Target Data Section Extraction (Pattern Extraction)

When driving, an HEV operates in various driving modes according to an HCU’s
power distribution strategy. Accordingly, there are cases where an engine clutch is not
engaged. For example, an engine clutch is disengaged in EV driving mode, and it is not
related to the target situation. To deal with only the related data, we extracted the data
from when an engine clutch is engaged to when an engine clutch is disengaged based
on the engine clutch control state command signal from the HCU. We then defined one
extracted data section as a pattern like a Figure 3. If there are any anomalies in a pattern,
the pattern is labeled as an anomaly pattern.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 21

(This case is that the engine clutch is not released as in-
tended in EV mode. As a result, the speed difference is
small as the engine clutch still connects the engine and the
motor. In normal conditions, there should be a speed dif-
ference between the engine and the motor because the mo-
tor has speed according to the vehicle speed and the en-
gine speed is zero due to the engine off command.)

Clutch pressure command
following failure

The difference between a clutch pressure command value
and a clutch pressure sensor value exceeds a certain level
over a certain time.
(This case is that the engine clutch pressure does not fol-
low a command. In normal conditions, the difference be-
tween the pressure command and pressure sensor value
should be small enough. When the pressure command
changes significantly, hydraulic generation delay can
slightly increase this difference, but the duration should
not be long.)

3. Data Preprocessing for Model Training and Test
3.1. Data Interpolation

We used the data acquired through actual vehicle tests to train the models that can
detect anomalies. The target data are the signals in the CAN bus related to engine clutch
engagement/disengagement. For example, engine speed, clutch status, clutch hydraulic
pressure command from the HCU or TCU, etc. Because the target signals are transmitted
from various controllers, sampling time and period are slightly different. To synchronize
these sampling times, we defined a time vector with a specific period and then conducted
linear interpolation of the target signals to this time vector.

3.2. Target Data Section Extraction (Pattern Extraction)
When driving, an HEV operates in various driving modes according to an HCU’s

power distribution strategy. Accordingly, there are cases where an engine clutch is not
engaged. For example, an engine clutch is disengaged in EV driving mode, and it is not
related to the target situation. To deal with only the related data, we extracted the data
from when an engine clutch is engaged to when an engine clutch is disengaged based on
the engine clutch control state command signal from the HCU. We then defined one ex-
tracted data section as a pattern like a Figure 3. If there are any anomalies in a pattern, the
pattern is labeled as an anomaly pattern.

Figure 3. An example of target data section extraction (pattern extraction). Figure 3. An example of target data section extraction (pattern extraction).

The number of normal/anomaly patterns extracted through this process is shown in
Table 2. We can see that the number of anomaly patterns is much less than the number
of normal patterns. This is because developed vehicle control functions are generally
first verified through tests such as model-in-the-loop simulation (MILS) and hardware-in-
the-loop simulation (HILS) before being applied to actual vehicles. These tests examine
unintended behaviors and improve control function’s quality, resulting in fewer anomalous
data for controllers and control logic installed in actual vehicles. This normal/anomaly
data imbalance is a common phenomenon that occurs not only in vehicles but also in other
manufacturing industries. If there are too little anomalous data, it is challenging to learn
the characteristics of anomalous data. Therefore, we composed training and test data by
copying the anomaly patterns, as shown in Table 3. Because the acquired anomalous data
are representative anomalous data of the target control function, we copied the anomalous
data directly. However, it is difficult to obtain anomalous data as much as normal data. To
address this, we copied anomalous data so that the ratio of normal to anomalous data was
about 3:1. The ratio of 3:1 is an arbitrarily determined value.

Appl. Sci. 2021, 11, 10187 6 of 21

Table 2. The number of engine clutch engagement/disengagement patterns for model training and
test (before the copy of anomaly patterns).

Normal Patterns Anomaly Patterns

Number of data 1878 25

Table 3. The number of engine clutch engagement/disengagement patterns for model training and
test (after the copy of anomaly patterns).

Normal Patterns Anomaly Patterns

Number of data 1878 625

4. Anomaly Detection Model Training

This section describes the model training method that can detect engine clutch engage-
ment/disengagement anomalies using the data preprocessed in Section 3. We used MLP,
LSTM, CNN, and one-class SVM architecture to train the model. We trained the model
with various hyperparameters for each architecture and compared the results.

4.1. Multi-Layer Perceptron (MLP)

MLP is the neural network in the form of sequentially attaching several layers that are
composed of perceptrons. Figure 4 shows the structure of the perceptron [47]. As shown in
Figure 4, a single perceptron adds up all the weighted inputs and biases and then calculates
an output h by inputting the summed value to an activation function, shown in Figure 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 21

The number of normal/anomaly patterns extracted through this process is shown in
Table 2. We can see that the number of anomaly patterns is much less than the number of
normal patterns. This is because developed vehicle control functions are generally first
verified through tests such as model-in-the-loop simulation (MILS) and hardware-in-the-
loop simulation (HILS) before being applied to actual vehicles. These tests examine unin-
tended behaviors and improve control function’s quality, resulting in fewer anomalous
data for controllers and control logic installed in actual vehicles. This normal/anomaly
data imbalance is a common phenomenon that occurs not only in vehicles but also in other
manufacturing industries. If there are too little anomalous data, it is challenging to learn
the characteristics of anomalous data. Therefore, we composed training and test data by
copying the anomaly patterns, as shown in Table 3. Because the acquired anomalous data
are representative anomalous data of the target control function, we copied the anomalous
data directly. However, it is difficult to obtain anomalous data as much as normal data.
To address this, we copied anomalous data so that the ratio of normal to anomalous data
was about 3:1. The ratio of 3:1 is an arbitrarily determined value.

Table 2. The number of engine clutch engagement/disengagement patterns for model training and
test (before the copy of anomaly patterns).

 Normal Patterns Anomaly Patterns
Number of data 1878 25

Table 3. The number of engine clutch engagement/disengagement patterns for model training and
test (after the copy of anomaly patterns).

 Normal Patterns Anomaly Patterns
Number of data 1878 625

4. Anomaly Detection Model Training
This section describes the model training method that can detect engine clutch en-

gagement/disengagement anomalies using the data preprocessed in Section 3. We used
MLP, LSTM, CNN, and one-class SVM architecture to train the model. We trained the
model with various hyperparameters for each architecture and compared the results.

4.1. Multi-Layer Perceptron (MLP)
MLP is the neural network in the form of sequentially attaching several layers that

are composed of perceptrons. Figure 4 shows the structure of the perceptron [47]. As
shown in Figure 4, a single perceptron adds up all the weighted inputs and biases and
then calculates an output ℎ by inputting the summed value to an activation function,
shown in Figure 5.

Figure 4. Structure of a perceptron. Figure 4. Structure of a perceptron.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 21

 Φ(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) Φ(𝑥) = 𝜎(𝑥) = 11 + 𝑒 Φ(𝑥) = 0 (𝑥 0)𝑥 (𝑥 0)

(a) (b) (c)

Figure 5. Activation functions for MLP: (a) hyperbolic tangent function; (b) sigmoid Function; (c) ReLU function.

We trained the engine clutch engagement/disengagement anomaly detection model
using MLP by configuring the input/output structure as shown in Figure 6. Because MLP
can receive one-dimensional input data only, the target signals for each pattern were con-
figured and inputted in one dimension, as shown in Figure 6. Although MLP receives one-
dimensional data, we expected MLP to learn data patterns because units of hidden layers
are all connected to input nodes. There are also studies where MLP learned time-series
data [48,49]. Before inputting data to MLP, because the length of the target signal in a
pattern may be different for each pattern, it is necessary to match the length of the signal
and then input it into the network. Accordingly, the data were constructed in one dimen-
sion after filling the insufficient data points with zeroes in line with the pattern that had
the longest data length. Equation (1) below is the example of a pattern with a length of 5,
filling the data with a length of 10. In the equation, 𝑥 is the preprocessed target signal
vector, and 𝑥 , is the target signal vector that is inputted into the network; 𝑥 , configured in this way is reorganized into one dimension in the way shown in
Figure 6 and input into the network. We composed the output as normal/anomaly per
pattern to determine normal/anomaly considering data trends over time. The two output
units shown in Figure 6 are 1 0 in the case of normal and 0 1 in the case of
anomaly. This output unit configuration follows the setting of the Matlab MLP training
app we used. This app determines the number of output neurons as much as the number
of output classes.

Figure 6. MLP-based anomaly detection model training architecture.

Figure 5. Activation functions for MLP: (a) hyperbolic tangent function; (b) sigmoid Function; (c) ReLU function.

We trained the engine clutch engagement/disengagement anomaly detection model
using MLP by configuring the input/output structure as shown in Figure 6. Because
MLP can receive one-dimensional input data only, the target signals for each pattern were
configured and inputted in one dimension, as shown in Figure 6. Although MLP receives
one-dimensional data, we expected MLP to learn data patterns because units of hidden
layers are all connected to input nodes. There are also studies where MLP learned time-

Appl. Sci. 2021, 11, 10187 7 of 21

series data [48,49]. Before inputting data to MLP, because the length of the target signal
in a pattern may be different for each pattern, it is necessary to match the length of the
signal and then input it into the network. Accordingly, the data were constructed in one
dimension after filling the insufficient data points with zeroes in line with the pattern that
had the longest data length. Equation (1) below is the example of a pattern with a length
of 5, filling the data with a length of 10. In the equation, xData is the preprocessed target
signal vector, and xData,Input is the target signal vector that is inputted into the network;
xData,Input configured in this way is reorganized into one dimension in the way shown in
Figure 6 and input into the network. We composed the output as normal/anomaly per
pattern to determine normal/anomaly considering data trends over time. The two output
units shown in Figure 6 are

[
1 0

]T in the case of normal and
[

0 1
]T in the case of

anomaly. This output unit configuration follows the setting of the Matlab MLP training
app we used. This app determines the number of output neurons as much as the number
of output classes.

xData =

x1(t1) x2(t1) · · ·
x1(t2) x2(t2) · · ·
x1(t3)
x1(t4)
x1(t5)

x2(t3)
x2(t4)
x2(t5)

· · ·
· · ·
· · ·

 −→ xData,Input =

x1(t1) x2(t1) · · ·
x1(t2) x2(t2) · · ·
x1(t3) x2(t3) · · ·
x1(t4) x2(t4) · · ·
x1(t5) x2(t5) · · ·

0 0 · · ·
0 0 · · ·
0 0 · · ·
0 0 · · ·
0 0 · · ·

(1)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 21

 Φ(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) Φ(𝑥) = 𝜎(𝑥) = 11 + 𝑒 Φ(𝑥) = 0 (𝑥 0)𝑥 (𝑥 0)

(a) (b) (c)

Figure 5. Activation functions for MLP: (a) hyperbolic tangent function; (b) sigmoid Function; (c) ReLU function.

We trained the engine clutch engagement/disengagement anomaly detection model
using MLP by configuring the input/output structure as shown in Figure 6. Because MLP
can receive one-dimensional input data only, the target signals for each pattern were con-
figured and inputted in one dimension, as shown in Figure 6. Although MLP receives one-
dimensional data, we expected MLP to learn data patterns because units of hidden layers
are all connected to input nodes. There are also studies where MLP learned time-series
data [48,49]. Before inputting data to MLP, because the length of the target signal in a
pattern may be different for each pattern, it is necessary to match the length of the signal
and then input it into the network. Accordingly, the data were constructed in one dimen-
sion after filling the insufficient data points with zeroes in line with the pattern that had
the longest data length. Equation (1) below is the example of a pattern with a length of 5,
filling the data with a length of 10. In the equation, 𝑥 is the preprocessed target signal
vector, and 𝑥 , is the target signal vector that is inputted into the network; 𝑥 , configured in this way is reorganized into one dimension in the way shown in
Figure 6 and input into the network. We composed the output as normal/anomaly per
pattern to determine normal/anomaly considering data trends over time. The two output
units shown in Figure 6 are 1 0 in the case of normal and 0 1 in the case of
anomaly. This output unit configuration follows the setting of the Matlab MLP training
app we used. This app determines the number of output neurons as much as the number
of output classes.

Figure 6. MLP-based anomaly detection model training architecture. Figure 6. MLP-based anomaly detection model training architecture.

The number of hidden layers and hidden units for the MLP-based models were
composed as shown in Table 4. We set these values to an appropriate value through trial
and error. This configuration is for comparing training results according to the number of
hidden units per hidden layer and training results according to the number of hidden layers.
For a clear comparison, we composed values with large differences. A hyperbolic tangent
function was used as an activation function. In the case of MLP-based models, unlike
other training architectures, trained models tended to overfit when data were divided into
training data and test data only. Therefore, we trained the models by dividing the data into
a training, validation, and test set when training the MLP-based models. The proportions
of training, validation, and test sets were 70%, 15%, and 15%, respectively, and data were
randomly sampled from the data shown in Table 3.

Appl. Sci. 2021, 11, 10187 8 of 21

Table 4. Hidden layer and hidden unit settings for MLP-based anomaly detection models.

Model The Number of
Hidden Layers

The Number of
Hidden Units per

Hidden Layer

MLP-m1 1 10
MLP-m2 2 10
MLP-m3 3 10
MLP-m4 1 100
MLP-m5 3 100

4.2. Long Short-Term Memory (LSTM)

A recurrent neural network (RNN) is mainly used to learn ordered data or time-series
data such as natural language processing and speech recognition [50–59]. However, RNN
has the vanishing gradient problem that significantly reduces the learning ability when the
distance between the previous output and the point where it uses the information from
that output is far away [60,61]. LSTM is the proposed neural network architecture to solve
this vanishing gradient problem. An LSTM network is composed of connected multiple
LSTM cells as shown in Figure 7 [62].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 21

𝑥 = ⎣⎢⎢
⎢⎡𝑥 (𝑡) 𝑥 (𝑡) ⋯𝑥 (𝑡) 𝑥 (𝑡) ⋯𝑥 (𝑡)𝑥 (𝑡)𝑥 (𝑡) 𝑥 (𝑡)𝑥 (𝑡)𝑥 (𝑡) ⋯⋯⋯⎦⎥⎥

⎥⎤ ⟶ 𝑥 , =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡𝑥 (𝑡) 𝑥 (𝑡) ⋯𝑥 (𝑡) 𝑥 (𝑡) ⋯𝑥 (𝑡) 𝑥 (𝑡) ⋯𝑥 (𝑡) 𝑥 (𝑡) ⋯𝑥 (𝑡) 𝑥 (𝑡) ⋯0 0 ⋯0 0 ⋯0 0 ⋯0 0 ⋯0 0 ⋯⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤
 (1)

The number of hidden layers and hidden units for the MLP-based models were com-
posed as shown in Table 4. We set these values to an appropriate value through trial and
error. This configuration is for comparing training results according to the number of hid-
den units per hidden layer and training results according to the number of hidden layers.
For a clear comparison, we composed values with large differences. A hyperbolic tangent
function was used as an activation function. In the case of MLP-based models, unlike other
training architectures, trained models tended to overfit when data were divided into train-
ing data and test data only. Therefore, we trained the models by dividing the data into a
training, validation, and test set when training the MLP-based models. The proportions
of training, validation, and test sets were 70%, 15%, and 15%, respectively, and data were
randomly sampled from the data shown in Table 3.

Table 4. Hidden layer and hidden unit settings for MLP-based anomaly detection models.

Model The Number of
Hidden Layers

The Number of
Hidden Units per

Hidden Layer
MLP-m1 1 10
MLP-m2 2 10
MLP-m3 3 10
MLP-m4 1 100
MLP-m5 3 100

4.2. Long Short-Term Memory (LSTM)
A recurrent neural network (RNN) is mainly used to learn ordered data or time-series

data such as natural language processing and speech recognition [50–59]. However, RNN
has the vanishing gradient problem that significantly reduces the learning ability when
the distance between the previous output and the point where it uses the information
from that output is far away [60,61]. LSTM is the proposed neural network architecture to
solve this vanishing gradient problem. An LSTM network is composed of connected mul-
tiple LSTM cells as shown in Figure 7 [62].

Figure 7. LSTM architecture.

Equations (2)–(7) are the equations for an LSTM cell unit. In each equation, Wq, Uq,
and bq (q = f , i, o, c) denote weight and bias, respectively. Here, xt represents the input
vector of the LSTM cell unit, ft represents the forget gate’s activation vector, it represents
the input/update gate’s activation vector, ot represents the output gate’s activation vector,
c̃t represents the cell input activation vector, ht represents the hidden state vector that is
known as the LSTM cell unit’s output vector, and � represents the Hadamard product [63].

ft = σ
(

W f xt + U f ht−1 + b f

)
(2)

it = σ(Wi xt + Ui ht−1 + bi) (3)

ot = σ(Wo xt + Uo ht−1 + bo) (4)

c̃t = tanh(Wc xt + Uc ht−1 + bc) (5)

ct = ft � ct−1 + it � c̃t (6)

ht = ot � tanh(ct) (7)

We trained the engine clutch engagement/disengagement anomaly detection model
using LSTM by configuring the input/output structure as shown in Figure 8. The network
was constructed by sequentially connecting the LSTM layer, fully connected layer, softmax

Appl. Sci. 2021, 11, 10187 9 of 21

layer, and classification layer, as shown in the figure. We inputted target signals per pattern
into the LSTM layer and configured normal/anomaly per pattern as the output of the
network. We also matched the LSTM’s input data length to the length of the longest pattern
using Equation (1). The data were normalized so that the average of the input data is zero
before inputting the data.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21

Figure 7. LSTM architecture.

Equations (2)–(7) are the equations for an LSTM cell unit. In each equation, 𝑊 , 𝑈 ,
and 𝑏 (𝑞 = 𝑓, 𝑖, 𝑜, 𝑐) denote weight and bias, respectively. Here, 𝑥 represents the input
vector of the LSTM cell unit, 𝑓 represents the forget gate’s activation vector, 𝑖 repre-
sents the input/update gate’s activation vector, 𝑜 represents the output gate’s activation
vector, �̃� represents the cell input activation vector, ℎ represents the hidden state vec-
tor that is known as the LSTM cell unit’s output vector, and ⊙ represents the Hadamard
product [63]. 𝑓 = 𝜎 𝑊 𝑥 + 𝑈 ℎ + 𝑏 (2) 𝑖 = 𝜎(𝑊 𝑥 + 𝑈 ℎ + 𝑏) (3) 𝑜 = 𝜎(𝑊 𝑥 + 𝑈 ℎ + 𝑏) (4) �̃� = 𝑡𝑎𝑛ℎ(𝑊 𝑥 + 𝑈 ℎ + 𝑏) (5) 𝑐 = 𝑓 ⊙ 𝑐 + 𝑖 ⊙ �̃� (6) ℎ = 𝑜 ⊙ 𝑡𝑎𝑛ℎ(𝑐) (7)

We trained the engine clutch engagement/disengagement anomaly detection model
using LSTM by configuring the input/output structure as shown in Figure 8. The network
was constructed by sequentially connecting the LSTM layer, fully connected layer, soft-
max layer, and classification layer, as shown in the figure. We inputted target signals per
pattern into the LSTM layer and configured normal/anomaly per pattern as the output of
the network. We also matched the LSTM’s input data length to the length of the longest
pattern using Equation (1). The data were normalized so that the average of the input data
is zero before inputting the data.

Figure 8. LSTM-based anomaly detection model training architecture.

The number of LSTM layers and hidden units for the model based on LSTM were
composed as shown in Table 5. We set these values to an appropriate value through trial
and error. This configuration is for comparing training results according to the number of
hidden units per LSTM layer and training results according to the number of LSTM layers.
But as there are many learning parameters for each LSTM layer, it can be overfitted if there
are many layers. Therefore, to prevent this, we reduced the number of hidden units per

Figure 8. LSTM-based anomaly detection model training architecture.

The number of LSTM layers and hidden units for the model based on LSTM were
composed as shown in Table 5. We set these values to an appropriate value through trial
and error. This configuration is for comparing training results according to the number of
hidden units per LSTM layer and training results according to the number of LSTM layers.
But as there are many learning parameters for each LSTM layer, it can be overfitted if there
are many layers. Therefore, to prevent this, we reduced the number of hidden units per
layer if there were three LSTM layers. For training, 80% of the data shown in Table 3 were
randomly sampled, and other data were used as test data.

Table 5. LSTM layer and hidden unit settings for the LSTM-based anomaly detection models.

Model The Number of
LSTM Layers

The Number of
Hidden Units per

LSTM Layer

LSTM-m1 1 200
LSTM-m2 1 400
LSTM-m3 3 100

4.3. Convolutional Neural Network (CNN)

A CNN is the network architecture that learns directly from data, eliminating the need
for manual feature extraction. CNNs are particularly useful for finding patterns in images
to recognize objects, faces, and scenes. They can also be quite effective for classifying
non-image data such as audio, time series, and signal data [64–73]. Figure 9 shows an
example of image classification using a CNN [65]. As shown in the figure, a convolution
operation is repeatedly performed to extract features, and extracted features are entered
into the fully connected network to classify the images.

Appl. Sci. 2021, 11, 10187 10 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 21

layer if there were three LSTM layers. For training, 80% of the data shown in Table 3 were
randomly sampled, and other data were used as test data.

Table 5. LSTM layer and hidden unit settings for the LSTM-based anomaly detection models.

Model The Number of
LSTM Layers

The Number of
Hidden Units per

LSTM Layer
LSTM-m1 1 200
LSTM-m2 1 400
LSTM-m3 3 100

4.3. Convolutional Neural Network (CNN)
A CNN is the network architecture that learns directly from data, eliminating the

need for manual feature extraction. CNNs are particularly useful for finding patterns in
images to recognize objects, faces, and scenes. They can also be quite effective for classi-
fying non-image data such as audio, time series, and signal data [64–73]. Figure 9 shows
an example of image classification using a CNN [65]. As shown in the figure, a convolu-
tion operation is repeatedly performed to extract features, and extracted features are en-
tered into the fully connected network to classify the images.

Figure 9. Image classification example using a CNN.

We trained the engine clutch engagement/disengagement anomaly detection model
using a CNN by configuring the input/output structure as shown in Figure 10. As shown
in the figure, the architectures with one and three convolution layers were constructed. In
[74], the authors configured the channel for time-series data to enter the data into the con-
volution layer to classify time-series data. Similarly, we configured the channel for each
target signal to enter the data into the first convolution layer. The output of the network
is the normal/anomaly per pattern, as in the aforementioned MLP and LSTM. For input
signals of the network, we matched the length of data per pattern in the same way as the
MLP and LSTM, using Equation (1), and then entered the data into the network. The com-
position of layers for each architecture in Figure 10 is as follows. First, Table 6 shows the
hyperparameter setting of the convolutional layer for each architecture. In the table, [w,
h] of the filter size means [height, width (time axis)] of the filter, and [a, b] of the stride
means [vertical step size, horizontal step size]. Because the input data is one-dimensional,
the height of the filter size and vertical step size of the stride is always 1. We made the
input size and output size of the layer the same by using zero padding. In the batch nor-
malization layer, z-score normalization is conducted on input data for each channel. In
the ReLU layer, the activation function shown in Figure 5c is applied to the input data.
The max pooling layer performs downsampling by outputting a maximum value for a

Figure 9. Image classification example using a CNN.

We trained the engine clutch engagement/disengagement anomaly detection model
using a CNN by configuring the input/output structure as shown in Figure 10. As shown
in the figure, the architectures with one and three convolution layers were constructed.
In [74], the authors configured the channel for time-series data to enter the data into the
convolution layer to classify time-series data. Similarly, we configured the channel for each
target signal to enter the data into the first convolution layer. The output of the network
is the normal/anomaly per pattern, as in the aforementioned MLP and LSTM. For input
signals of the network, we matched the length of data per pattern in the same way as
the MLP and LSTM, using Equation (1), and then entered the data into the network. The
composition of layers for each architecture in Figure 10 is as follows. First, Table 6 shows
the hyperparameter setting of the convolutional layer for each architecture. In the table,
[w, h] of the filter size means [height, width (time axis)] of the filter, and [a, b] of the stride
means [vertical step size, horizontal step size]. Because the input data is one-dimensional,
the height of the filter size and vertical step size of the stride is always 1. We made the input
size and output size of the layer the same by using zero padding. In the batch normalization
layer, z-score normalization is conducted on input data for each channel. In the ReLU
layer, the activation function shown in Figure 5c is applied to the input data. The max
pooling layer performs downsampling by outputting a maximum value for a specific region
(pooling region) of input data. The sizes of the pooling regions of the two max pooling
layers of the 3-convolutional layer architecture were set to (1, 3) and (1, 4), respectively, and
the stride values were also set to (1, 3) and (1, 4), respectively. Here, (w, h) of the pooling
regions size means height, width (time axis)] of pooling region. The set values for each layer
above were selected according to a general method or through trial and error.

Table 6. Convolutional layer hyperparameter setting.

3-Convolution Layer Architecture

Hyperparameter 1st convolutional
layer

2nd convolutional
layer

3rd convolutional
layer

Filter size (1, 50) (1, 50) (1, 50)
The number of filters 64 128 256

Stride (1, 1) (1, 1) (1, 1)

1-Convolution Layer Architecture

Hyperparameter 1st convolutional
layer - -

Filter size (1, 50) - -
The number of filters 64 - -

Stride (1, 1) - -

Appl. Sci. 2021, 11, 10187 11 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21

specific region (pooling region) of input data. The sizes of the pooling regions of the two
max pooling layers of the 3-convolutional layer architecture were set to (1, 3) and (1, 4),
respectively, and the stride values were also set to (1, 3) and (1, 4), respectively. Here, (w,
h) of the pooling regions size means height, width (time axis)] of pooling region. The set
values for each layer above were selected according to a general method or through trial
and error.

Figure 10. CNN-based anomaly detection model training architecture.

Table 6. Convolutional layer hyperparameter setting.

3-Convolution Layer Architecture

Hyperparameter
1st convolutional

layer
2nd convolutional

layer
3rd convolutional

layer
Filter size (1, 50) (1, 50) (1, 50)

The number of filters 64 128 256
Stride (1, 1) (1, 1) (1, 1)

1-Convolution Layer Architecture

Hyperparameter
1st convolutional

layer - -

Filter size (1, 50) - -
The number of filters 64 - -

Stride (1, 1) - -

The number of convolution layers for the model based on a CNN were composed as
shown in Table 7. This configuration is for comparing training results according to the
number of CNN layers. For a clear comparison, we composed values with large differ-
ences. For training, 80% of the data shown in Table 3 were randomly sampled, and other
data were used as test data.

Figure 10. CNN-based anomaly detection model training architecture.

The number of convolution layers for the model based on a CNN were composed
as shown in Table 7. This configuration is for comparing training results according to the
number of CNN layers. For a clear comparison, we composed values with large differences.
For training, 80% of the data shown in Table 3 were randomly sampled, and other data
were used as test data.

Table 7. Convolution layer settings for the CNN-based anomaly detection models.

Model The Number of Convolution Layers

CNN-m1 1
CNN-m2 3

4.4. One-Class SVM

Like the target data in this paper, when the number of data per class is unbalanced,
a model is sometimes learned using only a class with a large number of data, which is
called one-class classification [75]. One-class SVM is a representative method in one-class
classification [76]. Because the target data in this study were also disproportionate in the
number of normal/anomaly data, as shown in Table 2, we trained the models to detect
anomalies in engine clutch engagement/disengagement data using one-class SVM and
only normal data.

Figure 11 shown the engine clutch engagement/disengagement anomaly detection
model training structure using one-class SVM. For effective training, we performed z-score
normalization and principal component analysis (PCA). The one-class SVM model was
trained with data dimensionally reduced to the principal component space through PCA.
We used data projected into the three-dimensional principal component space because the
principal component contribution analysis of the target signal showed that the cumulative
contribution rate of the three principal components was 71–77%.

Appl. Sci. 2021, 11, 10187 12 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 21

Table 7. Convolution layer settings for the CNN-based anomaly detection models.

Model The Number of Convolution Layers
CNN-m1 1
CNN-m2 3

4.4. One-Class SVM
Like the target data in this paper, when the number of data per class is unbalanced,

a model is sometimes learned using only a class with a large number of data, which is
called one-class classification [75]. One-class SVM is a representative method in one-class
classification [76]. Because the target data in this study were also disproportionate in the
number of normal/anomaly data, as shown in Table 2, we trained the models to detect
anomalies in engine clutch engagement/disengagement data using one-class SVM and
only normal data.

Figure 11 shown the engine clutch engagement/disengagement anomaly detection
model training structure using one-class SVM. For effective training, we performed z-
score normalization and principal component analysis (PCA). The one-class SVM model
was trained with data dimensionally reduced to the principal component space through
PCA. We used data projected into the three-dimensional principal component space be-
cause the principal component contribution analysis of the target signal showed that the
cumulative contribution rate of the three principal components was 71–77%.

Figure 11. One-class SVM-based anomaly detection model training architecture.

The input/output data structure for training the one-class SVM model consisted of
two types. The first type consisted of target data per pattern as input and normal/anomaly
per pattern as output (Type 1). The second type consisted of normal/anomaly per data
instance of the target signals as output, and the input data were the same as Type 1 (Type
2). The model learned with this configuration determines the normal/anomaly state of the
data instance. Training examples for each type are shown in Figure 12. However, for ve-
hicle data, the duration of a particular situation can be a criterion for normal/anomaly
status. For example, for hydraulic pressure following errors in engine clutches, the errors
above a certain level for a short time may occur because it takes a certain amount of time
for hydraulic pressure to be generated. This situation should be seen as normal. As con-
figuring normal/anomaly per data instance as the output of the model makes it difficult
to determine normal/anomaly for the duration of this situation, we configured the signal
duration (𝐷𝑇 , 𝑘 = 1,2, ⋯) as shown in Figure 13 as additional input data to the model. As
shown in the figure, the signal duration was derived by separating the interval of the sig-
nal based on when any target signals change, and for this, continuous signals should be
discretized. If the configured signal duration satisfies an anomaly criterion, all data in-
stances in the corresponding signal interval are labeled as anomalies.

Figure 11. One-class SVM-based anomaly detection model training architecture.

The input/output data structure for training the one-class SVM model consisted of
two types. The first type consisted of target data per pattern as input and normal/anomaly
per pattern as output (Type 1). The second type consisted of normal/anomaly per data
instance of the target signals as output, and the input data were the same as Type 1 (Type 2).
The model learned with this configuration determines the normal/anomaly state of the
data instance. Training examples for each type are shown in Figure 12. However, for
vehicle data, the duration of a particular situation can be a criterion for normal/anomaly
status. For example, for hydraulic pressure following errors in engine clutches, the errors
above a certain level for a short time may occur because it takes a certain amount of
time for hydraulic pressure to be generated. This situation should be seen as normal. As
configuring normal/anomaly per data instance as the output of the model makes it difficult
to determine normal/anomaly for the duration of this situation, we configured the signal
duration (DTk, k = 1, 2, · · ·) as shown in Figure 13 as additional input data to the model.
As shown in the figure, the signal duration was derived by separating the interval of the
signal based on when any target signals change, and for this, continuous signals should
be discretized. If the configured signal duration satisfies an anomaly criterion, all data
instances in the corresponding signal interval are labeled as anomalies.

The models based on one-class SVM also learned with various hyperparameter con-
figurations, as shown in Table 8. For the discretization method, the method using domain
knowledge discretized the target continuous signals densely where dense discretization
is required and coarsely where it is not. The area where dense discretization or coarse
discretization is needed was determined by domain knowledge. Dense discretization
discretized the target continuous signals to be sufficiently narrow and evenly spaced. The
outlier fraction is the prediction ratio of how much anomalous data will be within the
training data. A small outlier fraction means predicting that there will be fewer anomalous
data within the training data and a large outlier fraction means predicting that there will be
many anomalous data within the training data. In this work, we performed the one-class
SVM learning with only data labeled as normal. Thus, we trained the model with small
outlier fraction values. For training, 80% of the data shown in Table 3 were randomly
sampled, and other data were used as test data.

Table 8. Hyper parameter settings for the one-class SVM-based anomaly detection models.

Model Model
Input/Output Discretization Outlier

Fraction [%]

One-class SVM-m1 Type 1 - 0.1

One-class SVM-m2 Type 2 Using
domain knowledge 0.1

One-class SVM-m3 Type 2 Densely 0.01
One-class SVM-m4 Type 2 Densely 0.1
One-class SVM-m5 Type 2 Densely 1

Appl. Sci. 2021, 11, 10187 13 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

Figure 12. An example of one training example for each input/output data structure type.

Figure 13. Derivation process of signal duration.

The models based on one-class SVM also learned with various hyperparameter con-
figurations, as shown in Table 8. For the discretization method, the method using domain
knowledge discretized the target continuous signals densely where dense discretization
is required and coarsely where it is not. The area where dense discretization or coarse
discretization is needed was determined by domain knowledge. Dense discretization dis-
cretized the target continuous signals to be sufficiently narrow and evenly spaced. The
outlier fraction is the prediction ratio of how much anomalous data will be within the
training data. A small outlier fraction means predicting that there will be fewer anomalous
data within the training data and a large outlier fraction means predicting that there will
be many anomalous data within the training data. In this work, we performed the one-
class SVM learning with only data labeled as normal. Thus, we trained the model with
small outlier fraction values. For training, 80% of the data shown in Table 3 were ran-
domly sampled, and other data were used as test data.

Table 8. Hyper parameter settings for the one-class SVM-based anomaly detection models.

Model Model
Input/Output Discretization Outlier

Fraction [%]
One-class SVM-m1 Type 1 - 0.1

One-class SVM-m2 Type 2
Using

domain knowledge 0.1

One-class SVM-m3 Type 2 Densely 0.01
One-class SVM-m4 Type 2 Densely 0.1
One-class SVM-m5 Type 2 Densely 1

Figure 12. An example of one training example for each input/output data structure type.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

Figure 12. An example of one training example for each input/output data structure type.

Figure 13. Derivation process of signal duration.

The models based on one-class SVM also learned with various hyperparameter con-
figurations, as shown in Table 8. For the discretization method, the method using domain
knowledge discretized the target continuous signals densely where dense discretization
is required and coarsely where it is not. The area where dense discretization or coarse
discretization is needed was determined by domain knowledge. Dense discretization dis-
cretized the target continuous signals to be sufficiently narrow and evenly spaced. The
outlier fraction is the prediction ratio of how much anomalous data will be within the
training data. A small outlier fraction means predicting that there will be fewer anomalous
data within the training data and a large outlier fraction means predicting that there will
be many anomalous data within the training data. In this work, we performed the one-
class SVM learning with only data labeled as normal. Thus, we trained the model with
small outlier fraction values. For training, 80% of the data shown in Table 3 were ran-
domly sampled, and other data were used as test data.

Table 8. Hyper parameter settings for the one-class SVM-based anomaly detection models.

Model Model
Input/Output Discretization Outlier

Fraction [%]
One-class SVM-m1 Type 1 - 0.1

One-class SVM-m2 Type 2
Using

domain knowledge 0.1

One-class SVM-m3 Type 2 Densely 0.01
One-class SVM-m4 Type 2 Densely 0.1
One-class SVM-m5 Type 2 Densely 1

Figure 13. Derivation process of signal duration.

5. Anomaly Detection Model Test Results

This section describes the test results of the models trained with the architectures
constructed in Section 4. We used the data not used for training to test the models and
compared the results using true positive rate (TPR), true negative rate (TNR), and accuracy.
The TPR, TNR, and accuracy were calculated using equations (8) to (10). In the equations,
TP means true positive, FN means false negative, TN means true negative, and FP means
false positive.

TPR (True Positive Rate) =
TP

TP + FN
× 100 (8)

TNR (True Negative Rate) =
TN

TN + FP
× 100 (9)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (10)

5.1. Multi-Layer Perceptron (MLP)

Unlike other architectures such as LSTM, CNN, and one-class SVM, the MLP-based
anomaly detection models showed a rather large performance difference each time they
were trained, even in the same hidden layers and hidden units. Therefore, we trained the
MLP-based anomaly detection models for each configuration in Table 4 many times and
compared the results. Figure 14a below shows the TPR and TNR results, and Figure 14b
shows the TNR results according to training iteration for each model. In Figure 14a, we can
see that the TPR was mostly derived high, but the TNR was often derived low. Additionally,

Appl. Sci. 2021, 11, 10187 14 of 21

in Figure 14b, we can see that TNR tended to appear low when the training iteration was
small. That is, models with a low TNR can be viewed as local optimal. According to these
results, we can conclude that the MLP-based anomaly detection models are capable of
adequately distinguishing anomalies from normal, but local optimal models with a low
TNR can be easily derived. Table 9 shows the average values of the training results for each
model. We can see that the TNRs and accuracies are lower than the TPRs because low TNR
cases were often derived, as shown in Figure 14a.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 21

5. Anomaly Detection Model Test Results
This section describes the test results of the models trained with the architectures

constructed in Section 4. We used the data not used for training to test the models and
compared the results using true positive rate (TPR), true negative rate (TNR), and accu-
racy. The TPR, TNR, and accuracy were calculated using equations (8) to (10). In the equa-
tions, TP means true positive, FN means false negative, TN means true negative, and FP
means false positive. 𝑇𝑃𝑅 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒) = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 × 100 (8)

𝑇𝑁𝑅 (𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒) = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 × 100 (9)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 × 100 (10)

5.1. Multi-Layer Perceptron (MLP)
Unlike other architectures such as LSTM, CNN, and one-class SVM, the MLP-based

anomaly detection models showed a rather large performance difference each time they
were trained, even in the same hidden layers and hidden units. Therefore, we trained the
MLP-based anomaly detection models for each configuration in Table 4 many times and
compared the results. Figure 14a below shows the TPR and TNR results, and Figure 14b
shows the TNR results according to training iteration for each model. In Figure 14a, we
can see that the TPR was mostly derived high, but the TNR was often derived low. Addi-
tionally, in Figure 14b, we can see that TNR tended to appear low when the training iter-
ation was small. That is, models with a low TNR can be viewed as local optimal. Accord-
ing to these results, we can conclude that the MLP-based anomaly detection models are
capable of adequately distinguishing anomalies from normal, but local optimal models
with a low TNR can be easily derived. Table 9 shows the average values of the training
results for each model. We can see that the TNRs and accuracies are lower than the TPRs
because low TNR cases were often derived, as shown in Figure 14a.

(a) (b)

Figure 14. Training results of the MLP-based anomaly detection models: (a) TPR and TNR for each
model training; (b) TNR according to training iteration.

0 100 200 300 400 500 600
Training iteration [-]

0

20

40

60

80

100

MLP-m2
MLP-m3
MLP-m4
MLP-m5

Figure 14. Training results of the MLP-based anomaly detection models: (a) TPR and TNR for each model training; (b) TNR
according to training iteration.

Table 9. Test results of MLP-based anomaly detection models.

Model TPR
(Average)

TNR
(Average)

Accuracy
(Average)

MLP-m1 97.6 70.1 90.5
MLP-m2 97.5 62.3 87.9
MLP-m3 98.4 67.2 90.5
MLP-m4 98.0 67.2 90.5
MLP-m5 97.8 72.0 91.0

5.2. Long Short-Term Memory (LSTM)

Figure 15 shows the accuracy according to the training progresses of LSTM-m2, and
Table 10 shows the training results of the models per the LSTM layers and hidden units
configured as shown in Table 5. The numbers 10–90 shown above the graph’s x-axis in the
figure means the number of epochs. In Figure 15, we can see that the accuracy according to
the training progress is oscillating between about 60 and 90% and not converging. Training
LSTM is done by dividing the training data into several subsets and finding parameters
that minimize the loss function for each training data subset. The reason for accuracy
oscillating is optimized LSTM parameters for each subset do not converge and continue to
change. This means that the LSTM cannot properly find the pattern of target input/output
data. Accordingly, we can see that the accuracy per the models in Table 10 is also low. All
training results show high TPRs but low TNRs.

Appl. Sci. 2021, 11, 10187 15 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21

Table 9. Test results of MLP-based anomaly detection models.

Model
TPR

(Average)
TNR

(Average)
Accuracy
(Average)

MLP-m1 97.6 70.1 90.5
MLP-m2 97.5 62.3 87.9
MLP-m3 98.4 67.2 90.5
MLP-m4 98.0 67.2 90.5
MLP-m5 97.8 72.0 91.0

5.2. Long Short-Term Memory (LSTM)
Figure 15 shows the accuracy according to the training progresses of LSTM-m2, and

Table 10 shows the training results of the models per the LSTM layers and hidden units
configured as shown in Table 5. The numbers 10–90 shown above the graph’s x-axis in the
figure means the number of epochs. In Figure 15, we can see that the accuracy according
to the training progress is oscillating between about 60 and 90% and not converging.
Training LSTM is done by dividing the training data into several subsets and finding pa-
rameters that minimize the loss function for each training data subset. The reason for ac-
curacy oscillating is optimized LSTM parameters for each subset do not converge and
continue to change. This means that the LSTM cannot properly find the pattern of target
input/output data. Accordingly, we can see that the accuracy per the models in Table 10
is also low. All training results show high TPRs but low TNRs.

Figure 15. Accuracy according to the training progress (LSTM-m2).

Table 10. Test results of the LSTM-based anomaly detection models.

Model TPR [%] TNR [%] Accuracy [%]
LSTM-m1 98.9 28.4 79.6
LSTM-m2 90.5 28.2 75.7
LSTM-m3 100 4.0 74.6

5.3. Convolutional Neural Network (CNN)
Figure 16 shows the accuracy according to the training progresses of CNN-m2, and

Table 11 shows the training results of the models per the convolutional layers configured
as shown in Table 7. The numbers 10–90 shown above the graph’s x-axis in the figure
means the number of epochs. In Figure 16, we can see the CNN-based models are con-
verging differently from LSTM. However, Table 11 shows that the training results of the
CNN-based models have low TNRs, like LSTM-based models.

Figure 15. Accuracy according to the training progress (LSTM-m2).

Table 10. Test results of the LSTM-based anomaly detection models.

Model TPR [%] TNR [%] Accuracy [%]

LSTM-m1 98.9 28.4 79.6
LSTM-m2 90.5 28.2 75.7
LSTM-m3 100 4.0 74.6

5.3. Convolutional Neural Network (CNN)

Figure 16 shows the accuracy according to the training progresses of CNN-m2, and
Table 11 shows the training results of the models per the convolutional layers configured as
shown in Table 7. The numbers 10–90 shown above the graph’s x-axis in the figure means
the number of epochs. In Figure 16, we can see the CNN-based models are converging
differently from LSTM. However, Table 11 shows that the training results of the CNN-based
models have low TNRs, like LSTM-based models.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21

Figure 16. Accuracy according to the training progress (CNN-m2).

Table 11. Test results of the CNN-based anomaly detection models.

Model TPR [%] TNR [%] Accuracy [%]
CNN-m1 100 19.8 80.6
CNN-m2 100 29.8 83.0

5.4. One-Class SVM
Table 12 shows the training results of the models per the hyperparameters configured

as shown in Table 8. The results of one-class SVM-m2 through m5 show that both TPRs
and TNRs are higher than one-class SVM-m1. Through this, we can show that, for one-
class SVM, it is more appropriate to construct normal/anomaly per data instance as the
output data. As for the discretization of continuous signals, the comparison between one-
class SVM-m2 and one-class SVM-m3 through m5 shows that dense discretization is more
advantageous for TPR. One-class SVM-m3 through m5 are the results of different outlier
fractions, and we can see that the larger the outlier fraction, the higher the TPR and the
lower the TNR. This is because the larger the outlier fraction, the narrower the decision
boundary, as shown in Figure 17. The decision boundary is the criterion by which the
model distinguishes anomalies.

(a) (b)

Figure 16. Accuracy according to the training progress (CNN-m2).

Table 11. Test results of the CNN-based anomaly detection models.

Model TPR [%] TNR [%] Accuracy [%]

CNN-m1 100 19.8 80.6
CNN-m2 100 29.8 83.0

Appl. Sci. 2021, 11, 10187 16 of 21

5.4. One-Class SVM

Table 12 shows the training results of the models per the hyperparameters configured
as shown in Table 8. The results of one-class SVM-m2 through m5 show that both TPRs and
TNRs are higher than one-class SVM-m1. Through this, we can show that, for one-class
SVM, it is more appropriate to construct normal/anomaly per data instance as the output
data. As for the discretization of continuous signals, the comparison between one-class
SVM-m2 and one-class SVM-m3 through m5 shows that dense discretization is more
advantageous for TPR. One-class SVM-m3 through m5 are the results of different outlier
fractions, and we can see that the larger the outlier fraction, the higher the TPR and the
lower the TNR. This is because the larger the outlier fraction, the narrower the decision
boundary, as shown in Figure 17. The decision boundary is the criterion by which the
model distinguishes anomalies.

Table 12. Test results of the one-class SVM-based anomaly detection models.

Model TPR [%] TNR [%] Accuracy [%]

One-class SVM-m1 56.0 83.5 66.3
One-class SVM-m2 93.3 99.9 97.9
One-class SVM-m3 96.8 100 99.0
One-class SVM-m4 97.2 99.9 99.0
One-class SVM-m5 98.2 99.0 98.7

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21

Figure 16. Accuracy according to the training progress (CNN-m2).

Table 11. Test results of the CNN-based anomaly detection models.

Model TPR [%] TNR [%] Accuracy [%]
CNN-m1 100 19.8 80.6
CNN-m2 100 29.8 83.0

5.4. One-Class SVM
Table 12 shows the training results of the models per the hyperparameters configured

as shown in Table 8. The results of one-class SVM-m2 through m5 show that both TPRs
and TNRs are higher than one-class SVM-m1. Through this, we can show that, for one-
class SVM, it is more appropriate to construct normal/anomaly per data instance as the
output data. As for the discretization of continuous signals, the comparison between one-
class SVM-m2 and one-class SVM-m3 through m5 shows that dense discretization is more
advantageous for TPR. One-class SVM-m3 through m5 are the results of different outlier
fractions, and we can see that the larger the outlier fraction, the higher the TPR and the
lower the TNR. This is because the larger the outlier fraction, the narrower the decision
boundary, as shown in Figure 17. The decision boundary is the criterion by which the
model distinguishes anomalies.

(a) (b)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21

(c)

Figure 17. Decision boundaries of the one-class SVM-based anomaly detection models based on the
outlier fraction: (a) outlier fraction = 0.01 [%]; (b) outlier fraction = 0.1 [%]; (c) outlier fraction = 1 [%].

Table 12. Test results of the one-class SVM-based anomaly detection models.

Model TPR [%] TNR [%] Accuracy [%]
One-class SVM-m1 56.0 83.5 66.3
One-class SVM-m2 93.3 99.9 97.9
One-class SVM-m3 96.8 100 99.0
One-class SVM-m4 97.2 99.9 99.0
One-class SVM-m5 98.2 99.0 98.7

The training results of each architecture and model’s configuration are summarized
as follows. First, for MLP, it is possible to derive the model that adequately distinguishes
normal/anomaly, but we could see the phenomenon where local optimal models with low
TNRs are easily derived. The LSTM and CNN-based models also showed low TNRs. Like
this, the TNRs of MLP, LSTM, and CNN all tended to have low values. This is thought to
be because anomalous data have fewer numbers than normal data. Training is conducted
in the direction of increasing the accuracy of the training dataset. Therefore, even if the
accuracy of the class having a low number is low, if the accuracy of the class having a high
number is high, the overall accuracy is increased. Since our training data also have more
normal data than anomalous data, we can infer that the models were trained in this way
to increase the accuracy of normal data. This can be confirmed from the high TPR results
and low TNR results for each architecture. In the case of one-class SVM, the models that
configured normal/anomaly per data instance as output showed high TPRs and TNRs.
Through these results, we found that for engine clutch engagement/disengagement data
with an imbalance in normal/anomaly, constructing the training architecture to determine
normal/anomaly by data instance and performing one-class classification are advanta-
geous for anomaly detection. In this work, we used one-class SVM, which is most com-
monly used for one-class classification, but other one-class classification architectures are
also expected to show high anomaly detection performance.

6. Discussion
In this paper, we studied the methods for detecting anomalies in the engine clutch

engagement/disengagement process required for EV↔HEV mode transitions of TMED
type HEVs. We used machine learning-based methods such as MLP, LSTM, CNN, and
one-class SVM and trained various models according to different parameters like the
number of hidden layers and hidden units, outlier fraction, etc. For data verification at an
actual vehicle level, we used the data acquired through actual vehicle tests for model
training and testing. The training results showed that the models based on MLP, LSTM,
and CNN have low TNRs, whereas one-class SVM-m3 though m5, the models based on

Figure 17. Decision boundaries of the one-class SVM-based anomaly detection models based on the outlier fraction:
(a) outlier fraction = 0.01 [%]; (b) outlier fraction = 0.1 [%]; (c) outlier fraction = 1 [%].

Appl. Sci. 2021, 11, 10187 17 of 21

The training results of each architecture and model’s configuration are summarized
as follows. First, for MLP, it is possible to derive the model that adequately distinguishes
normal/anomaly, but we could see the phenomenon where local optimal models with low
TNRs are easily derived. The LSTM and CNN-based models also showed low TNRs. Like
this, the TNRs of MLP, LSTM, and CNN all tended to have low values. This is thought to
be because anomalous data have fewer numbers than normal data. Training is conducted
in the direction of increasing the accuracy of the training dataset. Therefore, even if the
accuracy of the class having a low number is low, if the accuracy of the class having a high
number is high, the overall accuracy is increased. Since our training data also have more
normal data than anomalous data, we can infer that the models were trained in this way
to increase the accuracy of normal data. This can be confirmed from the high TPR results
and low TNR results for each architecture. In the case of one-class SVM, the models that
configured normal/anomaly per data instance as output showed high TPRs and TNRs.
Through these results, we found that for engine clutch engagement/disengagement data
with an imbalance in normal/anomaly, constructing the training architecture to determine
normal/anomaly by data instance and performing one-class classification are advantageous
for anomaly detection. In this work, we used one-class SVM, which is most commonly
used for one-class classification, but other one-class classification architectures are also
expected to show high anomaly detection performance.

6. Discussion

In this paper, we studied the methods for detecting anomalies in the engine clutch
engagement/disengagement process required for EV↔HEV mode transitions of TMED
type HEVs. We used machine learning-based methods such as MLP, LSTM, CNN, and
one-class SVM and trained various models according to different parameters like the
number of hidden layers and hidden units, outlier fraction, etc. For data verification at
an actual vehicle level, we used the data acquired through actual vehicle tests for model
training and testing. The training results showed that the models based on MLP, LSTM,
and CNN have low TNRs, whereas one-class SVM-m3 though m5, the models based on
one-class SVM, have high TPRs and TNRs. Through these results, we could obtain the
following conclusions.

• For engine clutch engagement/disengagement data, constructing training architecture
to determine normal/anomaly by data instance and performing one-class classification
are advantageous for anomaly detection.

• The structure of determining normal/anomaly per pattern cannot learn characteristics
of engine clutch engagement/disengagement data properly.

For the second item, the various durations of a vehicle state, such as the duration
of clutch engaged, may be one of the reasons why determining normal/anomaly per the
pattern is not adequate. We expected the training architectures to learn normal/anomaly
for pattern regardless of the duration of the vehicle state by learning the relationship
between the data at the previous time and the data at the current time. But it is pre-
sumed that the structure of determining normal/anomaly per pattern cannot learn these
characteristics well.

Since most of the data acquired through real vehicle tests will have similar characteris-
tics, one-class classification by data instance is expected to be effective for other vehicle
test data. Therefore, future work should examine whether a one-class classification by data
instance is also effective in detecting anomalies in other HEV powertrain control functions.

Finally, we also anticipate that real-time detection is possible because the time to
detect anomalies for given data is short if there is an already trained model. But if there is
no trained model, it is difficult to perform this part in real-time because training time is
very long.

Appl. Sci. 2021, 11, 10187 18 of 21

Author Contributions: Formal analysis, Y.J., S.J. and Y.C.; project administration, Y.J., Y.C. and
H.L.; resources, Y.C., H.S., J.K. and J.B.; software, Y.J. and S.J.; validation, Y.J., S.J., Y.C. and H.S.;
writing—original draft preparation, Y.J.; writing—review and editing, Y.J. and H.L.; supervision, H.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Industrial Strategic Technology Development
Program (20010132, Development of the systematization technology of e-powertrain core parts
development platform for expending the industry of xEV parts) funded By the Ministry of Trade,
Industry & Energy (MOTIE, Korea). This paper is the result of research carried out by a research
fund and technical support from HMC.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, Y.S.; Park, J.; Park, T.W.; Bang, J.S.; Sim, H.S. Anti-jerk controller design with a cooperative control strategy in hybrid electric

vehicle. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Jeju, Korea, 30 May–3 June 2011.
2. Anselma, P.G.; Del Prete, M.; Belingardi, G. Battery High Temperature Sensitive Optimization-Based Calibration of Energy and

Thermal Management for a Parallel-through-the-Road Plug-in Hybrid Electric Vehicle. Appl. Sci. 2021, 11, 8593. [CrossRef]
3. Sim, K.; Oh, S.-M.; Kang, K.-Y.; Hwang, S.-H. A Control Strategy for Mode Transition with Gear Shifting in a Plug-In Hybrid

Electric Vehicle. Energies 2017, 10, 1043. [CrossRef]
4. Xiao, R.; Liu, B.; Shen, J.; Guo, N.; Yan, W.; Chen, Z. Comparisons of Energy Management Methods for a Parallel Plug-In Hybrid

Electric Vehicle between the Convex Optimization and Dynamic Programming. Appl. Sci. 2018, 8, 218. [CrossRef]
5. Maddumage, W.; Perera, M.; Attalage, R.; Kelly, P. Power Management Strategy of a Parallel Hybrid Three-Wheeler for Fuel and

Emission Reduction. Energies 2021, 14, 1833. [CrossRef]
6. Zhang, Y.; Gantt, G.W.; Rychlinski, M.J.; Edwards, R.M.; Correia, J.J.; Wolf, C.E. Connected Vehicle Diagnostics and Prognostics,

Concept, and Initial Practice. IEEE Trans. Reliab. 2009, 58, 286–294. [CrossRef]
7. Chen, H.; Peng, Y.; Zeng, X.; Shang, M.; Song, D.; Wang, Q. Fault Detection and Confirmation for Hybrid Electric Vehicle. In

Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China,
31 August–3 September 2014; pp. 1–6.

8. Song, Y.; Wang, B. Analysis and Experimental Verification of a Fault-Tolerant HEV Powertrain. IEEE Trans. Power Electron. 2013,
28, 5854–5864. [CrossRef]

9. Yang, N.; Shang, M. Common Fault Detection and Diagnosis of Santana Clutch. In Proceedings of the 2016 International
Conference on Education, Management, Computer and Society, Shenyang, China, 1–3 January 2016; Atlantis Press: Shenyang,
China, 2016.

10. Ferreira, D.R.; Scholz, T.; Prytz, R. Importance Weighting of Diagnostic Trouble Codes for Anomaly Detection. In Proceedings of
the Machine Learning, Optimization, and Data Science, Siena-Tuscany, Italy, 19–23 July 2020; Springer International Publishing:
Cham, Switzerland, 2020; pp. 410–421.

11. Pan, Y.; Feng, X.; Zhang, M.; Han, X.; Lu, L.; Ouyang, M. Internal Short Circuit Detection for Lithium-Ion Battery Pack with
Parallel-Series Hybrid Connections. J. Clean. Prod. 2020, 255, 120277. [CrossRef]

12. Algredo-Badillo, I.; Ramírez-Gutiérrez, K.A.; Morales-Rosales, L.A.; Pacheco Bautista, D.; Feregrino-Uribe, C. Hybrid Pipeline
Hardware Architecture Based on Error Detection and Correction for AES. Sensors 2021, 21, 5655. [CrossRef]

13. Qin, G.; Ge, A.; Li, H. On-Board Fault Diagnosis of Automated Manual Transmission Control System. IEEE Trans. Control Syst.
Technol. 2004, 12, 564–568. [CrossRef]

14. Xu, L.; Li, J.; Ouyang, M.; Hua, J.; Li, X. Active Fault Tolerance Control System of Fuel Cell Hybrid City Bus. Int. J. Hydrog. Energy
2010, 35, 12510–12520. [CrossRef]

15. Tabbache, B.; Benbouzid, M.E.H.; Kheloui, A.; Bourgeot, J. Virtual-Sensor-Based Maximum-Likelihood Voting Approach for
Fault-Tolerant Control of Electric Vehicle Powertrains. IEEE Trans. Veh. Technol. 2013, 62, 1075–1083. [CrossRef]

16. Wang, Y.; Gao, B.; Chen, H. Data-Driven Design of Parity Space-Based FDI System for AMT Vehicles. IEEE/ASME Trans. Mechatron.
2015, 20, 405–415. [CrossRef]

17. Roubache, T.; Chaouch, S.; Naït-Saïd, M.-S. Backstepping Design for Fault Detection and FTC of an Induction Motor Drives-Based
EVs. Automatika 2016, 57, 736–748. [CrossRef]

18. Trask, S.J.H.; Jankord, G.J.; Modak, A.A.; Rahman, B.M.; Rizzoni, G.; Midlam-Mohler, S.W.; Guercioni, G.R. System Diagnosis and
Fault Mitigation Strategies for an Automated Manual Transmission. In Proceedings of the ASME 2017 Dynamic Systems and
Control Conference, Tysons, VA, USA, 11–13 October 2017; Volume 2, p. V002T19A001.

http://doi.org/10.3390/app11188593
http://doi.org/10.3390/en10071043
http://doi.org/10.3390/app8020218
http://doi.org/10.3390/en14071833
http://doi.org/10.1109/TR.2009.2020484
http://doi.org/10.1109/TPEL.2013.2245513
http://doi.org/10.1016/j.jclepro.2020.120277
http://doi.org/10.3390/s21165655
http://doi.org/10.1109/TCST.2004.825133
http://doi.org/10.1016/j.ijhydene.2010.08.005
http://doi.org/10.1109/TVT.2012.2230200
http://doi.org/10.1109/TMECH.2014.2329005
http://doi.org/10.7305/automatika.2017.02.1733

Appl. Sci. 2021, 11, 10187 19 of 21

19. Meyer, R.T.; Johnson, S.C.; DeCarlo, R.A.; Pekarek, S.; Sudhoff, S.D. Hybrid Electric Vehicle Fault Tolerant Control. J. Dyn. Syst.
Meas. Control 2018, 140, 021002. [CrossRef]

20. Kersten, A.; Oberdieck, K.; Bubert, A.; Neubert, M.; Grunditz, E.A.; Thiringer, T.; Doncker, R.W.D. Fault Detection and Localization
for Limp Home Functionality of Three-Level NPC Inverters with Connected Neutral Point for Electric Vehicles. IEEE Trans.
Transp. Electrif. 2019, 5, 416–432. [CrossRef]

21. Fill, A.; Koch, S.; Birke, K.P. Algorithm for the Detection of a Single Cell Contact Loss within Parallel-Connected Cells Based on
Continuous Resistance Ratio Estimation. J. Energy Storage 2020, 27, 101049. [CrossRef]

22. Xu, J.; Wang, J.; Li, S.; Cao, B. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for
Batteries in Electric Vehicles. Sensors 2016, 16, 1328. [CrossRef]

23. Jeon, N.; Lee, H. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles. Sensors
2016, 16, 2106. [CrossRef]

24. Na, W.; Park, C.; Lee, S.; Yu, S.; Lee, H. Sensitivity-Based Fault Detection and Isolation Algorithm for Road Vehicle Chassis
Sensors. Sensors 2018, 18, 2720. [CrossRef] [PubMed]

25. Chen, Q.; Tian, W.; Chen, W.; Ahmed, Q.; Wu, Y. Model-Based Fault Diagnosis of an Anti-Lock Braking System via Structural
Analysis. Sensors 2018, 18, 4468. [CrossRef]

26. Byun, Y.-S.; Kim, B.-H.; Jeong, R.-G. Sensor Fault Detection and Signal Restoration in Intelligent Vehicles. Sensors 2019, 19, 3306.
[CrossRef]

27. Akin, B.; Ozturk, S.B.; Toliyat, H.A.; Rayner, M. DSP-Based Sensorless Electric Motor Fault-Diagnosis Tools for Electric and
Hybrid Electric Vehicle Powertrain Applications. IEEE Trans. Veh. Technol. 2009, 58, 2679–2688. [CrossRef]

28. Olsson, T.; Kallstrom, E.; Gillblad, D.; Funk, P. Fault Diagnosis of Heavy Duty Machines: Automatic Transmission Clutches. In
Proceedings of the International Conference on Case-Based Reasoning: Workshop on Synergies between CBR and Data Mining,
Cork, Ireland, 29 September–1 October 2014.

29. Sankavaram, C.; Kodali, A.; Pattipati, K.R.; Singh, S. Incremental Classifiers for Data-Driven Fault Diagnosis Applied to
Automotive Systems. IEEE Access 2015, 3, 407–419. [CrossRef]

30. Choi, S.D.; Akin, B.; Kwak, S.; Toliyat, H.A. A Compact Error Management Algorithm to Minimize False-Alarm Rate of
Motor/Generator Faults in (Hybrid) Electric Vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 618–626. [CrossRef]

31. Källström, E.; Lindström, J.; Håkansson, L.; Karlberg, M.; Bellgran, D.; Frenne, N.; Renderstedt, R.; Lundin, J.; Larsson, J. Analysis
of Automatic Transmission Vibration for Clutch Slippage Detection. In Proceedings of the the 22th International Congress on
Sound and Vibration, Florence, Italy, 12–16 July 2015; p. 8.

32. Theissler, A. Detecting Known and Unknown Faults in Automotive Systems Using Ensemble-Based Anomaly Detection. Knowl.
Based Syst. 2017, 123, 163–173. [CrossRef]

33. Nair, V.V.; Koustubh, B.P. Data Analysis Techniques for Fault Detection in Hybrid/Electric Vehicles. In Proceedings of the 2017
IEEE Transportation Electrification Conference (ITEC-India), Pune, India, 13–15 December 2017; pp. 1–5.

34. Moosavian, A.; Najafi, G.; Ghobadian, B.; Mirsalim, M. The Effect of Piston Scratching Fault on the Vibration Behavior of an IC
Engine. Appl. Acoust. 2017, 126, 91–100. [CrossRef]

35. Becherif, M.; Péra, M.-C.; Hissel, D.; Zheng, Z. Determination of the Health State of Fuel Cell Vehicle for a Clean Transportation. J.
Clean. Prod. 2018, 171, 1510–1519. [CrossRef]

36. Kordes, A.; Wurm, S.; Hozhabrpour, H.; Wismüller, R. Automatic Fault Detection Using Cause and Effect Rules for In-Vehicle
Networks. In Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems, Funchal,
Portugal, 16–18 March 2018; pp. 537–544.

37. Yu, H.; Langari, R. A Neural Network-Based Detection and Mitigation System for Unintended Acceleration. J. Frankl. Inst. 2018,
355, 4315–4335. [CrossRef]

38. Ostapenko, D.I.; Fisch, J. Predictive Maintenance Using MATLAB: Pattern Matching for Time Series Data. Available on-
line: https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/de/2018
/predictive-maintenance-with-matlab--time-series-production-data-analysis.pdf (accessed on 29 October 2021).

39. Ginzarly, R.; Hoblos, G.; Moubayed, N. From Modeling to Failure Prognosis of Permanent Magnet Synchronous Machine. Appl.
Sci. 2020, 10, 691. [CrossRef]

40. Xu, Y.; Huang, B.; Yun, Y.; Cattley, R.; Gu, F.; Ball, A.D. Model Based IAS Analysis for Fault Detection and Diagnosis of IC Engine
Powertrains. Energies 2020, 13, 565. [CrossRef]

41. Ewert, P.; Orlowska-Kowalska, T.; Jankowska, K. Effectiveness Analysis of PMSM Motor Rolling Bearing Fault Detectors Based
on Vibration Analysis and Shallow Neural Networks. Energies 2021, 14, 712. [CrossRef]

42. Jiang, J.; Cong, X.; Li, S.; Zhang, C.; Zhang, W.; Jiang, Y. A Hybrid Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries
in Electric Vehicles. IEEE Access 2021, 9, 19175–19186. [CrossRef]

43. Ding, N.; Ma, H.; Zhao, C.; Ma, Y.; Ge, H. Data Anomaly Detection for Internet of Vehicles Based on Traffic Cellular Automata
and Driving Style. Sensors 2019, 19, 4926. [CrossRef] [PubMed]

44. Moavenian, M. Fault Detection and Isolation of Vehicle Driveline System. Int. J. Automot. Eng. 2012, 2, 11.

http://doi.org/10.1115/1.4037270
http://doi.org/10.1109/TTE.2019.2899722
http://doi.org/10.1016/j.est.2019.101049
http://doi.org/10.3390/s16081328
http://doi.org/10.3390/s16122106
http://doi.org/10.3390/s18082720
http://www.ncbi.nlm.nih.gov/pubmed/30126208
http://doi.org/10.3390/s18124468
http://doi.org/10.3390/s19153306
http://doi.org/10.1109/TVT.2009.2012430
http://doi.org/10.1109/ACCESS.2015.2422833
http://doi.org/10.1109/JESTPE.2014.2302902
http://doi.org/10.1016/j.knosys.2017.02.023
http://doi.org/10.1016/j.apacoust.2017.05.017
http://doi.org/10.1016/j.jclepro.2017.10.072
http://doi.org/10.1016/j.jfranklin.2018.04.014
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/de/2018/predictive-maintenance-with-matlab--time-series-production-data-analysis.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/de/2018/predictive-maintenance-with-matlab--time-series-production-data-analysis.pdf
http://doi.org/10.3390/app10020691
http://doi.org/10.3390/en13030565
http://doi.org/10.3390/en14030712
http://doi.org/10.1109/ACCESS.2021.3052866
http://doi.org/10.3390/s19224926
http://www.ncbi.nlm.nih.gov/pubmed/31726718

Appl. Sci. 2021, 11, 10187 20 of 21

45. Xue, Q.; Zhang, X.; Teng, T.; Zhang, J.; Feng, Z.; Lv, Q. A Comprehensive Review on Classification, Energy Management Strategy,
and Control Algorithm for Hybrid Electric Vehicles. Energies 2020, 13, 5355. [CrossRef]

46. Kim, H.; Kim, J.; Lee, H. Mode Transition Control Using Disturbance Compensation for a Parallel Hybrid Electric Vehicle. Proc.
Inst. Mech. Eng. Part D J. Automob. Eng. 2011, 225, 150–166. [CrossRef]

47. Gardner, M.W.; Dorling, S.R. Artificial Neural Networks (the Multilayer Perceptron)—a Review of Applications in the Atmo-
spheric Sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]

48. Widiasari, I.R.; Nugroho, L.E. Deep Learning Multilayer Perceptron (MLP) for Flood Prediction Model Using Wireless Sensor
Network Based Hydrology Time Series Data Mining. In Proceedings of the 2017 International Conference on Innovative and
Creative Information Technology (ICITech), Salatiga, Indonesia, 2–4 November 2017; pp. 1–5.

49. Kanchymalay, K.; Salim, N.; Sukprasert, A.; Krishnan, R.; Hashim, U.R. Multivariate Time Series Forecasting of Crude Palm Oil
Price Using Machine Learning Techniques. IOP Conf. Ser. Mater. Sci. Eng. 2017, 226, 012117. [CrossRef]

50. Gulli, A.; Kapoor, A.; Pal, S. Deep Learning with TensorFlow 2 and Keras Regression, ConvNets, GANs, RNNs, NLP, and More with
TensorFlow 2 and the Keras API, 2nd ed.; Packt Publishing Ltd.: Birmingham, UK, 2019; ISBN 978-1-83882-341-2.

51. Ma, Y.; Chang, Q.; Lu, H.; Liu, J. Reconstruct Recurrent Neural Networks via Flexible Sub-Models for Time Series Classification.
Appl. Sci. 2018, 8, 630. [CrossRef]

52. Li, Q.; Xu, Y. VS-GRU: A Variable Sensitive Gated Recurrent Neural Network for Multivariate Time Series with Massive Missing
Values. Appl. Sci. 2019, 9, 3041. [CrossRef]

53. Zhang, X.; Zhao, M.; Dong, R. Time-Series Prediction of Environmental Noise for Urban IoT Based on Long Short-Term Memory
Recurrent Neural Network. Appl. Sci. 2020, 10, 1144. [CrossRef]

54. Elsaraiti, M.; Merabet, A. Application of Long-Short-Term-Memory Recurrent Neural Networks to Forecast Wind Speed. Appl.
Sci. 2021, 11, 2387. [CrossRef]

55. Ye, F.; Yang, J. A Deep Neural Network Model for Speaker Identification. Appl. Sci. 2021, 11, 3603. [CrossRef]
56. Zhang, X.; Kuehnelt, H.; De Roeck, W. Traffic Noise Prediction Applying Multivariate Bi-Directional Recurrent Neural Network.

Appl. Sci. 2021, 11, 2714. [CrossRef]
57. Ramos, R.G.; Domingo, J.D.; Zalama, E.; Gómez-García-Bermejo, J. Daily Human Activity Recognition Using Non-Intrusive

Sensors. Sensors 2021, 21, 5270. [CrossRef]
58. Ankita; Rani, S.; Babbar, H.; Coleman, S.; Singh, A.; Aljahdali, H.M. An Efficient and Lightweight Deep Learning Model for

Human Activity Recognition Using Smartphones. Sensors 2021, 21, 3845. [CrossRef]
59. Zhou, K.; Liu, Y. Early-Stage Gas Identification Using Convolutional Long Short-Term Neural Network with Sensor Array Time

Series Data. Sensors 2021, 21, 4826. [CrossRef]
60. Hochreiter, S. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions. Int. J. Unc. Fuzz.

Knowl. Based Syst. 1998, 06, 107–116. [CrossRef]
61. Bengio, Y.; Simard, P.; Frasconi, P. Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef] [PubMed]
62. Understanding LSTM Networks—Colah’s Blog. Available online: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(accessed on 11 June 2021).
63. Long Short-Term Memory. Wikipedia 2021. Available online: https://en.wikipedia.org/wiki/Long_short-term_memory (accessed

on 29 October 2021).
64. Bengio, Y.; Goodfellow, I.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
65. Convolutional Neural Network. Available online: https://ww2.mathworks.cn/en/discovery/convolutional-neural-network-

matlab.html (accessed on 7 May 2021).
66. Lee, S.; Lee, Y.-S.; Son, Y. Forecasting Daily Temperatures with Different Time Interval Data Using Deep Neural Networks. Appl.

Sci. 2020, 10, 1609. [CrossRef]
67. Zhou, Z.; Zi, Y.; Xie, J.; Chen, J.; An, T. The Next Failure Time Prediction of Escalators via Deep Neural Network with Dynamic

Time Warping Preprocessing. Appl. Sci. 2020, 10, 5622. [CrossRef]
68. Nam, J.; Kang, J. Classification of Chaotic Signals of the Recurrence Matrix Using a Convolutional Neural Network and Verification

through the Lyapunov Exponent. Appl. Sci. 2021, 11, 77. [CrossRef]
69. Wang, C.; Sun, H.; Zhao, R.; Cao, X. Research on Bearing Fault Diagnosis Method Based on an Adaptive Anti-Noise Network

under Long Time Series. Sensors 2020, 20, 7031. [CrossRef]
70. Li, J.; Hu, D.; Chen, W.; Li, Y.; Zhang, M.; Peng, L. CNN-Based Volume Flow Rate Prediction of Oil–Gas–Water Three-Phase

Intermittent Flow from Multiple Sensors. Sensors 2021, 21, 1245. [CrossRef] [PubMed]
71. Shi, X.; Huang, G.; Hao, X.; Yang, Y.; Li, Z. A Synchronous Prediction Model Based on Multi-Channel CNN with Moving Window

for Coal and Electricity Consumption in Cement Calcination Process. Sensors 2021, 21, 4284. [CrossRef]
72. Al-Qershi, F.; Al-Qurishi, M.; Aksoy, M.S.; Faisal, M.; Algabri, M. A Time-Series-Based New Behavior Trace Model for Crowd

Workers That Ensures Quality Annotation. Sensors 2021, 21, 5007. [CrossRef] [PubMed]
73. Theodoropoulos, P.; Spandonidis, C.C.; Giannopoulos, F.; Fassois, S. A Deep Learning-Based Fault Detection Model for Optimiza-

tion of Shipping Operations and Enhancement of Maritime Safety. Sensors 2021, 21, 5658. [CrossRef] [PubMed]

http://doi.org/10.3390/en13205355
http://doi.org/10.1243/09544070JAUTO1523
http://doi.org/10.1016/S1352-2310(97)00447-0
http://doi.org/10.1088/1757-899X/226/1/012117
http://doi.org/10.3390/app8040630
http://doi.org/10.3390/app9153041
http://doi.org/10.3390/app10031144
http://doi.org/10.3390/app11052387
http://doi.org/10.3390/app11083603
http://doi.org/10.3390/app11062714
http://doi.org/10.3390/s21165270
http://doi.org/10.3390/s21113845
http://doi.org/10.3390/s21144826
http://doi.org/10.1142/S0218488598000094
http://doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://en.wikipedia.org/wiki/Long_short-term_memory
https://ww2.mathworks.cn/en/discovery/convolutional-neural-network-matlab.html
https://ww2.mathworks.cn/en/discovery/convolutional-neural-network-matlab.html
http://doi.org/10.3390/app10051609
http://doi.org/10.3390/app10165622
http://doi.org/10.3390/app11010077
http://doi.org/10.3390/s20247031
http://doi.org/10.3390/s21041245
http://www.ncbi.nlm.nih.gov/pubmed/33578690
http://doi.org/10.3390/s21134284
http://doi.org/10.3390/s21155007
http://www.ncbi.nlm.nih.gov/pubmed/34372243
http://doi.org/10.3390/s21165658
http://www.ncbi.nlm.nih.gov/pubmed/34451099

Appl. Sci. 2021, 11, 10187 21 of 21

74. Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional Neural Networks for Time Series Classification. J. Syst. Eng. Electron.
2017, 28, 162–169. [CrossRef]

75. Khan, S.S.; Madden, M.G. One-Class Classification: Taxonomy of Study and Review of Techniques. Knowl. Eng. Rev. 2014, 29,
345–374. [CrossRef]

76. Khan, S.S.; Madden, M.G. A Survey of Recent Trends in One Class Classification. In Proceedings of the Artificial Intelligence and
Cognitive Science, Dublin, Ireland, 19–21 August 2009; Coyle, L., Freyne, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 188–197.

http://doi.org/10.21629/JSEE.2017.01.18
http://doi.org/10.1017/S026988891300043X

	Introduction
	Target Vehicle and Data
	Target Vehicle
	Target Data

	Data Preprocessing for Model Training and Test
	Data Interpolation
	Target Data Section Extraction (Pattern Extraction)

	Anomaly Detection Model Training
	Multi-Layer Perceptron (MLP)
	Long Short-Term Memory (LSTM)
	Convolutional Neural Network (CNN)
	One-Class SVM

	Anomaly Detection Model Test Results
	Multi-Layer Perceptron (MLP)
	Long Short-Term Memory (LSTM)
	Convolutional Neural Network (CNN)
	One-Class SVM

	Discussion
	References

