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Symmetry‑protected solitons 
and bulk‑boundary correspondence 
in generalized Jackiw–Rebbi 
models
Chang‑geun Oh1,4, Sang‑Hoon Han2,4 & Sangmo Cheon1,2,3*

We investigate the roles of symmetry and bulk-boundary correspondence in characterizing 
topological edge states in generalized Jackiw–Rebbi (JR) models. We show that time-reversal (T), 
charge-conjugation (C), parity (P), and discrete internal field rotation ( Z

n
 ) symmetries protect and 

characterize the various types of edge states such as chiral and nonchiral solitons via bulk-boundary 
correspondence in the presence of the multiple vacua. As two representative models, we consider 
the JR model composed of a single fermion field having a complex mass and the generalized JR 
model with two massless but interacting fermion fields. The JR model shows nonchiral solitons with 
the Z

2
 rotation symmetry, whereas it shows chiral solitons with the broken Z

2
 rotation symmetry. 

In the generalized JR model, only nonchiral solitons can emerge with only Z
2
 rotation symmetry, 

whereas both chiral and nonchiral solitons can exist with enhanced Z
4
 rotation symmetry. Moreover, 

we find that the nonchiral solitons have C, P symmetries while the chiral solitons do not, which can 
be explained by the symmetry-invariant lines connecting degenerate vacua. Finally, we find the 
symmetry correspondence between multiply-degenerate global vacua and solitons such that T, C, P 
symmetries of a soliton inherit from global minima that are connected by the soliton, which provides a 
novel tool for the characterization of topological solitons.

The bulk-boundary correspondence and symmetry play pivotal roles in understanding topological materials. The 
bulk-boundary correspondence is that those of the bulk govern the topological properties of the edge modes, 
and it has been confirmed in many topological materials1,2. Symmetry classifies and protects the topological 
properties of such materials. For instance, topological insulators and superconductors are classified by ten-fold 
Altland-Zirnbauer classes3–5, based on time-reversal (T), charge-conjugation (C), and chiral symmetries, and 
topological crystalline insulators are protected by space-group symmetries6–9. These studies strongly imply that 
analyzing the bulk and symmetry is important to understand the physical properties of topological edge states.

The Jackiw–Rebbi (JR) and Su–Schrieffer–Heeger (SSH) models are the famous 1D models presenting such 
topological behaviour10–15. The JR model describes a massless fermion field interacting with a nontrivial soliton 
background bose field in one spatial dimension10–12. These models exhibit soliton’s exotic topological properties 
such as zero-energy mode, a half fermion number, and spin-charge separation only when the nontrivial topology 
of bulk is protected by either C or parity (P) symmetry. This pioneering study is an example of the general prin-
ciple that symmetry leads to richer topology and has stimulated many studies: conducting polymer14, diatomic 
chain16, magnetic system17, photonic crystal systems18–20, artificially engineered SSH lattices21,22, ultracold atomic 
systems23–27 and so on. Though there were several attempts to extend the SSH and JR models16,28–38, there have 
been only a few limited studies about the roles of symmetry and bulk-boundary correspondence that distinguish 
the nature of topological solitons beyond the SSH and JR models.

Chiral edge states are ubiquitous in nature and often protected by topology and symmetry1,2,39. Such chiral 
topological excitations are expected to show promise for information technology due to their robustness against 
external perturbations40–42, and had been treated as the hallmark of 2D and 3D topological insulators1,2. Recently, 
topological solitons having chirality or chiral solitons were experimentally realized in a 1D electronic system 
with Z4 topological symmetry35,43. Chiral switching using such solitons was demonstrated, which implies that 
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chiral and nonchiral solitons are expected to be used as multi-digit information carriers44. However, the universal 
conditions for the emergence of chiral and nonchiral solitons in 1D are not disclosed yet.

The purpose of this Letter is to discover the role of symmetry and bulk-boundary correspondence in charac-
terizing various topological solitons in 1D systems using JR models. In this work, we show that the cooperation 
of time-reversal, charge-conjugation, parity, and discrete field rotation ( Zn ) symmetries protects and identifies 
the various types of soliton states via bulk-boundary correspondence. We consider two representative models: 
The JR model, composed of a single fermion field with a complex mass, possesses phase rotation symmetry. The 
generalized JR model with two massless but interacting fermion fields has a discrete internal field rotation sym-
metry. The JR model shows charge-conjugate and parity-invariant solitons (equivalently, nonchiral solitons) in 
the presence of Z2 field rotation symmetry, otherwise it shows chiral solitons with broken C and P symmetries. 
The generalized JR model allows more abundant kinds of solitons—nonchiral (NC), right chiral (RC), and 
left chiral (LC) solitons (Fig. 2d)—depending on the controllable physical parameters. In the generalized JR 
model, the Z2 rotation symmetry protects NC solitons imposing the equivalence between an NC soliton and its 
anti-NC soliton. The enhanced Z4 rotation symmetry promotes the symmetry of global minima from Z2 to Z4 , 
which endows the chirality to solitons. Therefore, we reveal that the internal symmetry enriches the variety of 
topological solitons in 1D systems. Further T, C, P analysis discloses that a pair of chiral solitons forms a particle-
antiparticle pair, while a nonchiral soliton is its antiparticle. Finally, we discover the symmetry correspondence 
between multiply-degenerate global vacua and solitons such that T, C, P symmetries of a soliton inherit from 
global minima that are connected by the soliton.

Results and discussion
The low-energy effective theory of the SSH ( mz = 0 ) and the Rice–Mele (RM, mz  = 0 ) models15,16 is described 
by the Lagrangian density of the JR model12 with a fermion mass mz (Fig. 1a,b):

where ψ(x) and φ(x) are two-component spinor and bose fields, and γ 0 = σ y , γ 1 = −iσ z , γ 5 = σ x . The mass 
terms can be represented as φ(x)+ iγ 5mz = m(x)eiγ

5θ(x) , where m(x) =
√

φ2(x)+m2
z  and tan θ(x) = mz

φ(x) . 

For a homogeneous bose field, φ(x) = φ0 , this model has gapped spectra of E = ±

√

k2x + φ2
0 +m2

z  and two 

degenerate vacua. In the complex plane, the two degenerate vacua are located at θ and π − θ with tan θ = mz
φ0

 , 
which are denoted as A and B ( A′ and B′ ) for the SSH (RM) model (Fig. 1c). If the bose field φ(x) becomes a 
solitonic background field, φ(x) = φs(x) , that interpolates the two degenerate vacua, there appears an isolated 
soliton mode in the gap. Depending on mz , the emergent soliton modes are different. The soliton modes in the 
SSH model are zero-energy modes, while the RM type soliton modes are not (Fig. 1a,b).

The JR model in Eq. (1) has the following global rotation symmetry:

Because we are interested in the rotation symmetry that exchanges the two global minima, we set θ̃ = π − 2θ . 
The rotation symmetry in Eq. (2) becomes Z2 symmetry (equivalently, π symmetry) only when θ = 0 (or mz = 0):

We also analyze T, C, and P symmetries. Because the JR model is spinless, T symmetry exists. On the other 
hand, the Lagrangian density in Eq. (1) has C and P symmetries only when mz = 0:

(1)LJR = ψ̄[iγ 0∂0 + iγ 1∂1 − φ(x)− iγ 5mz]ψ ,

(2)θ → θ + θ̃ , ψ(t, x) → Uψ = i exp

(

−iγ 5 θ̃

2

)

ψ(t, x).

(3)φ(x) → eiπφ(x), ψ(t, x) → γ 5ψ(t, x).

(4)Cψ(t, x)C−1 = ψ∗(t, x),

(5)Pψ(t, x)P−1 = γ 0ψ(t,−x), Pφ(x)P−1 = φ(−x).
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Figure 1.   Schematics of atom configurations and band structures for (a) SSH and (b) RM models. φ is a 
dimerization displacement that corresponds to a bose field φ(x) in JR model. Red and blue circles represent 
isolated soliton and antisoliton modes in the gap, respectively. (c) The degenerate vacua for SSH and RM models 
in the order parameter space of (φ,mz) : A and B ( A′ and B′ ) for the SSH (RM) model. (d) Atland–Zirnbauer 
class3 and π rotation symmetry with respect to the fermion mass mz . Rπ ( R/π ) indicates that the π rotation 
symmetry is preserved (broken).
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Therefore, Z2 rotation (or π rotation) symmetry protects the C and P symmetries, and vice versa. Moreover, 
when the bose field is a soliton field, φ(x) = φs(x) , the soliton system—composed of ψs(x) and φs(x)—is self-
charge conjugate and parity-invariant10–12. Thus, the JR model shows charge-conjugate and parity-invariant 
solitons (or, equivalently, nonchiral solitons) in the presence of the enhanced Z2 rotation symmetry, otherwise 
it shows chiral solitons with broken C and P symmetries.

The solitons in the JR model can also be distinguished by topology. With T, C, P and Z2 symmetries, the two 
minima in the JR model are distinguished by their quantized Berry phases; hence, the topological phase transi-
tion between the two minima occurs through the SSH type soliton. With broken C, P, and Z2 symmetries, in 
the RM model, the topology of the two minima can be continuously connected due to the fermion mass; thus, 
the soliton does not involve such phase transitions. Thus, an enhanced rotation symmetry can endow richer 
topological structures to solitons (Fig. 1d).

Now, we consider the generalized JR model composed of two massless fermion fields and two interfield 
couplings ( t1 , t2 ). The Lagrangian density is given by

where �j and �j are a two-component spinor field and a real scalar bose field localized in the j-th wire ( j = 1, 2 ), 
respectively. LB corresponds to the potential of the bose fields, and K is a positive constant. Figure 2 shows a 
schematic, the total energy profile, and solitons for several t2/t1 values. When t1  = t2 , there are two global and 
two local energy minima, and the atomic configuration in a global minimum has a staggered dimerization 

(6)L =L1 + L2 + LB + Lint,

(7)Lj =�̄j[i∂/−�j]�j , LB = −
K

2
(�2

1 +�2
2),

(8)Lint =− �̄1[t1γ
0 − it2γ

1]�2 − �̄2[t1γ
0 + it2γ

1]�1,

(d)
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Figure 2.   (a) Schematic for the generalized JR model composed of two JR wires and two interwire couplings 
( t1 and t2 ). In each ith JR wire, the ith fermion and bose fields, �i(t, x) and �i(t, x) , reside. (b) Total energy 
profiles, (c) the corresponding lattice models, and (d) diagrams of possible solitons in the order parameter 
space ( �1,�2 ) for three t2/t1 values. In (d), nonchiral (NC), right chiral (RC), and left chiral (LC) solitons are 
represented by grey, red and blue arrows, respectively. A, B, C, and D indicate global and local minima.
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ordering. As a realistic example, this case can describe the low-energy effective theory of the quasi-1D systems of 
polyacetylene chains45–47. At the critical point t1 = t2 , the two local minima transform to global minima resulting 
in Z4 symmetric four degenerate global minima. For example, this case can describe the low-energy effective 
theory of the coupled double Peierls chain model and explains the charge density wave system of indium atomic 
wires35,48,49. The generalized JR model allows various kinds of solitons depending on t1 and t2 . When t1  = t2 , only 
nonchiral solitons can exist, whereas chiral solitons can additionally exist at the critical point ( t1 = t2 ), as shown 
in Fig. 2d. The nature of chiral and nonchiral solitons will be explained shortly.

We find that the enhanced Z4 rotation symmetry supports the emergence of chiral and nonchiral solitons. 
Using Clifford matrices, the Lagrangian density in Eq. (6) can be rewritten as follows:

where � = (�1,�2) , � =

(

�1 0
0 �2

)

 , �̄ = �†Ŵ2 and the form of Clifford matrices Ŵi are given in Supplemen-

tary Sect. S2.1 in Supplementary Information. Depending on interfield couplings, this Lagrangian density can 
have Z2 rotation symmetry ( n = 2 ; π rotation symmetry) or Z4 rotation symmetry ( n = 1 ; π/2 rotation 
symmetry):

where eiŴ14θ =

(

cos θ sin θ
− sin θ cos θ

)

 and θ = nπ
2  . Similar to the JR model, the Z2 rotation exchanges two global 

minima that are located oppositely with respect to the origin in order parameter space (Fig. 2b). Hence, the Z2 
rotation symmetry implies that an NC soliton and its anti-NC soliton systems are identical, which indicates that 
the Lagrangian for an NC soliton system satisfies C and P symmetries as discussed later. While the action is 
invariant under the Z2 rotation regardless of t1 and t2 , the Z4 rotation symmetry is realized only at the critical 
point t1 = t2 (Supplementary Sect. S2.6 in Supplementary Information). The Z4 rotation rotates the energy profile 
counterclockwise by π/2 and hence the Z4 symmetry guarantees four degenerate global minima, which indicates 
that the Z4 rotation symmetry is necessary for the simultaneous emergence of the chiral and nonchiral solitons. 
In addition, the Z4 rotation symmetry supports the equivalence relations among the same type of solitons because 
it changes a soliton to the soliton rotated counterclockwise by the same angle in order parameter space (Fig. 2d).

We analyze T, C, P symmetries in the generalized JR model (see details in Supplementary Sect. S2.5 of Sup-
plementary Information). T symmetry is always present as the JR model is spinless. On the other hand, C and P 
symmetries exist only along with the symmetry-invariant lines (AC and BD lines), and their forms are different 
depending on the lines (Fig. 3b). The Lagrangian density in Eq. (9) has the following symmetries: For the AC line,

and for the BD line,

(9)L = �̄[Ŵ2i∂0 + Ŵ3∂1 + t1Ŵ34 − it2Ŵ25 −�]� + LB,

(10)�(t, x) →

(

0 − iσx
1 0

)n

�(t, x),

(11)�(x) → eiŴ14θ�(x),

(12)C�(t, x)C−1 =− Ŵ14�
∗(t, x),

(13)P�(t, x)P−1 =Ŵ34�(t,−x),

(14)C�(t, x)C−1 =− Ŵ5�
∗(t, x),

Figure 3.   Diagrams for C and P symmetries of global minima and solitons for the (a) JR and (b) generalized 
JR models. C and P indicate the symmetries, while C/ and P/ do broken symmetries. The dashed lines represent 
C and P symmetry-invariant lines. In (a), the φ axis and the symmetry-invariant line are overlapped. The gray 
arrow represents solitons in the SSH model, and red and blue arrows do in the RM model. A and B ( A′ and 
B
′ ) are two degenerate vacua for the SSH (RM) model. In (b), the prime in superscript represents that the 

corresponding symmetry transformation has a different form comparing with the unprimed one. The red, blue, 
and gray arrows represent right-chiral, left-chiral, and non-chiral solitons, respectively.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21652  | https://doi.org/10.1038/s41598-021-01117-5

www.nature.com/scientificreports/

In the viewpoint of energetics, only one symmetry-invariant line is realized when t1  = t2 , whereas both 
symmetry-invariant lines are realized at the critical point t1 = t2 . This indicates that the Z4 rotation symmetry 
gives the coexistence of the two symmetry-invariant lines.

Now we unveil the symmetries of soliton systems by explicitly analyzing the Lagrangian density for soliton 
systems (see details in Supplementary Sect. S2.5 of Supplementary Information). An NC soliton system has 
T, C, P symmetries because the bose fields are localized in the symmetry-invariant line (AC or BD line). This 
indicates that an AC soliton is its antiparticle having no chirality. On the other hand, in RC and LC soliton sys-
tems, C and P symmetries are broken because the bose fields deviate from the symmetry-invariant line, which 
naturally endows the chirality to solitons. However, the charge conjugated and parity transformed fields of an 
RC soliton system can be described by the fields of an LC soliton system, and vice versa:

where i and j in the subscript indicate two global minima that the corresponding soliton field connects, and the 
unitary matrices U are given by

This indicates that the RC and LC solitons are charge-conjugate and parity partner, i.e., they satisfy particle-
antiparticle duality. Similarly, in the JR model, particle-antiparticle duality between soliton and antisoliton can 
be proved (Supplementary Sect. S1.4 in Supplementary Information).

Similar to the bulk-boundary correspondence in topological insulators, we discover symmetry correspond-
ences between multiple global minima and various types of solitons. T, C, P symmetries of a soliton are deter-
mined by the symmetries of two global minima connected by the soliton. Thus, the symmetry properties of 
solitons can be obtained without definitive proof for the soliton system. Figure 3 shows the diagrams of T, C, P 
symmetries for the JR and generalized JR models. In the SSH soliton system, two global minima are located in 
a symmetry-invariant line, and hence both two global minima and solitons connecting them have T, C, P sym-
metries. In the RM soliton system, two global minima do not have C and P symmetries, hence the solitons do not 
have C and P symmetries. In the generalized JR model with the Z4 rotation symmetry, each global minima have 
T, C and P symmetries. However, the forms of C and P transformations are different according to the symmetry-
invariant AC or BD lines, as discussed before. When a soliton interpolates two global minima in the AC or BD 
line, the soliton has T, C, P symmetries, which results in a self-charge-conjugated and parity-invariant NC soliton. 
When a soliton connects two global minima out of the same symmetry-invariant line, the soliton does not have 
C and P symmetries, which endows chirality to the RC and LC solitons as shown in Fig. 3b.

Such C duality between chiral soliton systems and C symmetry in a non-chiral soliton system appear in 
physical observables such as energy spectra and fermion numbers of isolated soliton modes. In the generalized 
JR model, two isolated soliton modes for each soliton system appear, and they are the results of fractionalization 
or hybridization of zero modes (Fig. 4). For RC and LC soliton systems, one isolated energy mode is the primary 
mode, and the other is the induced mode (Fig. 4a,b). When a soliton field exists in one fermion field resulting in 
the primary mode, an effective soliton field is induced in the other fermion field due to the interfield couplings, 
which leads to the emergence of the induced mode. Thus, a zero mode is fractionalized into primary and induced 
modes. For an NC soliton system, the two isolated energy modes are distinguishable as bonding and antibonding 
modes regardless of t1 and t2 when t1t2  = 0 (Fig. 4c). They are the result of hybridization between two zero modes.

We calculate the energy spectra and fermion numbers of such isolated soliton modes using the effective one-
particle Hamiltonian and Goldstone–Wilczek method50. See detailed calculations in Supplementary Sect. S2 of 
Supplementary Information. Figure 4d–f shows the energy spectra with respect to the strength of the interwire 
coupling at the critical point ( t1 = t2 ). The bonding and antibonding modes in an NC soliton system are sym-
metrically located with respect to E = 0 because of C symmetry (Fig. 4f). Because the nature of an NC soliton 
is protected by the Z2 rotation symmetry and symmetry-invariant lines, the symmetric spectra of an NC soliton 
are maintained even if t1  = t2 (see Fig. S1 in Supplementary Information). However, primary and induced modes 
in each RC and LC soliton system are not symmetrically located because C symmetry is broken. Instead, the iso-
lated energy modes in the RC soliton system are located symmetrically with the isolated energy modes in the LC 
soliton system (Fig. 4d,e). This indicates that the RC and LC solitons form a charge-conjugate pair and satisfy C 
duality. Figure 4g–i shows the fermion number of each isolated mode with respect to the strength of the interfield 
coupling. We now consider the Fermi-level at E = 0 , i.e., the bonding mode in an NC soliton system and soliton 
modes in an RC soliton system are filled, while the other modes are empty. Similar to the energy spectra of RC 
and LC solitons, the fermion numbers of RC and LC solitons are also opposite (Fig. 4g,h). The fermion number 
for the bonding and antibonding modes in an NC soliton system are also oppositely positioned, as shown in 
Fig. 4i. This behavior is maintained even for t1  = t2 case (see Supplementary Sect. S2.3 in Supplementary Infor-
mation). Similarly, for the JR model, the spectra of isolated soliton and antisoliton modes show the C duality 
and C symmetry (Fig. 1a,b). Therefore, chiral soliton shows C duality, while nonchiral solitons do C symmetry.

(15)P�(t, x)P−1 =Ŵ24�(t,−x).

(16)C�RC(i→j)(t, x)C
−1 =− Ŵ14U�∗

LC(j→i)(t, x),

(17)P�RC(i→j)(t, x)P
−1 =Ŵ34U

∗�LC(j→i)(t,−x),

U =

(

0 1
−iσx 0

)

, when (i, j) = (A,B) or (C,D),

U =

(

0 i σx
1 0

)

, when (i, j) = (B,C) or (D,A).
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Conclusion
In summary, we have studied the roles of symmetry and bulk-boundary correspondence in the JR and general-
ized JR models. We showed that the cooperation between T, C, P, and internal discrete field rotation symmetries 
characterizes the physical properties of topological solitons in 1D systems. Furthermore, we found bulk-boundary 
correspondence between the multiply degenerate global minima and solitons such that the symmetry of a soliton 
inherits the symmetries of two global minima that the soliton interpolates. Our work can be generally applied to 
1D systems such as conducting polymers51, charge density wave systems52, engineered atomic chain systems21, 
photonic crystal systems53, ultracold atomic systems54, and higher dimensional systems.
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