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Abstract
We study a mathematical relationship between holographic Wilsonian renormalization group and stochastic quantization 
framework. We extend the original proposal given in arXiv:1209.2242 to interacting theories. The original proposal suggests 
that fictitious time (or stochastic time) evolution of stochastic 2-point correlation function will be identical to the radial evo-
lution of the double-trace operator of certain classes of holographic models, which are free theories in AdS space. We study 
holographic gravity models with interactions in AdS space, and establish a map between the holographic renormalization 
flow of multi-trace operators and stochastic n-point functions. To give precise examples, we extensively study conformally 
coupled scalar theory in AdS

6
 . What we have found is that the stochastic time t dependent 3-point function obtained from 

Langevin equation with its Euclidean action being given by S
E
= 2I

os
 is identical to holographic renormalization group 

evolution of holographic triple-trace operator as its energy scale r changes once an identification of t = r is made. I
os

 is the 
on-shell action of holographic model of conformally coupled scalar theory at the AdS boundary. We argue that this can be 
fully extended to mathematical relationship between multi-point functions and multi-trace operators in each framework.

Keywords  Stochastic quantization · Holographic Wilsonian RG · Langevin equation · Multi-trace operators

1  Introduction

The best way to illustrate stochastic process is to discuss a 
simple example of the thermal relaxation process [1, 2]1. 
One of them is Brownian motion. To describe the Brownian 
motion, one may consider a statistical velocity profile in one 
dimension or statistical velocity vector bundle’s profile in 
d-dimension(d > 1 ). The velocity profile satisfies Langevin 
equation, which is given by

where v⃗ is the velocity of a test particle, which is injected 
into a thermal bath with its temperature T and the � is a 
friction constant being positive. The 𝜂 provides an interac-
tion between the test particle and the thermal bath, which is 

called the stochastic force vector. The stochastic force vector 
𝜂 shows Gaussian distribution as

which is called probability distribution, where the � ≡ �kBT  
and the kB is the Boltzmann constant. The solution of the 
Langevin equation is given by

Using the solution, one can evaluate a statistical expectation 
value of the kinetic energy as

(1.1)m
dv⃗(t)

dt
= −𝛼v⃗(t) + 𝜂(t),

(1.2)

Statistical distribution of 𝜂

=
exp

(
−

1

4𝜆
∫ dt 𝜂(t) ⋅ 𝜂(t)

)

∫ [D𝜂] exp
(
−

1

4𝜆
∫ dt 𝜂(t) ⋅ 𝜂(t)

) ,

(1.3)v⃗(t) = e
−

𝛼

m
t
v(0) +

1

m ∫
t

0

e
𝛼

m
(t�−t)𝜂(t�)dt�.

(1.4)
⟨K⟩ =1

2
m⟨v⃗(t) ⋅ v⃗(t)⟩

=
3

2
kBT

�
1 − e

−
2𝛼

m
t
�
+

1

2
mv⃗(0) ⋅ v⃗(0)e−

2𝛼

m
t
.
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The expectation value of the kinetic energy approaches to 
⟨K⟩ = 3

2
kBT  regardless of its initial velocity, v(0) as t → ∞ . 

This means that the injected test particle is to become in 
a statistical equilibrium state for large time. This is also 
because the stochastic process is Markovian which means 
that the collision between the test particle and the particles 
in the bath washes out the information of the test particle 
before the collision.

One can apply such a stochastic process to understand 
Euclidean field theories. In this context, statistical correla-
tions of a field � are equivalent with the computations of the 
following path integrals:

where P(�, t) is called probability distribution becoming 
weight of the field integration. The field � satisfies Lan-
gevin equation

where the action, SE is a Euclidean theory of the field � that 
we want to get its correlation functions2 In fact, the correla-
tion functions of the field � are given by

where

which is Gaussian form, so � is called white Gaussian noise 
field. The correlation functions of the white Gaussian noise 
can be easily computed by performing Gaussian integral, 
and they are given by

(1.5)

⟨�(x1, t)...�(xn, t)⟩
=

∫ [D�]P(�(x, t), t)�(x1, t)...�(xn, t)

∫ [D�]P(�(x, t), t)
,

(1.6)
��(x, t)

�t
= −

1

2

�SE

��(x, t)
+ �(x, t),

(1.8)

⟨�(x1, t)...�(xn, t)⟩
=

∫ [D�]P(�(x, t), t)�(x1, t)...�(xn, t)

∫ [D�]P(�(x, t), t)
,

(1.9)P(�(x, t), t) = exp

(
−
1

2 ∫ dt ∫ ddx �(x, t)2
)
,

The probability distribution also satisfies a Schrodinger type 
equation as

where

The Π(x) is the canonical conjugate of the field �(x) , i.e., 
Π(x) ≡ �

��(x)
 , where there is no the imaginary number, and 

“ i ” in its definition, since it is defined in Euclidean space. 
HFP is called Fokker–Planck Hamiltonian. Even though one 
can start with an arbitrary probability distribution in the very 
early stochastic time t, for the very large time t, it gets 
reached a fixed point, where �t�s = 0 . One of the trivial 
solutions in the fixed point is

where the solution of �s = e−SE∕2 and this gives 
P(�, t → ∞) = e−SE . In fact, in the very large time, the sto-
chastic correlation functions are those of a Euclidean field 
theory of SE , where we set ℏ = 1.

Namely, stochastic quantization is to get quantum cor-
relation functions by considering the probability distribu-
tion P(�, t → ∞) as a Euclidean path integral weight with 
identification kBT = ℏ . In fact, it is also discussed that the 
stochastic time evolution of the weight in the path integral 
P(�, t) for the Euclidean theory SE is equivalent to that we 
solve the corresponding Langevin equation

together with the Gaussian distribution P(�) of the stochastic 
force fields �(x, t).

Holographic Wilsonian renormalization group (RG) 
describes flows of deformations to dual gauge field theories 
as their energy scale changes by employing the holographic 
dual gravity models [8, 9, 13, 14]. It turns out that the holo-
graphic Wilsonian RG equation can be described by Ham-
ilton–Jacobi equation

(1.10)

⟨odd number of �⟩ = 0,

⟨�(x, t)�(x�, t�)⟩ = �(t − t�)�(d)(x − x�),

⟨�(x1, t)...�(xn, tn)⟩
=

�
[all possible pair combinations]

�
[pairs]

⟨�(xi, ti)�(xj, tj)⟩.

(1.11)
��s

�t
= HFP�s,

(1.12)

�s(�, t) =P(�, t)e
SE∕2, and

HFP =
1

2

(
−Π(x) +

1

2

�SE

��(x)

)(
Π(x) +

1

2

�SE

��(x)

)
.

(1.13)
(

�

��(x)
+

1

2

�SE

��(x)

)
�s(�, t) = 0,

(1.14)
��(x, t)

�t
= −

1

2

�SE

��(x, t)
+ �(x, t),

2  To derive the path integral, we use an identical relation of stochas-
tic partition function

through the field redefinition using Langevin equation.

(1.7)Z = ∫ [D�]P(�(x, t), t) = ∫ [D�]P(�(x, t), t),
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where HRG is the Hamiltonian being obtained by Legendre 
transformation from a certain holographic gravity model 
Lagrangian. The variable r is corresponding to an energy 
scale of the dual field theory. This equation describes the 
evolution of the wave function

as the energy scale r changes, where SB is a collection of 
the boundary deformations, which are those of a certain 
composite operators corresponding to normalizable mode 
of excitations in the dual gravity model.

Recently, an interesting idea is proposed in [3–7]. The evolution 
of the boundary deformations is identical to a complete different 
framework: stochastic quantization. For holographic (free) gravity 
models in AdS space, the proposal suggests the three conditions

•	 The stochastic time “t” is identified with the variable, “r” which 
mediates holographic renormalization group energy scale.

•	 The Euclidean action SE is identified with the holographic on-
shell action Ios as SE = 2Ios.

•	 The Fokker–Planck Hamiltonian, HFP(t) has the same form with 
the holographic renormalization group Hamiltonian, HRG(r) . 
Namely, HRG(r) = HFP(t) , provided that r = t,

where t is the stochastic time and Ios is the on-shell action com-
puted in the gravity model at the conformal boundary in AdS space 
without any boundary counter terms. Once these three conditions 
are satisfied, the result is that the stochastic two-point correlation 
function precisely gives the evolution of holographic double-trace 
deformation.

The precise map is

where ⟨fp(t)fp� (t)⟩S is the stochastic two-point correlation 
function and

fp(r) is the field in the gravity model and fp(t) is the stochas-
tic field originally defined in SE(fp) . This relation is tested 
in many holographic models: massless scalar in AdS2 and 
U(1) gauge fields in AdS4 [3], conformally coupled scalar 
in AdSd [4], massive scalar in AdSd [6], and massless and 
massive fermions in AdSd [5, 7]. They are all free theories.

In this paper, we study the features of mathematical relationship 
between stochastic quantization and holographic Wilsonian RG 
more in detail and extend the relation (1.17) to interacting theories. 
The main results are twofold. We illustrate these in order.

(1.15)HRG�H = �r�H ,

(1.16)�H = exp(−SB)

(1.17)⟨fp(r)fp� (r)⟩−1H = ⟨fp(t)fp� (t)⟩−1S −
1

2

�2SE

�fp(t)�fp� (t)
,

(1.18)⟨fp(r)fp� (r)⟩−1H =
�2SB

�fp(r)�fp� (r)
.

First, we clarify how the third condition HRG = HFP suggested 
above can be understood. It turns out that this condition needs not 
to address, but it is derived from the first two conditions, r = t and 
SE = 2Ios for certain classes of holographic models. This condition 
is somewhat crucial, since this ensures that the two evolutions of 
the wave function, �s and �H , share the same form of solutions of 
Hamilton–Jacobi equations, (1.11) and (1.15), respectively. This tells 
us that holographic Wilsonian RG is nothing but the Fokker–Planck 
approach in stochastic framework. However, once the first two condi-
tions are satisfied, then HRG becomes precisely the same with HFP.

To show this, we investigate the fixed points of holographic Wil-
sonian RG, namely �r�H = 0 , and then, it means that HRG�H = 0 
at the fixed point. This condition allows us to rewrite the dual grav-
ity action in terms of SB , which is evaluated at the fixed point. With 
this action, one can compute equation of motion, its solution of the 
action, and finally compute its on-shell action. It turns out that the 
on-shell action is given by Ios = ±SB . Once we use the condition 
SE = 2Ios = ±2SB , and we replace every SB by such a ± SE

2
 in the 

gravity model action, then what we have found is that the gravity 
model action becomes precisely the form of the Fokker–Planck 
action in the classical limit. We note that the argument for the proof 
applies to all the kinds of free theories defined in AdS space [3–7] 
and conformally coupled scalar with its self-interaction in AdS space 
is also applicable.

Second, we extend the relation to holographic gravity models 
with interactions. Especially, we study conformally coupled scalar 
theory in AdS6 . The reasons why we study this model are as follows. 
(1) There are several advance studies with this model [3, 4, 12] to 
explore the relation(1.17). (2) Conformally coupled scalar theory has 
nice property. The theory in AdS space can be effectively defined 
in flat space of ℝd × {0,∞} , where ℝd is d-dimensional Euclid-
ean space. This is good in a sense that stochastic process is usually 
defined in such a space. ℝd is the space that the theory SE is defined 
on and the stochastic time t ∈ {0,∞}.

What we have found is the relation between the evolutions of 
triple trace operator computed from the holographic gravity models 
and the stochastic three-point functions. The precise map is given by

where ⟨fp1(t)fp2(t)fp3 (t)⟩cS is the stochastic (connected) three-
point correlation function and

(1.19)

⟨fp1(r)fp2 (r)fp3(r)⟩H�r=t

= ⟨fp1(t)fp2 (t)fp3 (t)⟩cS
3�
i=1

⟨fpi(t)f−pi(t)⟩−1S

−
1

2

�3SE

�fp1 (t)�fp2(t)�fp3 (t)

�����

f=0

,

(1.20)⟨fp1(r)fp2(r)fp3 (r)⟩H =
�3SB

�fp1 (r)�fp2(r)�fp3 (r)

�����

f=0

.
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We note that the three-point function is evaluated up to lead-
ing order(the first order) in � , where � is a coupling constant 
of three-point self-interaction appearing in conformally cou-
pled scalar theory in AdS6.

2 � A brief review of conformally coupled 
scalar in AdS space

To discuss the conformally coupled scalar theory as a holo-
graphic model, we consider an action

where the theory is a probe theory in Euclidean AdSd+1 
space, whose metric is given by

where the indices, � , � are d + 1-dimensional (Euclidean)
spatial indices running over 1.. to d + 1 and the parameter � 
is a certain radial cut-off of AdS space. The xi are the coor-
dinate variables along AdS boundary directions, whereas r is 
the radial variable of AdS space. The term, S′

B
 , is a boundary 

term on the r = � boundary, which will make boundary vari-
ation problem be well posed.

The detailed Lagrangian density of conformally coupled 
scalar theory is

For the theory to enjoy a scale symmetry, the mass m needs 
not to be an arbitrary value, but

In fact, the mass term comes from a coupling of the scalar 
field with background curvature of AdS space.

Such a mass plays interesting roles in holographic con-
text. It turns out that in a mass range of

both of the non-normalizable and normalizable modes of 
the excitations in the gravity theory (in AdS space) can 
be sources of the deformations to the dual boundary field 
theory. The field theory operators coupled to either of the 
source terms become unitary in this mass range.

Another is again scaling property emerging in the value 
of the mass. Using this scaling property, we can perform a 
field redefinition as

(2.1)S = ∫r>𝜖

drddx
√
gL(𝜙, 𝜕𝜙) + S�

B
,

(2.2)ds2 = g��dx
�dx� =

1

r2

(
dr2 +

d∑
i=1

dxidxi

)
,

(2.3)L(�, ��) =
1

2
g�������� +

1

2
m2�2 +

�

4
�

2(d+1)

d−1 .

(2.4)m2 = −
d2 − 1

4
.

(2.5)−
d2

4
≤ m2 ≤ −

d2

4
+ 1,

and then, the action (2.1) with the Lagrangain density (2.3) 
becomes

In this action, the theory is effectively defined in a half of 
the flat space, ℝd × [0,∞).

We note that this theory shows self-interaction being 
proportional to ∼ f

2(d+1)

d−1  , where again f is the field which is 
newly introduced by the relation(2.6). The exponent, 2(d+1)

d−1
 , 

is fractional in general, but if d = 3 or d = 5 , it becomes 
an integer. If someone considers quantum theory with this 
model, it is probably reasonable that one considers d = 3 , 
which will give f 4-theory or d = 5 which will do f 3-theory.

3 � A review of holographic Wilsonian RG 
of conformally coupled f 3‑theory

3.1 � Derivation of Hamilton–Jacobi equation

In this section, we will discuss holographic Wilsonian renor-
malization group equation for conformally coupled scalar 
theory. The most of our discussion is already appeared in 
[12] and we faithfully follow the argument therein. In [12], 
the authors discuss the case that d = 5 mostly, which means 
that the theory is massless scalar theory defined in six-
dimensional flat space. In this case, the interaction vertex 
is three-point self-interaction. The theory is defined by the 
following form of the action in momentum space:

where to derive the action, we employ a Fourier transform as

Therefore, ki is the momentum along the five-dimensional 
boundary directions. The SB is the boundary term at r = � 
near the conformal boundary. In fact, this contains even the 

(2.6)�(x�) ≡ r
d−1

2 f (x�),

(2.7)

S =∫r>𝜖

drddx
(
1

2
𝛿𝜇𝜈𝜕𝜇f (x)𝜕𝜈 f (x) +

𝜆

4
f

2(d+1)

d−1 (x)
)

+
d − 1

2 ∫ ddx
f 2(x)

2r

|||||

∞

𝜖

+ S�
B
.

(3.1)

S =∫r>𝜖

dr

[
1

2 ∫ d5kd5k�𝛿(5)(k + k�)
(
𝜕rfk𝜕rfk� + k2fkfk�

)

+
𝜆

4(2𝜋)5∕2 ∫
3∏
i=1

d5kifki𝛿
(5)

(
3∑
j=1

kj

)]

+ SB(𝜖),

(3.2)f (r, xi) =
1

(2�)5∕2 ∫ d5ke−ikixi fki(r).
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boundary terms generated in the process of the field redefini-
tion(2.6), and then, it is

To derive Hamiltonian of the theory, we define our conjugate 
momentum of the field f and its equations of motion as

where the second equality of the first equation guarantees 
that variation of the action S is well defined even on the r = � 
boundary surface. The theory S will not depend on the cut-
off scale, � . By applying this fact, we request dS

d�
= 0 and that 

leads a Hamilton–Jacobi type equation, which will describe 
the evolution of the boundary term SB as the radial cut-off 
runs. Its form of the equation is given by

Now, we try to solve this equation. The form of the trial 
solution is designed to be an expansion in the weak field of 
f in momentum space. The precise form of the solution is 
given by

Once we substitute the ansatz into the Hamilton–Jacobi 
equation, we obtain a series of terms with products of the 
field f with certain momentum-dependent coefficients in 
front of them. We stress that the Hamilton–Jacobi equa-
tion is an identical equation in the field f. Therefore, the 

(3.3)SB = S�
B
− ∫ d5x

f 2(r, x)

r

|||||

r=�

.

(3.4)
Πk ≡ �rf−k =

�SB

�fk
,

�rΠk = k2fk +
3�

4 �
d5k�

(2�)5∕2
fk� fk−k� ,

(3.5)

��SB(�) = −
1

2 ∫ d5k

(
�SB

�fk(�)

)(
�SB

�f−k(�)

)

+
1

2 ∫ d5kd5k��(5)(k + k�)k2fkfk�

+
�

4 ∫
3∏
i=1

d5kifki�
(5)

(
3∑
j=1

kj

)
.

(3.6)

SB(�) =Λ(�) + ∫ Jk(�)f−k(�)d
5k

+

[
∫

2∏
i=1

d5kifki (�)

]
D

(2)

k1k2
(�)�(5)

(
2∑
j=1

kj

)

+

∞∑
n=1

�n

[
∫

n+2∏
i=1

d5kifki(�)

]

D
(n+2)

k1,…,kn+2
(�)�(5)

(
n+2∑
j=1

kj

)
.

coefficients in front of f n for an arbitrary n on the both of 
the left- and right-hand sides of the equation should be the 
same. The equations for these coefficients are listed below:

where Per{} denotes all possible permutations of momen-
tum labels in the curly bracket.

3.2 � Solutions of Hamilton–Jacobi equation

Looking at the above equations, D(n) , the coefficients of f n 
is coupled to D(m) , the coefficients of f m where m ≠ n . Since 
they are coupled one another, it is rather hard to get their solu-
tions. However, if one assumes that Jk = 0 , then (3.9) becomes 
an equation of one unknown, D(2) only. Once we assume that 

(3.7)��Λ(�) = −
1

2 ∫ d5kJk(�)J−k(�),

(3.8)��Jk(�) = −2Jk(�)D
(2)

k,−k
(�),

(3.9)

��D
(2)

(p,−p)
(�)

= −
1

2
(4D

(2)

(p,−p)
(�)D

(2)

(−p,p)
(�) − p2)

− 3�∫ d5kJ−k(�)D
(3)

(p,−p+k,−k)
(�)

(3.10)

��D
(3)

(k1,k2,k3)
(�)

=
1

4(2�)5∕2
− 2

(
3∑
j=1

D
(2)

kj,−kj

)
(�)D

(3)

k1,k2,k3
(�)

− 4�∫ d5kJ−k(�)D
(4)

(k1,k2,−k1−k2+k,−k)
(�)

(3.11)

��D
(n)

(k1,…,kn)
(�)

= −2

�
n�
j=1

D
(2)

(kj,−kj)

�
(�)D

(n)

(k1,…,,kn−1,−
∑n−1

j=1
kj)
(�)

−
1

2

n−3�
n�=1

(n� + 2)(n − n�)

Per

�
D

(n�+2)

(k1,…,kn�+1,−
∑n�+1

j=1
kj)
(�)

D
(n−n�)

(kn�+2,…,kn−1,−
∑n−1

j=1
kj,
∑n�+1

j=1
kj)
(�)

�

− �(n + 1)� d5kJ−k(�)D
(n+1)

(k1,…,kn−1,k−
∑n−1

j=1
kj,−k)

for n ≥ 4,
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Jk = 0 , then the boundary cosmological constant Λ becomes 
a constant, meaning that it shows no �-dependence. The solu-
tions of D(m) can be obtained from the solutions of D(n) , where 
n < m.

The solutions of D(n) for n ≥ 2 are given by

where C(3) and C(n) are integration constants. The solution 
fp(�) is one of the followings:

where Cp , C̄p , � and 𝜃̄ are arbitrary, momentum p-depend-
ent constants. In fact, one solution can be obtained from 
another by employing an analytic continuation of the con-
stants in the solution. For example, the second fp(�) maps to 
the first solution, f̄p(𝜖) , once we define that 𝜃 = 𝜃̄ + i

𝜋

2
 and 

Cp = C̄pe
i
𝜋

2 . Therefore, we will use the second solution fp(�) 
only for the later discussion.

The solution of D(2)
p,−p

 is given by

A g a i n ,  w e  h a v e  a n o t h e r  s o l u t i o n 
D(2)

p,−p
(𝜖) =

|p|
2
tanh[|p|(𝜖 − 𝜃̄)] , which can be obtained by the 

analytic continuation. This solution shows unique behavior 
as � → ∞ , which is understood as the infra-red fixed point 
of the coupling of double-trace operator deformation to the 
boundary field theory where the operator is coupled to the 
boundary value of the field f on the conformal boundary. As 
� → ∞ , D(2)

p,−p
(∞) =

|p|
2

.

(3.12)D(2)
p,−p

(�) =
1

2

��fp(�)

fp(�)
,

(3.13)

D
(3)

(k1,k2,k3)
(�)

=
1

4(2�)5∕2

∫ � (
fk1 (�

�)fk2 (�
�)fk3 (�

�)
)
d�� + C

(3)

k1,k2,k3

fk1 (�)fk2 (�)fk3 (�)
,

(3.14)

D
(n)

(k1,…,kn−1,−
∑n−1

j=1
kj)
(�)

=
C(n)

∏n

i=1
fki (�)

−
1

2 ∫
�

d��

�∏n

j=1
fkj (�

�)
∏n

l=1
fkl (�)

�

×

n−3�
n�=1

(n� + 2)(n − n�)

Per

�
D

(n�+2)

(k1,…,kn�+1,−
∑n�+1

j=1
kj)
(�)

D
(n−n�)

(kn�+2,…,kn−1,−
∑n−1

j=1
kj,
∑n�+1

j=1
kj)
(�)

�
,

(3.15)
f̄p(𝜖) = C̄p cosh[|p|(𝜖 − 𝜃̄)],

or fp(𝜖) = Cp sinh[|p|(𝜖 − 𝜃)],

(3.16)D(2)
p,−p

(�) =
|p|
2

coth[|p|(� − �)].

The solution of D(3)

k1,k2,k3
 is given by

which shows its fixed point

as � → ∞.
The fixed points of D(n) , where n ≥ 4 as � → ∞ , are given 

by

For an explicit example, D(4)(∞) is

We note that Jk ≠ 0 solutions are not much valid for further 
discussion. For more discussion on this issue, see the end 
of Section.4 in [12].

�D
(3)

k1,k2,k3
(�)

=
�

4(2�)5∕2
∏3

i=1
sinh[�ki�(� − �)]

⎛
⎜⎜⎜⎝

C(3)
p∏3

i=1
Cki

+
1

4

cosh
�∑3

j=1
[�kj�(� − �)]

�

∑3

l=1
�kl�

−
1

4

3�
j=1

cosh
�∑3

l=1
[�kl�(� − �)] − 2[�kj�(� − �)]

�

∑3

m=1
�km� − 2�kj�

⎞⎟⎟⎟⎠
,

(3.17)�D
(3)

k1,k2,k3
(∞) =

�

4(2�)5∕2(
∑3

i=1
�ki�)

,

(3.18)

�n−2D
(n)

(k1,…,kn)
(∞)

= −
�n−2

2(
∑n

i=1
�ki�)

n−3�
n�=1

(n� + 2)(n − n�)

Per

�
D

(n�+2)

(k1,…,kn�+1,−
∑n�+1

j=1
kj)
(∞)

× D
(n−n�)

(kn�+2,…,kn−1,−
∑n−1

j=1
kj,
∑n+1

j=1
kj)
(∞)

�
.

(3.19)

�2D
(4)

k1,k2,k3,k4
(∞)

= −
3�2

25(2�)5(
∑4

i=1
�ki�)�

1

(�k1� + �k2� + �k1 + k2�)(�k3� + �k4� + �k3 + k4�)
+ (k1 ↔ k3) + (k1 ↔ k4)

�
.
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4 � Stochastic framework and holographic 
Wilsonian RG

4.1 � First‑order formulation for holographic theories

Let us start this subsection with review of the previous 
works [3–7] on the research of the relation between sto-
chastic quantization and holographic Wilsonian RG. In the 
series of these papers, it is suggested that the holographic 
Wilsonian renormalization group equation is nothing but a 
classical limit of Fokker–Planck approach once one identi-
fies the classical action, SE with the boundary on-shell action 
in holographic context. As described in Sect.1, probability 
distribution P(f(t), t) in stochastic partition function satis-
fies a Schrodinger type equation given in (1.11) and (1.12). 
We note that f(t) is the stochastic field and t is stochastic 
time. Holographic Wilsonian renormalization group equa-
tion shows a form of Hamilton–Jacobi equation. With an 
observation on the mathematical similarity between the two 
frameworks, it is suggested that holographic dual gravity 
model and its boundary theory can be described by sto-
chastic frame. The most strong evidence obtained from the 
previous research is a fact that the radial evolution of holo-
graphic double-trace operator in r is completely captured by 
(stochastic) time evolution of stochastic two-point function 
in t, where r is AdS radial variable.

To derive this result, we need three conditions, where 
some quantities in stochastic framework match with those in 
holography. The suggested conditions between the quantities 
in the both frameworks are the following:

•	 The first condition: The stochastic time, “t” is identified 
with the variable, “r” which mediates holographic renor-
malization group energy scale. r is AdS radial variable.

•	 The second condition: The Euclidean action, SE is iden-
tified with the holographic on-shell action Ios as SE = 2Ios
.

•	 The third condition: The Fokker–Planck Hamilto-
nian, HFP(t) has the same form with the holographic 
renormalization group Hamiltonian, HRG(r) . Namely, 
HRG(r) = HFP(t) , provided that r = t.

For every case that the authors look at [3–7], such an identi-
fication, SE = 2Ios recovers the dual gravity action(also Ham-
iltonian) generating the on-shell action as a Fokker–Planck 
Lagrangian (also Hamiltonian) density. In other words, the 
Fokker–Planck Lagrangian density being given from SE has 
the same form with the holographic action if its boundary 
on-shell action is given by Ios = 2SE . This supports the third 
condition addressed above, HRG(r) = HFP(t),

In fact, the third condition is derived from the first two 
conditions, t = r and SE = 2Ios . This can be understood if 

one looks at fixed points of the holographic Wilsonian renor-
malization group equation. Consider the most general form 
of the gravity dual action of scalar fields as

in momentum space, where L(f (r)) is the Lagrangian density 
which does not contain radial derivative terms. Namely, it 
does not have drfk . The symbol dr denotes dr =

d

dr

3 . We 
note that we assume that the term L(f (r)) has no explicit 
r-dependence at all, but it depends on r only through the 
field f(r). Any free theory model of holographic gravity 
models in AdS space transform into this type of Lagrangian 
by employing an appropriate field redefinition together with 
redefinition of radial variable r(See [6]). Conformally cou-
pled scalar theory with interactions is also this type.

For example, if we restrict the case to conformally cou-
pled scalar theory in d = 5 case (3.1), then

The Hamilton–Jacobi equation describing holographic Wil-
sonian renormalization group at classical level is given by

where

Now, consider fixed points of the equation. Fixed points can 
be obtained by requesting ��SB = 0 , and then, we demand 
that HRG = 0 for the fixed points, too. Using the relation 
HRG = 0 at the fixed points, one can replace L(f ) by the 
term, 1

2
∫ ddkddk��(d)(k + k�)

(
�SB

�fk

)(
�SB

�fk�

)
 in the holographic 

dual gravity action (4.1). Then, the action becomes

(4.1)

S = ∫r>𝜖

dr

(
1

2 ∫ ddkddk�𝛿(d)(k + k�)drfkdrf−k + L(f (r))

)

(4.2)

L(f ) =∫ ddkddk��(d)(k + k�)fkfk�

+
�

4(2�)5∕2 ∫
3∏
i=1

d5kifki�
(5)

(
3∑
j=1

kj

)
.

(4.3)��SB = HRG,

(4.4)
HRG =∫r>𝜖

dr

[
1

2 ∫ ddkddk�𝛿(d)(k + k�)

(
𝛿SB

𝛿fk

)(
𝛿SB

𝛿fk�

)
− L(f )

]
.

(4.5)
S =∫r>𝜖

dr
1

2 ∫ ddkddk�𝛿(d)(k + k�)

[
drfkdrf−k +

(
𝛿SB

𝛿fk

)(
𝛿SB

𝛿fk�

)]
.

3  This reason why we use the symbol d
r
 rather than �

r
 here is to use 

Eq. (4.9). If some quantity Y depends on r but not through explicit 
r-dependence, �

r
Y = 0 , but d

r
Y ≠ 0 . In other sections, we use �

r
 only.
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We note that we need to be careful to derive the above 
action. The relation HRG = 0 is hold only at the fixed points. 
However, the L(f ) in (4.1) has radial variable r dependence. 
Therefore, even if we get the relation, HRG = 0 at the fixed 
point, in the action (4.5), we promote the field fk → fk(r) for 
it to become generic r dependence.

Now, let us discuss equation of motion of the action(4.5). 
Variation of the action gives

After multiplying drfk to the both side of the equation of 
motion, we consider the following object:

We note that for the next step in this computation, we will 
use a fact that

and the last term vanishes. Therefore

This is because the SB is not usual one, but it evaluates at 
fixed points and assign r-dependence only on the field fk . 
Thus, the SB has no explicit r-dependence at all.

Using that �
�fk
drfk = dr , this object becomes a total deriva-

tive form as

The left-hand side of the above equation can be factorized 
and one can rewrite it as

where Ck has no r dependence, namely just a boundary 
momenta, k-dependent constant and Ck = C−k.

The equation of motion (4.6) is non-linear equation in the 
field fk , and so, it is rather hard to get its solution, since SB 

(4.6)d2
r
fk(r) =

(
�SB

�fk

)(
�2SB

�f 2
−k

)
.

(4.7)

drfk(r)d
2
r
f−k(r) + drf−k(r)d

2
r
fk(r)

=

(
�SB

�fk

)(
�2SB

�f 2
−k

)
drf−k(r) +

(
�SB

�f−k

)(
�2SB

�f 2
k

)
drfk(r).

(4.8)
dSB(fk)

dr
=

(
�SB(fk)

�fk

)
dfk

dr
+

�SB

�r
,

(4.9)
dSB(fk)

dr
=

(
�SB(fk)

�fk

)
drfk.

(4.10)
d

dr

[
drfk(r)drf−k(r) −

(
�SB

�fk

)(
�SB

�f−k

)]
= 0.

(4.11)
[
drfk(r) −

(
�SB

�f−k

)][
drf−k(r) +

(
�SB

�fk

)]
= Ck,

can be a generic function of the field fk . However, in a case 
that the integration constant Ck = 0 , we have two first-order 
equations. The two equations are

In fact, the solutions of holographic dual gravity theories 
obtained in [3–7] are all these kinds.

Let us take these solutions and compute on-shell action 
of the dual gravity action in holographic setting(4.5). We 
manipulate the form of the action as

The first term in the above action vanishes thanks to the 
equation of motion, and the second term is boundary term 
at r = � . Therefore, up to equation of motion, we get holo-
graphic boundary on-shell action as

Finally,  we understand that once we identify 
SE = 2Ios = ±2SB recalling the second condition that we 
address in the beginning of this subsection, the action (4.5) 
becomes Fokker–Planck action in the classical limit if we 
set r = t (the first condition). The form of the Fokker–Planck 
Lagrangian is given by

and the last term is known as higher order in ℏ , where we 
set ℏ = 1 [1, 2]. Thus, we ignore the last term in the follow-
ing discussion. This also means that the Hamilton–Jacobi 
equation for holographic Wilsonian renormalization group 
is nothing but Fokker–Planck equation(1.11).

So far, we justify that the identification SE = 2Ios pro-
vides a feature that the holographic Wilsonian renormali-
zation group equation is the same with the Fokker–Planck 
Hamiltonian equation. According to this result, we under-
stand that the solution of each Hamiltonian equation of 
wave function should be the same in the classical limit. 
The wave function of holographic Wilsonian renormali-
zation group equation �H = exp(−SB) can be identified 

(4.12)drfk(r) ±

(
�SB

�f−k

)
= 0.

(4.13)
S =∫r>𝜖

dr
1

2 ∫ ddkddk�𝛿(d)(k + k�)

[(
drfk ±

𝛿SB

𝛿fk�

)(
drfk ±

𝛿SB

𝛿fk�

)
∓

d

dr
(2SB)

]
.

(4.14)Ios = ±SB(r = �).

(4.15)

LFP =
1

2

(
dfk(t)

dt

)(
df−k(t)

dt

)

+
1

8

(
�SE

�fk(t)

)(
�SE

�f−k(t)

)
−

1

4

(
�2SE

�fk(t)�f−k(t)

)
,
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to the wave function of the Fokker–Planck equation 
�S = P(fk) exp(

SE

2
) , where P(fk) is the probability distribu-

tion in stochastic framework. The forms of the wave func-
tions are given in Sec.1.

Let us develop our discussion on the probability dis-
tribution. The stochastic n-point correlation function is 
given by

where the fp(t) is the stochastic field to be quantized. The 
probability distribution is defined to be P(f (t), t) = e−Sp(f (t),t) , 
where the Sp is the weight for the correlations, being given 
by

where Pi are coefficients in front of n-multiples of the field 
fk . Recalling the discussion given in [3] and as addressed 
previously, we identify the two objects: �H = exp(−SB) and 
�S = P(fk) exp(

SE

2
) . In the classical limit

This relation is translated into a form of

where Gn is given by

where

We also use (3.6) and (4.17) to derive this.

(4.16)

⟨
n∏
i=1

fki(t)

⟩

s

= ∫ [Dfk(t)]P(fk(t);t)

n∏
l=1

fkl (t),

(4.17)

Sp(f (t), t) ≡
∞∑
i=2

[
i∏

j=1
� fkj (t)d

5kj

]

Pi(k1, ...ki;t)�
(5)

(
i∑

l=1

kj

)
,

(4.18)SB = Sp −
1

2
SE.

(4.19)
�n−2D

(n)

k1,…,kn
(�)

|||�=t =Pn(k1,… , kn;t)

−
1

2
Gn(k1,… , kn;t),

(4.20)SE =

∞∑
n=2

∫
[

n∏
i=1

fkid
5ki

]
On(k1,… , kn),

(4.21)O(k1,… , kn) = Gn(k1,… , kn)�
(d)

(
n∑
i=1

ki

)
.

4.2 � Stochastic correlation functions and the precise 
map of the two‑ and three‑point functions 
with double‑ and triple‑trace operators 
in holographic Wilsonian renormalizaion group

In this subsection, we will develop the precise maps for the 
two- and three-point functions in stochastic framework and 
double- and triple-trace operators given in (1.17)–(1.19). 
We start with the stochastic partition function (1.5), which 
is given by

where we assume that the interaction Pn for n > 2 is sup-
pressed by a small coupling constant in it. Namely, we sup-
pose that Pn(ki.t) ∼ O(gn−2) for a certain small coupling con-
stant g. The last term is a source term coupled to the field 
fk . We expand the partition function up to first order in P3 , 
and then, we have

where we replace every fk by �

�Jk
 in the expansion of curly 

bracket. After this, we integrate the field fk , and then, we 
have

(4.22)

Z =∫ [Dfk]e
−Sp

=∫ [Dfk] exp

[
−∫ P2(k1, k2)�

(d)(k1 + k2)

2∏
i=1

fkid
5ki

− ∫ P3(k1, k2, k3)�
(d)(k1 + k2 + k3)

3∏
i=1

fkid
5ki]

−... + ∫ Jkfkd
5k

]
,

(4.23)

Z =∫ [Dfk]

{
1 − ∫ P3(k1, k2, k3)�

(d)(k1 + k2 + k3)

3∏
i=1

�

�Jki
d5ki] + higher order interactions

}

× exp

[
−∫ P2(k1, k2)�

(d)(k1 + k2)

2∏
i=1

fkid
5ki

+∫ Jkfkd
5k

]
,

(4.24)

Z =

{
1 − ∫ P3(k1, k2, k3)�

(d)(k1 + k2 + k3)

3∏
i=1

�

�Jki
d5ki] + higher order interactions

}

× exp

[
−
1

4 ∫ d5p1d
5p2

�(5)(p1 + p2)

P2(p1, p2;t)
Jp1 (t)Jp2 (t)

]
.
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Now, we are ready to compute correlation functions. The 
two-point correlation function is

and the three-point function is

These correlation functions are obtained up to leading order 
in the implicit coupling constant g. Namely, ⟨fk1 fk2⟩S ∼ O(1) 
and ⟨fk1 fk2 fk3⟩S ∼ O(g) . We ignore all the other subleading 
corrections. We also ignore the tadpole diagrams which are 
not connected one. Inverse relations of these are

where we drop the delta functions. Using a fact that

the relation (4.19) for n = 2 and n = 3 cases is translated into

and

respectively, where

(4.25)⟨fk1 fk2⟩S =
�2 logZ

�Jk1�Jk2
=

1

2P2(k1, k2;t)
�(5)

�
2�
i=1

ki

�
,

(4.26)

⟨fk1 fk2 fk3⟩S =
�3 logZ

�Jk1�Jk2�Jk3

=3!P3(k1, k2, k3;t)

3�
i=1

1

2P2(ki,−ki;t)
�(5)

�
3�
i=1

ki

�
.

(4.27)

P2(k1, k2;t) =
1

2
⟨fk1 fk2⟩S, and

P3(k1, k2, k3;t) =
1

3!
⟨fk1 fk2 fk3⟩S

3�
i=1

⟨fki f−ki⟩−1S ,

(4.28)

�n−2D
(n)

k1,…,kn
=
1

n!

�nSB

�fk1 ...�fkn
and

Gn(k1,… , kn) =
1

n!

�nSE

�fk1 ...�fkn
,

(4.29)

⟨fp(r)fp� (r)⟩−1H �r=t

= ⟨fp(t)fp� (t)⟩−1S −
1

2

�2SE

�fp(t)�fp� (t)
,

(4.30)

⟨fp1(r)fp2 (r)fp3(r)⟩H�r=t

= ⟨fp1(t)fp2 (t)fp3 (t)⟩S
3�
i=1

⟨fpi(t)f−pi(t)⟩−1S

−
1

2

�3SE

�fp1 (t)�fp2(t)�fp3 (t)

�����

f=0

,

and

5 � Stochastic three‑point function and check 
the relation (4.30)

In this section, we interpret the holographic description 
of the renormalization group in the language of stochastic 
quantization.

5.1 � Construction of Euclidean action, S
E

The Fokker–Planck Lagrangian that we employ is given by

The last term is a higher order in ℏ , which corresponds to the 
quantum correction of the theory. We ignore this term for 
further discussion. Now, we define the Euclidean action as

where the coefficients, On(k1,… , kn) are unknowns yet and 
will be determined soon. There are two different ways to get 
the exact form of On(k1,… , kn) . One way is to get them by 
using the second condition that SE = 2Ios for the correspond-
ing stochastic system by computing the on-shell action, Ios 
explicitly, which is proposed in [3–7].

The other way to obtain this is by employing the con-
dition of HRG = 0 at the fixed points in holographic RG 
equation where HRG is given in (4.4) together with the 
fact that the on-shell action is given by Ios = ±SB at the 
conformal boundary. Namely, SE = 2Ios = ±2SB . We use 
this method in the following and it turns out that which 
is completely identical with the first method. We replace 
every SB by SE

2
 in the Hamiltonian HRG given in (4.4) and 

request HRG = 0 , and then, we have

where

(4.31)⟨fp(r)fp� (r)⟩−1H =
�2SB

�fp(r)�fp� (r)
,

(4.32)⟨fp1(r)fp2(r)fp3 (r)⟩H =
�3SB

�fp1 (r)�fp2(r)�fp3 (r)

�����

f=0

.

(5.1)LFP =
1

2
�tfp�tf−p +

1

8

(
�SE

�fp

)(
�SE

�f−p

)
−

1

4

�2SE

�fp�f−p
.

(5.2)SE =

∞∑
n=2

∫
[

n∏
i=1

fkid
5ki

]
On(k1,… , kn),

(5.3)

1

8 ∫ drd5k

(
�SE

�fk

)(
�SE

�f−k

)

= ∫ drd5k

(
1

2
k2fkf−k +

�

4(2�)5∕2 ∫ fkfk� f−k−k�dk
�

)
,



913First‑order formalism of holographic Wilsonian renormalization group: Langevin equation﻿	

Vol.:(0123456789)1 3

To derive the above equation, we assume that the operator 
On(k1,… , kn) is permutation invariant under exchanging of 
the momentum labels.

To find the correct form of the Euclidean action, we 
request that the relation (5.3) is identically satisfied. 
Since the form of the Euclidean action is comprised of a 
power expansion of the field fp , we request the coefficient 
of the n-multiples of the field fp , i.e., the coefficient of �∏n

i=1
fkidki

�
 in both sides of the relation(5.3) are the same. 

For example, the coefficients of the bilinear of the field 
fp in the both sides of the equation(5.3) are identified as

and then

which is manifestly invariant under permutations of the 
momentum labels. Next, we look at O3(k1, k2, k3) . The tri-
linear term in the left-hand side of Eq. (5.3) is given by

From this, we get

The right-hand side of Eq. (5.3) does not have terms contain-
ing 

∏N

i=1
fkid

5ki factor, when N ≥ 4 . Therefore, the general 
equation to obtain the multi-linear terms, ON(k1,… , kN) , for 
N ≥ 4 is given by

(5.4)

∫ drd5k

(
�SE

�fk

)(
�SE

�f−k

)

= ∫ drd5q

∞∑
N=2

N∑
n=2

∫
[

N∏
i=1

fkidki

]

n(N + 2 − n)Per{On(k1,… , kn−1, q)

ON−n+2(kn,… , kN ,−q)}.

(5.5)

1

2

[∏2

i=1
fkid

5ki

]
∫ d5qdrPer{O2(k1, q)O2(k2,−q)}

=
1

2

[∏2

i=1
fkid

5ki

]
∫ d5qdr|k1||k2|�(5)(k1 + q)�(5)(k2 − q),

(5.6)

O2(k1, k2) =
�k1� + �k2�

2
�(5)(k1 + k2)

=

∑2

i=1
�ki�

2
�(5)

�
2�
i=1

ki

�
,

(5.7)

1

2

[
3∏
i=1

fkid
5ki

]
∫ dr

(
3∑
i=1

|ki|
)
O3(k1, k2, k3)

=
�

4(2�)5∕2

[
3∏
i=1

fkid
5ki

]
∫ dr�(5)

(
3∑
i=1

ki

)
.

(5.8)O3(k1, k2, k3) =
�

2(2�)5∕2(
∑3

i=1
�ki�)

�(5)(

3�
i=1

ki).

We pick out the N-multiple terms, ON and separate it from 
others, and then, the equation becomes

where we define the quantity Gn as

We will not compute every ON explicitly except the O4 
below. The tetra-linear term is obtained by solving the above 
equation as

5.2 � Evaluation of stochastic three‑point correlation

The Langevin equation is given by

where the Euclidean action is given by (5.2) and (5.11). The 
�p(t) is the stochastic noise function satisfying (1.10). We 
plug the Euclidean action into the Langevin equation, and 
we have

Since there are many of the terms on the right-hand side of 
the equation, we solve the equation with a power expansion 

(5.9)
0 =∫ drd5q

N∑
n=2

∫
[

N∏
i=1

fkidki

]
n(N + 2 − n)

Per{On(k1,… , kn−1, q)ON−n+2(kn,… , kN ,−q)}.

(5.10)

0 =�(5)

(
N∑
i=1

ki

)[
4

(
N∑
i=1

|ki|
)
GN(k1,… , kN)

+

N−1∑
n=3

n(N + 2 − n)

×Per{Gn(k1,… , kn−1, q)GN+2−n(kn,… , kN ,−q)}
]
,

(5.11)On(k1,… , kn) ≡ �(5)

(
n∑
i=1

ki

)
Gn(k1,… , kn).

(5.12)

G4(k1, k2, k3, k4)

= −
3�2

16(2�)5
�∑4

i=1
�ki�

�
�

1

(�k1� + �k2� + �k1 + k2�)(�k3� + �k4� + �k3 + k4�)
+ (k1 ↔ k3) + (k1 ↔ k4)

�
.

(5.13)
�fp(t)

�t
= −

1

2

�SE

�f−p(t)
+ �p(t),

(5.14)

�fp(t)

�t
= −

1

2

∞∑
n=2

n

[
∫

n−1∏
i=1

fkid
5ki On(k1,… , kn−1,−p)

]

+ �p(t).
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order by order in the small coupling � . The quantity, 
On(k1,… , kn) , is suppressed by �n−2 as seen in the solutions 
of them being obtained previously. The trial solution of the 
equation is

where we assume that f (n−2)
p

(t) is an object in order of �n−2.
More practical form of the equation for the generic n is 

given by

where 
∑′(the second sum) denotes that it is a summation 

satisfying a condition that

and we assume that the Gaussian noise, � , is an O(�0) 
quantity.

Now, we evaluate the solutions of Eq. (5.16) step by step 
below. First, we consider n = 0 or 1. In these cases, the form 
of the equation is given by

and their solutions are given by

where Λ(p) and J(p) are arbitrary momentum-dependent 
O(�0) functions. For a moment, we assume that they vanish, 
i.e., Λ(p) = J(p) = 0 .

Second, we consider the solution in O(�0) , namely, n = 2 
case. In this case, the Langevin equation becomes

and the most general solution of the equation is

where � is a constant which is introduced to set an initial 
boundary condition. We just pose here a moment and get 

(5.15)fp(t) =

∞∑
n=0

f (n−2)
p

(t),

(5.16)

�f (n−2)
p

(t)

�t

= −
1

2

n∑
n�=2

n�
∞∑

n1,n2,…,nn�−1=2

�[
∫

n�−1∏
i=1

{
f
(ni−2)

ki
d5ki

}

On� (k1,… , kn�−1,−p)
]
+ �p(t),

(5.17)n = 2 − n� +

n�−1∑
i=1

ni,

(5.18)
�f (0)

p
(t)

�t
=

�f (1)
p

(t)

�t
= 0,

(5.19)f (−2)
p

(t) = Λ(p)�−2, f (−1)
p

(t) = J(p)�−1,

(5.20)
�f (0)

p
(t)

�t
= −G2(p,−p)f

(0)
p

(t) + �p(t),

(5.21)f (0)
p

(t) = ∫
t

�

e−G2(p,−p)(t−t
�)�p(t

�)dt�,

stochastic two-point correlation function for later use, which 
is given by

where �p(t) is the Gaussian noise function (1.10), satisfying

Using this noise correlation function, we evaluate the t′ and 
t′′ integrations, and we get

The equation in O(�) is given by

and equation in O(�2) is given by

In fact, the general form of the nth-order equation in � has 
a form of

where

(5.22)

⟨fp(t)fp� (t)⟩ =∫
t

� ∫
t

�

dt�dt�� exp
�
−G

p

2
(t − t�) − G

p�

2
(t − t��)

�

⟨�p(t)�p� (t)⟩,

(5.23)⟨�p1 (t1)�p2 (t2)⟩ = �(d)(p1 + p2)�(t1 − t2).

(5.24)⟨fp(t)fp� (t)⟩ = −�(d)(p + p�)
sinh[G

p

2
(� − t)]

G
p

2
exp[−G

p

2
(� − t)]

.

(5.25)

�f (1)
p

(t)

�t
= − G2(p,−p)f

(1)
p

(t)

−
3

2 ∫
[

2∏
i=1

f
(0)

ki
d5ki

]
O3(k1, k2; − p),

�f (2)
p

(t)

�t

= −G2(p,−p)f
(2)
p

(t) −
3

2 ∫
[

2∏
i=1

d5ki

]

(f
(0)

k1
f
(1)

k2
+ f

(1)

k1
f
(0)

k2
)O3(k1, k2; − p)

− 2O4(k1, k2, k3; − p)

[
3∏
i=1

f
(0)

ki
d5ki

]
.

(5.26)
�f (n)

p
(t)

�t
= −G2(p,−p)f

(n)
p

(t) + �(n)
p
,

(5.27)�(0)
p

=�p,

(5.28)�(1)
p

= −
3

2 ∫
[

2∏
i=1

f
(0)

ki
d5ki

]
O3(k1, k2; − p),
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The general solution of Eq. (5.26) is given by

To be more precise, we show some of the explicit solutions 
of the above equations and the stochastic correlations. We 
concentrate on three-point function. The three-point function 
up to its leading order in � is given by

where to derive this, we use the general form of the solution 
of Langevin equation (5.30), and

The form of �(1)
p

 given in (5.28) and the solution of f (0)
p

 given 
in (5.21) are used to derive (5.31). Using the fact that the 
correlations of white Gaussian noise �(t)

we get

(5.29)

�(2)
p

= −
3

2 ∫
[

2∏
i=1

d5ki

]

(f
(0)

k1
f
(1)

k2
+ f

(1)

k1
f
(0)

k2
)O3(k1, k2; − p)

− 2O4(k1, k2, k3; − p)

[
3∏
i=1

f
(0)

ki
d5ki

]
and so on.

(5.30)f (n)
p

(t) = ∫
t

�

e−G2(p,−p)(t−t
�)�(n)

p
(t�)dt�.

⟨fp1(t)fp2 (t)fp3 (t)⟩
= ⟨f (0)

p1
(t)f (0)

p2
(t)f (1)

p3
(t)⟩ + (p1 ↔ p3) + (p2 ↔ p3)

= exp

�
−

3�
i=1

G2(pi,−pi)t

�

∫
t

�

eG2(p1,−p1)t
�+G2(p2,−p2)t

��+G2(p3,−p3)t
���

dt�dt��dt���

×
�
⟨�(0)

p1
(t�)�(0)

p2
(t��)�(1)

p3
(t���)⟩ + (p1 ↔ p3, t

�
↔ t���)

+(p2 ↔ p3, t
��
↔ t���)

�
,

(5.31)

⟨�(0)
p1
(t�)�(0)

p2
(t��)�(1)

p3
(t���)⟩

= −
3

2 ∫
�

2�
i=1

d5ki

�
�(5)(k1 + k2 − p3)G3(k1, k2; − p3)

× ∫
t���

�

dt1dt2e
−G2(k1,−k1)(t

���−t1)−G2(k2,−k2)(t
���−t2)

× ⟨�p1 (t�)�p2 (t��)�k1 (t1)�k2 (t2)⟩.

(5.32)

⟨�p1(t�)�p2 (t��)�k1 (t1)�k2 (t2)⟩
= �(5)(p1 + p2)�(t

� − t��)�(5)(k1 + k2)�(t1 − t2)

+ �(5)(p1 + k1)�(t
� − t1)�

(5)(p2 + k2)�(t
�� − t2)

+ �(5)(p1 + k2)�(t
� − t2)�

(5)(p2 + k1)�(t
�� − t1),

where we define a new symbol, Gp

2
≡ G2(p,−p) = |p|.

A long and tedious calculations take us more compact 
form of the three-point function. The three-point correla-
tion is comprised of two parts: one is disconnected dia-
gram, i.e., tadpole, and another is connected correlation 
function. The tadpole diagram (disconnected) is given by

and the connected three-point function is

(5.33)

⟨�(0)
p1
(t�)�(0)

p2
(t��)�(1)

p3
(t���)⟩

= −
3

2 ∫
��2

i=1
d5ki

�
�(5)(k1 + k2 − p3)G3(k1, k2; − p3)

×

�
1 − e(G

k1
2
+G

k2
2
)(�−t���)

G
k1
2
+ G

k2
2

�(5)(p1 + p2)�(t
� − t��)�(5)(k1 + k2)

+Θ(t��� − t�)Θ(t��� − t��)�
eG

k1
2
(t�−t���)+G

k2
2
(t��−t���)�(5)(p1 + k1)�

(5)(p2 + k2)

(5.34)

⟨fp1(t)fp2(t)fp3 (t)⟩tp
= −

3

2
�(5)(p3)�

(5)(p1 + p2)

�
lim
p3→0

1 − eG
p3
2
(�−t)

2G
p3
2

�

∫ d5k1G3(k1,−k1;p3)
1

2G
k1
2

×

�
1 − e2G

p1
2
(�−t)

2G
p1
2

−
e2G

k1
2
(�−t) − e2G

p1
2
(�−t)

2(G
p1
2
− G

k1
2
)

�
,

(5.35)

⟨fp1(t)fp2 (t)fp3 (t)⟩cS
= −

3 ⋅ 2

2
�(5)

�
3�
i=1

pi

�
G3(−p1,−p2; − p3)

4G
p1
2
G

p2
2

⎧⎪⎨⎪⎩

1 − exp
�∑3

i=1
G

pi
2
(� − t)

�

∑3

i=1
G

pi
2

−
exp

�
2(G

p1
2
+ G

p2
2
)(� − t)

�
− exp

�∑3

i=1
G

pi
2
(� − t)

�

G
p1
2
+ G

p2
2
− G

p3
2

−
exp

�
2G

p1
2
(� − t)

�
− exp

�∑3

i=1
G

pi
2
(� − t)

�

G
p2
2
+ G

p3
2
− G

p1
2

−
exp

�
2G

p2
2
(� − t)

�
− exp

�∑3

i=1
G

pi
2
(� − t)

�

G
p3
2
+ G

p1
2
− G

p2
2

⎫⎪⎬⎪⎭
+ (p2 ↔ p3) + (p1 ↔ p3).
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Finally we get a compact form of the connected three-point 
function, which is given by

Recall the relation for three-point functions that we compute

where ⟨fp1(t)fp2(t)fp3 (t)⟩S is the stochastic three-point correla-
tion function and

To check if this quantity matches with evolution of the holo-
graphic triple-trace operator in r, we compute the right-hand 
side of the relation(5.37), which is given by

(5.36)

⟨fp1(t)fp2 (t)fp3 (t)⟩cS
= −

3

4
�(5)

�
3�
i=1

pi

�
G3(−p1,−p2; − p3)

[
∏3

i=1
G

pi
2
exp{−G

pi
2
(� − t)}]�

−1 +

3�
j=1

� ∑3

l=1
G

pl
2∑3

m=1
G

pm
2

− 2G
pj

2

�

+ exp

�
−

3�
j=1

G
pj

2
(� − t)

�

+

3�
m=1

sinh

��
3�
j=1

G
pj

2
− 2G

pm
2

�
(� − t)

�

+

3�
j=1

⎛⎜⎜⎜⎝

cosh
��∑3

n=1
G

pn
2
− 2G

pj

2

�
(� − t)

�

∑3

m=1
G

pm
2

− 2G
pj

2

⎞⎟⎟⎟⎠�
3�
l=1

G
pl
2

��
.

(5.37)

⟨fp1(r)fp2 (r)fp3(r)⟩H�r=t

= ⟨fp1(t)fp2 (t)fp3 (t)⟩cS
3�
i=1

⟨fpi(t)f−pi(t)⟩−1S

−
1

2

�3SE

�fp1 (t)�fp2(t)�fp3 (t)

�����

f=0

,

(5.38)⟨fp1(r)fp2(r)fp3 (r)⟩H =
�3SB

�fp1 (r)�fp2(r)�fp3 (r)

�����

f=0

.

where we use an identity

The expression (5.39) is completely matched with the triple-
trace operator expression(3.17) when t = r , � = � and 

−1 +
∑3

j=1

� ∑3

l=1
G

pl
2∑3

m=1
G

pm
2

−2G
pj

2

�
=

4C
(3)
p∏3

i=1
Cki

.

We note that in the solution of triple trace operator(3.13), 
rather than introducing the integration constant C(3) and 
indefinite integration, we use definite integration with ini-
tial condition as

then, the lower limit of the integration, � precisely repro-

duces the constant, −1 +
∑3

j=1

� ∑3

l=1
G

pl
2∑3

m=1
G

pm
2

−2G
pj

2

�
 in (5.39).

(5.39)

R.H.S of (5.37)

= −
3

4
�(5)

�
3�
i=1

pi

�
G3(−p1,−p2; − p3)∏3

i=1
sinh[G

pi
2
(� − t)]�

−1 +

3�
j=1

� ∑3

l=1
G

pl
2∑3

m=1
G

pm
2

− 2G
pj

2

�

+ cosh

�
3�
j=1

G
pj

2
(� − t)

�

−

3�
j=1

⎛
⎜⎜⎜⎝

cosh
��∑3

n=1
G

pn
2
− 2G

pj

2

�
(� − t)

�

∑3

m=1
G

pm
2

− 2G
pj

2

⎞
⎟⎟⎟⎠�

3�
l=1

G
pl
2

��
,

(5.40)

3∏
i=1

sinh
{
G

pi
2
(� − t)

}

=
1

4

[
sinh

{
3∑
j=1

G
pj

2
(� − t)

}

−

3∑
m=1

sinh

{(
3∑
j=1

G
pj

2
− 2G

pm
2

)
(� − t)

}]
.

(5.41)D
(3)

(k1,k2,k3)
(�) =

1

4(2�)5∕2

∫ �

�

(
fk1 (�

�)fk2 (�
�)fk3 (�

�)
)
d��

fk1 (�)fk2 (�)fk3 (�)
,
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