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Abstract— In this paper, we propose a deep learning-based
beam tracking method for millimeter-wave (mmWave) commu-
nications. Beam tracking is employed for transmitting the known
symbols using the sounding beams and tracking time-varying
channels to maintain a reliable communication link. When the
pose of a user equipment (UE) device varies rapidly, the mmWave
channels also tend to vary fast, which hinders seamless com-
munication. Thus, models that can capture temporal behavior
of mmWave channels caused by the motion of the device are
required, to cope with this problem. Accordingly, we employ
a deep neural network to analyze the temporal structure and
patterns underlying in the time-varying channels and the signals
acquired by inertial sensors. We propose a model based on
long short term memory (LSTM) that predicts the distribution
of the future channel behavior based on a sequence of input
signals available at the UE. This channel distribution is used to
1) control the sounding beams adaptively for the future channel
state and 2) update the channel estimate through the measurement
update step under a sequential Bayesian estimation framework.
Our experimental results demonstrate that the proposed method
achieves a significant performance gain over the conventional
beam tracking methods under various mobility scenarios.

Index Terms— Millimeter-wave communications, beam
tracking, mobility, channel estimation, deep learning, deep
neural network, LSTM.

I. INTRODUCTION

M ILLIMETER wave (mmWave) communication has
attracted significant attention for achieving the contin-

uously increasing data throughput requirement of advanced
wireless systems [1]–[3]. However, several challenges should
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Fig. 1. Illustration of beam tracking protocol.

be addressed to enable seamless communication over
mmWave-band channels. In particular, the received signal
power of mmWave communication systems experiences sig-
nificant attenuation. A potential solution is to employ direc-
tional transmit (Tx) and receive (Rx) beamforming antennas
to enhance the signal power. Such beams are formed by
appropriately adjusting the phase and amplitude of the signal
for each antenna element [4], [5].

Consider a base-station (BS) equipped with Nb antennas
and a user equipment (UE) with Nm antennas. In down-link
scenarios, the BS uses a beamforming vector to transmit the
data symbols to the UE and the UE applies a combining vector
to receive the transmitted data symbols. These beamforming
and combining vectors determine the directions of the beams,
which should be chosen to maximize the data throughput. The
channel state information should be known to both the BS and
UE to determine the directions of the beams. The procedure
for acquiring the channel information using pilot symbols is
called beam training.

In beam training, the pilot symbols are transmitted using
specifically designed Tx and Rx beams. These beams are
often called sounding beams [6]. The BS and the UE use
the combinations of Mb Tx sounding beams and Mm Rx
sounding beams to obtain the channel information. Conse-
quently, the Mb · Mm pilot symbols are transmitted. Given
the absence of prior knowledge about the channel, both Mb

and Mm should be sufficiently large to cover a wide range of
directions.

Once the initial channel estimate is acquired by the beam
training, beam tracking techniques are employed to track
temporal channel variations using a limited amount of radio
resources. When the beam tracking is enabled, the BS trans-
mits the pilot symbols using fewer sounding beams after the
initial acquisition step. (see Fig. 1.) The number of sounding
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beams can be reduced significantly by exploiting the temporal
channel correlation. The BS and UE can use the information
on the angles of arrival (AoAs) and angles of departure (AoDs)
obtained in the previous beam transmissions to direct only
a few beams toward the directions that ensure good channel
estimation performance.

Two key design issues exist in implementing beam tracking
systems. First, both Tx and Rx sounding beams should be
determined in response to the time-varying AoAs and AoDs.
Note that such beam control should be predictive to steer the
sounding beams toward the future channel state in advance.
Second, the UE needs to update the channel estimate by using
the received pilot symbols and exploiting the temporal channel
correlation.

Various channel tracking methods have been proposed thus
far. In [6], the authors proposed a beam tracking algorithm
that exploits the temporal correlation between AoDs and
AoAs. However, adapting to rapid channel variations was
challenging, as omni-directional training beams were used.
In [7]–[11], various types of Kalman filters were employed to
track time-varying channels. In [12], an optimal beam training
protocol design scheme was derived based on the partially
observable Markov decision process framework. Compressed
sensing (CS) recovery algorithms [13] were also used to
estimate the AoDs and AoAs of multi-path channels in [3],
[6], [14] and were extended to utilize the temporal channel
correlation in [6], [15], [16]. In [17], [18], channel tracking
was formulated as a maximum likelihood estimation problem.
Sensor-aided beam tracking methods have been proposed
recently [19]–[22]. These methods attempted to use an inertial
measurement unit (IMU) sensor to assist beam alignment and
channel tracking in mmWave systems. However, modeling dif-
ferent types of data acquired from sensor and communication
signals to design beam tracking methods is difficult. Thus,
applying traditional model-based approaches for sensor-based
beam tracking is a significant challenge.

Most UEs are hand-held devices. The pose (i.e., loca-
tion and orientation) of UE devices can vary based on the
motion of their human users. This results in dynamic and
instantaneous channel variations. In practice, this could cause
frequent beam tracking failures. This necessitates the execu-
tion of expensive channel acquisition procedures to recover
from failures. Thus, beam tracking algorithms should handle
dynamically-varying channels to reduce beam tracking failures
and consequently save resource overhead. However, the per-
formance of most existing beam tracking algorithms is limited
because they rely on somewhat simple prior linear models to
describe time-varying channels. In fact, channels often exhibit
structured temporal behavior due to the motion of the UE
device. Therefore, channel models that represent such temporal
behavior well are required.

Recently, deep neural networks (DNNs) have received con-
siderable attention owing to their ability to find an abstract
representation of high-dimensional data [23]. DNNs can model
complex non-linear relationships using multiple layers of an
artificial neural network. DNNs have achieved state-of-the-art
performance in various challenging machine learning tasks.
They have been particularly effective for applications in which

the existing analytical models cannot adequately describe the
distribution of the data. Thus, a DNN can be a suitable
candidate for modeling the temporal behavior of mmWave
channels caused by the motion of a UE device. Recently,
a DNN has been applied for beam training and beam tracking
in mmWave systems in [24]–[28]. In [24], convolutional
neural networks were used to design hybrid beamformer for
wideband multi-carrier mmWave systems. In [25], long-short
term memory (LSTM) was used to find an estimate of the
angle of arrival (AoA) for the beam tracking algorithm. In [26],
the channel state was predicted using LSTM to design a beam-
former without using pilot transmission. In [27], online analog
beam selection was performed using semi-supervised online
learning. Graph neural network was applied to estimate the
channel states for massive multi-input multi-output (MIMO)
network in [28].

In this paper, we propose an enhanced beam tracking
method, that models rapidly-varying mmWave channels using
DNNs. We employ a LSTM architecture to describe the
temporal evolution of the AoAs and AoDs, using the infor-
mation available in a UE device. Specifically, the LSTM
predicts the distribution of the AoA and AoD states for the
current beam transmission cycle based on the sequence of
the previous channel estimates and IMU sensor signals. This
distribution is used for two main beam tracking operations.
First, the distribution of the AoAs and AoDs is used to
determine the Rx and Tx sounding beams to be used in
the current beam transmission cycle. Second, the predicted
channel distribution is used as prior information to update
the channel estimate. The proposed LSTM-based prediction
model is incorporated into a sequential Bayesian estimation
framework, in which the channel information is updated
through a prediction update step and measurement update
step in an alternating manner. Note that the proposed method
uses the LSTM-based prediction model to update the channel
distribution in the prediction update step. This distribution is
then used as the prior channel information in the subsequent
measurement update step. We evaluate the performance of
the proposed beam tracking method via computer simulation.
Our results demonstrate that the proposed method achieves
significant performance gains over conventional beam tracking
methods under various high-mobility scenarios.

The contributions of this paper are summarized as follows;
• Our method uses a DNN to enhance the beam tracking

performance in mmWave systems. As compared with
widely used simple linear models, the DNN model
can capture the complex temporal channel behavior
caused by the motion of a device, thereby offering an
enhanced beam tracking performance. The superiority of
the proposed DNN-based beam tracking scheme over the
existing methods is confirmed via numerical evaluation.

• The main idea of this manuscript is to employ deep
learning framework to analyze the channel dynamics and
predict the future channel state under Bayesian filtering
framework. We incorporate the DNN-based prediction
model into the sequential Bayesian filtering framework.
Note that the role of machine learning models is restricted
to modeling the temporal behavior of channels only
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and we use the analytical model describing the relation
from the transmitted beam to the received signal in
the measurement update step. This is consistent with
the design principles of respecting established models
for well-known physical processes and using data-driven
approaches only where the actual physical process is
barely known (e.g., temporal channel evolution under
mobility environment). This approach contrasts with the
end-to-end modeling of beam tracking proposed in [25].

• Recently, a DNN-based channel tracking has been pro-
posed in [25]. The method in [25] directly estimates
the AoA using the DNN, whereas the proposed method
predicts the future distribution of AoA. The predicted
AoA information is then used to update the channel
estimate based on the measurement model.

II. MMWAVE BEAM TRACKING SYSTEMS

In this section, we describe the mmWave channel model
and introduce the widely used beam tracking protocol.

A. mmWave Channel Model

Recall that the BS and UE have antenna arrays of sizes Nb

and Nm, respectively. The downlink channel from the BS to
the UE can be expressed as the matrix Ht of size Nm ×Nb,
where the (i, j)th element of Ht represents the channel gain
from the jth antenna of the BS to the ith antenna of the UE.
The subscript t represents the tth beam transmission period.
The channel Ht is assumed to be constant within the tth beam
training period. The mmWave channel can be represented in
the angular domain as [3], [14]

Ht =
L∑

l=1

αl,ta(m)(θ(m)
l,t )

(
a(b)(θ(b)

l,t )
)H

, (1)

where L is the total number of paths, αl,t is the channel gain
for the lth path, and θ

(b)
l,t and θ

(m)
l,t are the AoD and AoA,

respectively. The AoD and AoA are obtained from θ
(b)
l,t =

sin(φ(b)
l,t ), θ

(m)
l,t = sin(φ(m)

l,t ), where φ
(b)
l,t and φ

(m)
l,t ∈ [−π

2 , π
2 ]

are the AoD and AoA in radians, respectively. The steering
vectors a(b)(θ) and a(m)(θ) are expressed as

a(b)(θ) =
1√
Nb

[
1, e

j2πdbθ

λ , e
j2π2dbθ

λ , . . . , e
j2π(Nb−1)dbθ

λ

]T
a(m)(θ) =

1√
Nm

[
1, e

j2πdmθ
λ , e

j2π2dmθ
λ , . . . , e

j2π(Nm−1)dmθ
λ

]T
,

where db and dm are the distances between adjacent antennas
for the BS and UE, respectively and λ is the signal wave-
length. In practical scenarios, L tends to be small, because
only a few paths exhibit dominant energy Note that the
mmWave channel is determined by the set of parameters

[α1,t, θ
(m)
1,t , θ

(b)
1,t , . . . , αL,t, θ

(m)
L,t , θ

(b)
L,t]

T .

B. Beam Tracking Protocol

Fig. 1 illustrates a typical beam tracking protocol. For the
initial channel acquisition, beam training is performed without
prior knowledge about the channel. Since CSI information is

not available, beam training uses Tx and Rx sounding beams
distributed over a wide range of directions, and does not
utilize the temporal correlation of the channels for channel
estimation [3], [29]–[34]. Once the initial channel acquisition
is completed, the beam tracking mode starts. At the tth beam
transmission period, the beam tracking method uses the chan-
nel knowledge to transmit the pilot symbols using significantly
fewer sounding beams directed at certain desired directions.
After beam transmission, the UE updates the channel estimate
based on the measurements. These channel estimates are fed
back to the BS through a feedback channel or used for data
demodulation. This beam tracking procedure is repeated in
each beam transmission cycle. A similar protocol is observed
in the 5G standard, where the SS-burst slot and CSI-RS slot are
reserved for the initial channel acquisition and beam tracking,
respectively [35].

C. mmWave Channel Estimation

At the tth beam transmission, the BS transmits Mb ·Mm

pilot symbols to the UE using Mb Tx beams and Mm Rx
beams. Let ft,1, . . . , ft,Mb

represent the beamforming vectors
used for the Tx beams and wt,1, . . . ,wt,Mm represent the
combining vectors for the Rx beams. When an analog beam-
former is used, the beamforming and combining vectors are
expressed as ft,i = a(b)(μ(b)

t,i ) and wt,j = a(m)(μ(m)
t,j ), respec-

tively, where μ
(b)
t,i and μ

(m)
t,j are the corresponding directions

of the sounding beams. The vector received in the tth beam
transmission cycle is expressed as

yt,(i−1)Mm+j = wH
t,jHtft,ist,i + nt,(i−1)Mm+j , (2)

for 1 ≤ i ≤ Mb and 1 ≤ j ≤ Mm, where st,i is the pilot
symbol and nt,(i−1)Mm+j is the additive noise. Without losing
generality, we let st,i = 1 in the sequel. Note that, for each Tx
sounding beam, Mm Rx sounding beams are swept, resulting
in Mm ·Mb transmissions. Combining the received signals in a
vector yt as yt = [yt,1, . . . , yt,MbMm ]T and using the angular
channel representation in (1), we obtain

yt = vec(WH
t HtFt) + nt, (3)

= vec

(
L∑

l=1

αl,tWH
t a(m)

(
θ
(m)
l,t

)(
a(b)(θ(b)

l,t )
)H

Ft

)
+nt,

(4)

where vec(·) is the vectorization operation,1 nt = [nt,1, . . . ,
nt,MbMm ]T , Wt =

[
wt,1 . . . wt,Mm

]
, and Ft =[

ft,1 . . . ft,Mb

]
. We assume that the channel gains α1,t, . . . ,

αL,t vary slowly so that they can be assumed as being
estimated accurately. For specified Ft and Wt, the chan-
nel estimation problem is equivalent to the determina-
tion of the set of parameters γt = [γT

1,t, . . . , γ
T
L,t]

T =
[[θ(m)

1,t , θ
(b)
1,t ], . . . , [θ

(m)
L,t , θ

(b)
L,t]]

T . Accordingly, we formulate the
following state-space equation:

• State evolution model

γt = Atγt−1 + vt, (5)

1For example, vec

��
1 2
3 4

��
= [1, 3, 2, 4]T .
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Fig. 2. Structure of the basic LSTM model.

where At is the auto-regressive parameter and vt is a
complex Gaussian vector CN(0, Vt).

• Measurement model

yt = vec

(
L∑

l=1

αl,tWH
t a(m)

(
θ
(m)
l,t

)(
a(b)(θ(b)

l,t )
)H

Ft

)
+nt. (6)

Owing to the nonlinearity of the state-space equation,
we can use nonlinear Bayesian filtering algorithms. A popular
method used in this regard is the extended Kalman filter
(EKF) [7], [8]

1) Prediction update step

γ̂t|t−1 = Atγ̂t−1|t−1

Pt|t−1 = AtPt−1|t−1AH
t + Vt, (7)

2) Measurement update step

Kt = Pt|t−1O
H
t

(
OtPt|t−1O

H
t + σ2

t I
)−1

Pt|t = (I −KtOt)Pt|t−1

γ̂t|t = γ̂t|t−1 + Kt

(
yt − q(γ̂t|t−1)

)
, (8)

where the vector q(γt) and Jacobian matrix Ot are expressed
as

q(γt) =
L∑

l=1

vec
(

αl,tWH
t a(m)

(
θ
(m)
l,t

)(
a(b)(θ(b)

l,t )
)H

Ft

)
Ot =

∂q(γt)
∂γt

∣∣∣∣
γt=γ̂t|t−1

.

The expression for Ot is provided in Appendix A. As
the prior channel model in (5) captures only the first-order
dynamics of channel variations, EKF often fails to track
the complex channel dynamics in the prediction update step,
resulting in a large linearization error in the measurement
update step.

III. REVIEW OF LSTM MODEL

The LSTM is a DNN architecture widely used to analyze
time-series data. Fig. 2 depicts the structure of the LSTM.
The LSTM uses recurrent connections to extract features from
sequence data and stores them in a memory called cell state.
When unfolded in time, the connection from the input to

the output in the LSTM is deep in time. This enables an
efficient representation of long sequences. The LSTM has been
successfully applied to various machine-learning problems,
e.g., natural language processing, speech recognition, and
machine translation. The LSTM consists of a cell state, and
input, output, and forget gates. The input, output, and forget
gating functions can control the information flows entering
and leaving the cell state. These gating functions are designed
to address the vanishing gradient problems, in which the
gradient signals attenuate considerably in learning long-term
dependency [36]. Whenever the input xt is fed into the LSTM,
the cell state ct at the time step t is updated according to the
following recursive equations

it = σ(Wxixt + Whiht−1 + bi) (9)

ft = σ(Wxfxt + Whfht−1 + bf ) (10)

ot = σ(Wxoxt + Whoht−1 + bo) (11)

gt = tanh(Wxcxt + Whcht−1 + bc) (12)

ct = ft � ct−1 + it � gt (13)

ht = ot � tanh(ct), (14)

where

• σ(x) = 1
1+e−x : sigmoid function

• a� b: element-wise product
• Wxi, Whi, Wxf , Whf , Wxo, Who, Wxc, Whc: weight

matrices for linear transformation
• bi, bf , bo, bc: bias vector
• it: input gating vector
• ft: forget gating vector
• ot: output gating vector
• gt: state update vector
• ht: output hidden state vector.

The output ht of the LSTM contains the feature required
to perform the specified task. The desired output can be
determined from the feature ht through an additional neural
network. The LSTM is trained to minimize the appropriately
designed loss function using the back-propagation through
time (BPTT) algorithm.

IV. PROPOSED DEEP LEARNING-BASED BEAM TRACKING

In this section, we describe the proposed beam tracking
method. The proposed method is designed based on the
sequential Bayesian filtering framework. We aim to improve
the prediction update step in (7) using the machine learning
model while retaining the measurement update step in (8).
Specifically, we employ the LSTM model to produce the
predicted state estimate and the predicted covariance matrix
for the prediction update step. The structure of the overall
system is depicted in Fig. 3. The LSTM-based prediction
model predicts the distribution of the channel state at the tth
beam training period based on all the previously available
channel estimates and IMU sensor signals. The prediction
model produces the mean and covariance matrix of the channel
estate separately for each path. Note that the parameters of
each model are shared among L paths. Although our algorithm
is derived under the assumption that the number of channel
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Fig. 3. Block diagram of the proposed beam tracking method.

paths is known, it should be separately estimated in the initial
channel acquisition step. After transmitting multiple sounding
beams in various directions, the number of channel paths can
be estimated based on the received beams using subspace
methods such as MUSIC algorithm [37] or correlation-based
thresholding methods [16], [29]. As shown in Fig. 3, the out-
put of the prediction model is used to steer both Tx and Rx
sounding beams and update the channel estimates based on
the received beams.

A. LSTM-Based Channel Prediction

The input to the LSTM-based prediction model includes

• γ̂l,t−δ:t−1 =
[
γ̂T

l,t−δ, . . . , γ̂
T
l,t−1

]T
: the sequence of the

previous δ channel estimates acquired before the tth beam
transmission period begins.

• st−δ:t−1 = [sT
t−δ, . . . , s

T
t−1]

T : st−i refers to the sample
captured by the IMU sensor at the time step t−i. In prac-
tical applications, IMU sensors measure the velocity,
acceleration, angular velocity, and angular acceleration
through the accelerometer and gyroscope. Because most
advanced UEs are equipped with IMU sensors, the pro-
posed method can use any signals available for beam
tracking. As the sampling frequency of these signals can
be different from that of the beam transmissions, the sen-
sor signals can be resampled to produce K samples for
each beam transmission cycle. Finally, the vector st−i is
filled with Kδ signal samples.

• Ct: the context vector Ct reflects the UE’s situation includ-
ing activity, location information (indoor vs. outdoor),
and channel characteristics. Although it does not rep-
resent sequential data, contextual information provides
supplementary information on the channels.

The proposed prediction model aims to determine the dis-
tribution p(γl,t|γ̂l,t−1:t−δ, st−1:t−δ, Ct) for each channel path
for the given past channel estimates γ̂l,t−δ:t−1, sensor signals

st−δ:t−1, and context information Ct. We employ the LSTM
to model the dependencies between the input and the future
channel state. To cope with different channel dynamics under
various contexts, we use the UE’s contextual information Ct
as an input to the LSTM, where the embedding vector Ct
encodes the situation of UE, e.g., indoor/outdoor location,
speed, and activity. By including this information, the LSTM
can adapt to changing environments. The UE’s contextual
information vector Ct can be encoded appropriately depending
on the format of the input. For example, one-hot encoding can
be used to represent individual states of UE’s situations. User’s
activity can be encoded as 00: stationary, 01: walking, 10:
running, and 11: driving. For location information, we can use
00: indoor, 01: outdoor, 10: traffic road, and 11: subway, for
instance. We can also use the number of multi-paths as model
input to take advantage of channel properties for prediction.
All these contextual information vectors are concatenated to
form Ct, which can be further encoded through an additional
fully connected layer.

The structure of the LSTM-based prediction model is
depicted in Fig. 4. The signal samples {γ̂l,t−δ, st−δ, Ct}, . . . ,
{γ̂l,t−1, st−1, Ct} are encoded separately by the input
fully-connected (Fc) layers, i.e.,

νl,t−i = Fc({γ̂l,t−i, st−i, Ct}), (15)

where νl,t−i is the embedding vector obtained by the Fc layers.
The embedding vectors are fed to the LSTM one by one to
update the cell state. After δ update of the LSTM, the output
ht is fed into the output Fc layers to produce the estimate γ̂l,t.
That is,

γ̂l,t = Fc (LSTM ({νl,t−δ, . . . , νl,t−1})) . (16)

The parameters of the LSTM and Fc layers are determined
in the training procedure. In practice, the training data could
be collected by deploying several reference UEs, which log
the channel states and sensor signals in real scenarios. The
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Fig. 4. Structure of the LSTM-based prediction model.

model is trained to minimize the negative log-likelihood loss∑ �γl,t − γ̂l,t�2, where the ground truth γl,t can be obtained
directly from the training data. The prediction network is
trained using the standard BPTT algorithm with the ADAM
optimization [38]. The model weights are updated over a mini-
batch of size MINIBATCH. The training starts with the initial
learning rate LEARNING_RATE. The learning rate decays by
half in each DECAY_EPOCH epochs. Note that the model is
trained over a total of TOTAL_EPOCH epochs.

It is worth mentioning that in practical applications, chan-
nel evolution tendency might significantly change over time
depending on the scenario (e.g., when the user walks or when
the user drives a car). In this case, we can consider clustering
the context vector Ct and training the multiple LSTM models
for each centroid of the clusters. This allows us to switch
between the weights of the LSTM model trained under various
contexts.

B. Channel Tracking

The sequential Bayesian estimation framework is widely
used to estimate time-varying channels. The Bayesian prin-
ciple involves updating the distribution of a channel based
on all the information available at each step. By adopting
this principle, we update the mean γ̂l,t−1|t−1 and the covari-
ance matrix Pl,t−1|t−1 by γ̂l,t|t−1 and Pl,t|t−1 through the
prediction update step. Subsequently, the measurement update
step updates γ̂l,t|t−1 and Pl,t|t−1 by γ̂l,t|t and Pl,t|t. In the
prediction update step, the LSTM-based prediction model is
used to obtain γ̂l,t|t−1 and Pl,t|t−1. As the LSTM-based
prediction model produces the point estimate of the future
channel state, we employ the unscented transformation (UT)
[9], [39] to obtain the distribution.

First, for given γ̂l,t−1|t−1 and Pl,t−1|t−1, we generate 2P +
1 sigma vectors χi with the corresponding weights wi, i.e.,

χ0 = γ̂l,t−1|t−1 (17)

χi = γ̂l,t−1|t−1 +
(√

(L + λ)Pl,t−1|t−1

)
i

i = 1, . . . , P (18)

χi = γ̂l,t−1|t−1 −
(√

(L + λ)Pl,t−1|t−1

)
i−P

i = P + 1, . . . , 2P (19)

w
(m)
0 = λ/(L + λ) (20)

w
(c)
0 = λ/(L + λ) + (1 − α2 + β) (21)

w
(m)
i = w

(c)
i = 1/(2(K + λ)), (22)

where λ = α2 P −P is a scaling parameter, α = 10−3 deter-
mines the spread of the sigma points around γ̂t−1|t−1, and β =
2 reflects the prior distribution of γl,t.

(√
(L + λ)Pt−1|t−1

)
i

is the ith row of the matrix square root. Each sigma vector
χi is combined with γ̂l,t−δ|t−δ, . . . , γ̂l,t−2|t−2 and fed to the
LSTM prediction model along with the IMU sensor samples.
Accordingly, the LSTM prediction model produces 2P + 1
outputs ν0, . . . , ν2P . Ideally, the 2P + 1 sigma vectors should
be generated based on the distribution of δ channel states,
which requires estimation of the pair-wise covariance between
δ channel states under Gaussian assumption. Unfortunately,
adding these steps to the Bayesian filter substantially increases
the computational complexity. We approximate the algorithm
by generating the sigma vectors only for the last channel
estimate. Finally, the updated distribution γ̂l,t|t−1 and Pl,t|t−1

are obtained by the weighted sums

γ̂l,t|t−1 =
2P∑
i=0

w
(m)
i νi (23)

Pl,t|t−1 =
2P∑
i=0

w
(c)
i (νi − γ̂l,t|t−1)(νi − γ̂l,t|t−1)T . (24)

It was shown in [39] that the UT yields approximations
that are accurate up to at least the second order, with the
accuracy of the third and higher-order moments determined
by the selection of α and β. After the prediction update step
is completed, the measurement update step is performed to
obtain the statistics γ̂l,t|t and Pl,t|t from

Kt = Pt|t−1OH
t

(
OtPl,t|t−1OH

t + σ2
t I
)−1

Pl,t|t = (I −KtOt)Pl,t|t−1

γ̂l,t|t = γ̂l,t|t−1 + Kt

(
yt − q(γ̂l,t|t−1)

)
. (25)

Note that this measurement update step is equivalent to that
of the EKF.

C. Predictive Beam Control

The direction of the sounding beams needs to be determined
based on the best available channel information in the tth
beam transmission cycle. Before the sounding beams are
transmitted, the best available channel information is the
statistics γ̂l,t|t−1 and Pl,t|t−1 obtained using the UT. Based on
the Gaussian approximation p(γl,t|γ̂l,t−1:t−δ, st−1:t−δ, Ct) ≈
N(γ̂l,t|t−1,Pl,t|t−1), we determine the beam angles μ

(b)
t,1 , . . . ,

μ
(b)
t,Mb

and μ
(m)
t,1 , . . . , μ

(m)
t,Mm

, where ft,i = a(b)(μ(b)
t,i ) and

wt,j = a(m)(μ(m)
t,j ). The optimal beam angles can be

determined by maximizing the expected channel estimation
performance with respect to the parameters μ

(b)
t,1 , . . . , μ

(b)
t,Mb

and μ
(m)
t,1 , . . . , μ

(m)
t,Mm

. An in-depth study on the opti-
mization of the sounding beams has been presented
in [3], [12], [40]. In our previous work [40], the problem of
sounding beam adaptation was formulated as a minimization
of the Cramer-Rao lower bound (CRLB) of the channel
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Algorithm 1 Proposed Beam Tracking Algorithm
1: At the tth beam transmission cycle
2: Input: {γ̂l,t−δ|t−δ, . . . , γ̂l,t−1|t−1}l=1,..,L and

{Pl,t−δ|t−δ, . . . ,PL,t−1|t−1}l=1,...,L

3: Prediction update step:
4: for l = 1 to L . . . do
5: Generate 2P + 1 sigma vectors χ0, . . . , χ2P according

to γ̂l,t−1|t−1 and Pl,t−1|t−1.
6: Feed {γ̂l,t−δ|t−δ, . . . , γ̂l,t−2|t−2, χi} to the LSTM pre-

diction model for i = 0, . . . , 2P .
7: Generate 2P + 1 output samples ν0, . . . , ν2P by taking

the outputs of the LSTM prediction model.
8: Update γ̂l,t|t−1 and Pl,t|t−1 according to (23) and (24).
9: end for

10: Beam adaptation and transmission:
11: Determine the directions of the sounding beams using the

method in [40] and transmit the beams accordingly.
12: Measurement update step:
13: for i = 1 to L . . . do
14: Update γ̂l,t|t and Pl,t|t according to (25).
15: end for
16: t← t + 1 and go back to line 1.

estimation error over the combinations of beam codebook
indices. When only two sounding beams are used for Tx and
Rx, i.e., Mb = Mm = 2, the optimal beam directions could be
determined by a two-dimensional search over the beam code-
book. In this study, adopting the method in [40], the CRLB is
derived for the given channel distribution N(γ̂l,t|t−1,Pl,t|t−1),
and the optimal sounding beam angles are determined. With
the setup Mb = Mm = 2, we choose the values of
the beam angles μ

(b)
t,1 , μ

(b)
t,2 , μ

(m)
t,1 , μ

(m)
t,2 using two-dimensional

search. Note that this beam control algorithm moves the group
of sounding beams toward the future AoD and AoA directions
in advance.

D. Algorithm Summary

The proposed beam tracking algorithm is summarized in
Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
beam tracking algorithm.

A. Simulation Setup

1) mmWave System Setup: In our simulations, we consid-
ered 28GHz frequency band communications with uniform
linear array (ULA) antennas whose adjacent elements are
spaced by a half wavelength. We considered the communi-
cation between a single BS with Nb = 32 Tx antennas and
a single UE device with Nm = 32 Rx antennas. Following
the 5G NR standard [35], the symbol duration over which a
single beam is transmitted was set to 8.93μs and 14 symbols
are included in each slot of duration 125μs. In the simulations,
4 sounding beams (Mb = 2 and Mm = 2) were transmitted

every TCSI slots. The periodicity of beam transmission TCSI

was set to 160 slots based on the 5G NR standard [35]. We use
the beam codebook, which contains 64 beams with equally
spaced angles. The symbol slots not used for beam tracking
were allocated for data transmission. The data symbols in each
slot were modulated using binary phase-shift keying (BPSK)
modulation. The data precoding and combining matrices were
obtained from the left and right singular vectors of the channel
matrix associated with the highest singular value, respectively.

2) Mobility Model: We assume that rapid channel variations
are mostly caused by dynamic changes in the UE’s pose (such
as roll, pitch, and yaw) due to the motion of spins or shakes.
Thus, in the simulations, we consider the scenarios where the
UE rotates in place at the average angular velocity of aavg .
This type of motion causes severe changes in AoA and affects
the performance of mmWave communications. In contrast,
AoD does not change much especially when the UE is far
enough away from the BS. We assume that only AoA varies
in time according to the following dynamic model:

al,n = (1− ρ)aavg + ρal,n−1 + wt

θ
(m)
l,n = θ

(m)
l,n−1 + Δt(al,n), (26)

where n is the slot index, al,n denotes the angular velocity of
AoA for the lth path, θ

(m)
l,n denotes the AoA, aavg denotes the

average angular velocity of AoA, Δt = 125us is the symbol
duration, ρ = 0.9999 is the auto-regressive (AR) parameter,
and wt ∼ N(0, 0.2(1 − ρ2)). The angular velocity al,n is
modeled by the AR process, and the AoA θ

(m)
l,n is generated

by accumulating the velocity. In this work, the angular
velocity of AoA is modeled by the AR process. This implies
that a second-order dynamic model is used to account for
the changes in AoA caused by the UE’s movement. Such
second-order models have been widely used to describe the
behavior of dynamic systems in control and robotics fields.

In our work, we mainly consider the scenarios where the UE
changes its pose rapidly while the location of UE in relation to
the BS does not change much. Therefore, in these scenarios,
the channel changes mostly appear in the AoA, not the channel
gain and AoD. Thus, we assume that the channel gain and AoD
are constant and known.

The number of paths L was set to 3. The AoAs were
generated independently for each path. Fig. 5 shows the
change in the AoA and angular velocity with different values
of aavg . A higher value of aavg leads to faster motion and
consequently more dynamic AoA variations. Note that aavg =
0.4π indicates that the UE device rotates in approximately 5 s.

3) LSTM-Based Prediction Model: We present the detailed
configurations of the proposed prediction model. The length
of the input sequence for updating the LSTM was set to δ = 3.
Each input vector consists of

• The previous channel estimate
• K = 4 samples of angular velocity sensor measurements

(rad/s)
• K = 4 samples of angular acceleration sensor measure-

ment (rad2/s).
The IMU sensor measurements were generated by computing
the first and second sample derivatives of the AoA and adding
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Fig. 5. Variation of (a) AoA and (b) angular velocity for several values of
the parameter aavg .

Gaussian noise. The signal-to-noise ratio (SNR) was set to
5 dB when testing the prediction model. We assume that the
IMU sensor has a sampling period K = 4 times lower than
that of TCSI .2 The FC layers at the input and output have
16 and 32 hidden nodes, respectively. The LSTM uses the
stacked cell states of size 32.

4) Training Procedure: A total of 3, 000, 000 data examples
were generated for training and 1,000,000 examples were used
to evaluate the proposed beam tracking method. The parame-
ters used to train the LSTM model is provided in Table I. We
generate the training data using the following procedure:

• Channel generation: generate the length-10,000
sequences of AoA based on (26).

• Generation of IMU sensor measurements: generate the
length-40,000 sequences of angular velocity and acceler-
ation measurements by taking first and second derivatives

2In practical systems, IMU sensors operate independently with the channel
tracking protocol, so the sampling period of IMU sensors is not necessarily
identical to the beam transmission cycle TCSI . We assume that the IMU
sensor data is resampled to have K times lower sampling period than
TCSI . Larger K indicates higher granularity of the IMU data samples in
the time domain, which makes it better to predict future channel states. Our
experiments confirmed that the setting K = 4 leads to better performance
than K = 1.

TABLE I

TRAINING CONFIGURATIONS OF LSTM MODEL

of the AoA sequence. For each sequence, we add the
Gaussian noise with a random SNR uniformly distributed
in the range [6, 15] dB.

• Training data generation: we partition the sequences of
AoA into short sequence of length 4. The first three AoA
states are used as inputs to the LSTM and the last AoA
state is used as a label. Note that the sequences of the
oversampled IMU sensor measurements are partitioned
accordingly.

B. Experimental Results

In this section, we compare our method with the following
mmWave channel tracking methods:

1) Compressive channel tracking [16]: Orthogonal match-
ing pursuit [41] followed by off-grid refinement was
used to track the AoA.

2) EKF method [7]: The AoA was estimated using the EKF.
3) Least mean square (LMS) method [17]: The AoA was

estimated by using the LMS filter.
4) LSTM based tracking [25]: The LSTM model directly

estimates the AoA. It was trained using the cosine loss
function.

5) ML-based training [26]: The LSTM model predicts the
channel state which is used to determine the beamform-
ing vector without pilot measurement.

6) Proposed (CSI) method: Only previous AoA estimates
were used to predict the future channel state information
(CSI). This method was evaluated to investigate the
advantage of using IMU sensors for beam tracking.

7) Proposed (CSI+IMU) method: The previous AoA
estimates and IMU measurements were used to predict
the future channel distribution.

As the compressive channel tracking, LMS, and LSTM-based
tracking methods do not produce the distribution of AoA,
we used Mm = 2 beams closest to the previous AoA estimate
as the Rx sounding beams. In contrast, like the proposed
method, the EKF method yields the distribution of the AoA,
which is used to determine the Rx sounding beams. The
normalized mean square error (MSE) is defined as

MSE = 10 log10

∥∥∥Ht − Ĥt

∥∥∥2

F

�Ht�2F
.

Fig. 6 shows the bit error rate (BER) performance as a
function of SNR. The parameter aavg indicates the extent
of mobility of the UE. Fig. 6 (a), (b), and (c) show the
performance curves for aavg = 0.1π, 0.2π, and 0.4π, respec-
tively. We observe that the proposed (CSI+IMU) method
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Fig. 6. BER versus SNR of several channel tracking methods for (a) aavg =
0.1π, (b) aavg = 0.2π, and (c) aavg = 0.4π.

outperforms the existing methods for all the cases considered.
When aavg is 0.1π rad/s, the proposed method achieves a per-
formance gain of approximately 1 dB over the EKF method at
the BER of 10−3. As aavg increases, the channel changes more
dynamically and the performance gain of the proposed method
increases. With aavg = 0.2π, the proposed method achieves a
gain of more than 3 dB over other algorithms. Furthermore,

Fig. 7. Normalized MSE versus SNR of several channel tracking methods
for (a) aavg = 0.1π, (b) aavg = 0.2π, and (c) aavg = 0.4π.

with aavg = 0.4π, the performance gain increases up to more
than 10 dB. This indicates that the LSTM-based channel model
provides a more accurate model of time-varying AoAs, and
thus, superior performance is achieved under higher mobility.
Fig. 6 also shows the advantage of using IMU sensors for
beam tracking. The proposed (CSI+IMU) method achieves a
performance gain over the proposed (CSI) method, especially
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Fig. 8. Normalized MSE versus (a) TCSI and (b) aavg .

in the low SNR range. This appears to be because the
channel estimates obtained in the previous beam transmission
cycles would not be reliable in the low SNR range; thus,
the IMU sensor signals can compensate the degraded channel
estimation. Note that, although both the proposed and EKF
methods perform the same measurement update step, the pro-
posed method achieves a better performance owing to its
more accurate prediction results in the prediction update step.
Note also that, although both our method and the methods
in [25], [26] employ DNN for beam tracking, the proposed
method performs better by leveraging the underlying domain
knowledge in the measurement model.

Fig. 7 shows the normalized MSE as a function of SNR for
several beam tracking methods. The proposed method achieves
a significant performance gain over the existing methods for all
the cases considered. The performance gain of the proposed
method also increases with aavg . The proposed method can
track rapidly varying channels better by using the DNN and
IMU sensor measurements.

Fig. 8 illustrates the variation in the MSE performance with
the beam transmission period TCSI and the angular velocity
aavg when the SNR is set to 9 dB. Fig. 8 (a) shows the plot
of MSE versus TCSI when aavg is fixed to 0.2π. As TCSI

increases, the sounding beams are transmitted less frequently,
and the beam tracking method experiences larger channel

variations. With a small TCSI , the performance of the EKF
method is comparable to that of the proposed method. How-
ever, the performance of the EKF method severely deteriorates
with TCSI , and consequently, the performance gap between
these two methods increases rapidly. Fig. 8 (b) shows the
plot of MSE versus aavg when TCSI is fixed to 160 slots.
The performance of the beam tracking algorithms degrades
as the channel changes more dynamically owing to the fast
motion of the UE. As aavg increases, the EKF method does
not perform well because the linear channel model used in
the EKF method does not sufficiently capture the behavior
of time-varying channels. In contrast, the proposed method
successfully models the complex channel behavior for reliable
beam tracking.

VI. CONCLUSION

In this paper, we proposed a deep learning-based beam
tracking method for mmWave communication. The proposed
beam tracking method was designed to track fast-varying AoD
and AoA due the motion of the UE device. We employed the
LSTM to model the channel variation and predict the future
distribution of the channel state based on the sequence of the
previous channel estimates and IMU sensor measurements.
Our method is based on a sequential Bayesian estimation
framework, in which the prediction model yields the prior
distribution of the channel in the prediction update step,
and the predicted distribution is used to update the channel
estimate in the measurement update step. Thus, our method
is a hybrid approach in that we used both an LSTM-based
channel model and an analytical measurement model for beam
tracking. Our simulation results showed that the proposed
method achieved a significant performance gain over the
EKF baseline and outperformed the existing beam tracking
methods, especially in high-mobility scenarios. Because both
EKF and particle filter are widely used to solve nonlinear
state estimation problems, it would be possible to apply our
LSTM-based method to particle filters as well. This requires
designing a way to draw and propagate particles through
iterations, and LSTM-based predictors should be integrated
into these particle filtering processes. This subject is left for
the future work.

APPENDIX

A. Derivation of Jacobian Matrix

The Jacobian matrix Ot is expressed as

Ot =

[
∂q(γt)

∂θ
(b)
1,t

,
∂q(γt)

∂θ
(m)
1,t

, . . . ,
∂q(γt)

∂θ
(b)
L,t

,
∂q(γt)

∂θ
(m)
L,t

]
,

whose elements in the (M(i− 1) + j)th row are given by

∂q(M(i−1)+j)

∂θ
(b)
l,t

=
αl,t

ntnr

1− �
(kmNm)
m

1− �
(km)
m

×kb�
(kb)
b − kbNb�

(kbNb)
b − kb(Nb − 1)�(kb(Nb+1))

b(
1− �

(kb)
b

)2
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∂q(M(i−1)+j)

∂θ
(m)
l,t

=
αl,t

ntnr

1− �
(kbNb)
b

1− �
(kb)
b

×km�
(km)
m −kmNm�

(kmNm)
m − km(Nm − 1)�(km(Nm+1))

m(
1− �

(km)
m

)2 ,

where �b = e(θ
(b)
l,t −ν

(b)
t,i ), �m = e(θ

(m)
l,t −ν

(m)
t,i ), kb = − j2πdb

λ and
km = − j2πdm

λ .
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