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Abstract
Previous studies have reported varying findings regarding the association of brain
connectivity in autism spectrum disorder (ASD) with overconnectivity, under-
connectivity, or both. Despite the emerging understanding that ASD is a develop-
mental disconnection syndrome, very little is known about structural brain
networks in preschool-aged children with low-functioning ASD. We aimed to
investigate the structural brain connectivity of low-functioning ASD using diffu-
sion magnetic resonance imaging and graph theory to examine alterations in dif-
ferent brain network topologies and identify any correlations with the clinical
severity of ASD in preschool-aged children. Fifty-two preschool-aged children
(28 with ASD and 24 with typical development) were included in the analysis.
Graph-based network analysis was performed to examine the global and local
structural brain networks. Nodal network measures exhibited increased nodal
strength in the right Heschl’s gyrus, which was positively associated with all autis-
tic clinical symptoms (Autism Diagnostic Observation Schedule and Childhood
Autism Rating Scale [CARS]). The nodal strength of the right inferior temporal
gyrus showed a moderate correlation with the CARS score. Using network-based
statistics, we identified a subnetwork with increased connections encompassing
the right Heschl’s gyrus and the right inferior temporal gyrus in preschool-aged
children with ASD. The asymmetric value in the inferior temporal gyrus exhibited
right dominance of nodal strength in children with ASD compared to that in typi-
cally developing children. Our findings support the theory of aberrant brain
growth and overconnectivity as the underlying mechanism of ASD and provides
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new insights into potential regional biomarkers that can detect low-functioning
ASD in preschool-aged children.

Lay Summary
This study supports the theory of aberrant brain growth and overconnectivity as
an explanation for ASD. Measuring the right HG and inferior temporal gyrus
provides new insights of potential regional biomarkers underpinning ASD in
preschool-aged children.

KEYWORDS
autism spectrum disorder, brain networks, diffusion tensor imaging, graph theory, Heschl’s gyrus,
overconnectivity, preschool children

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by impaired social interactions,
restricted communication skills, and unusually repetitive
behaviors. The latest survey by the Center for Disease Con-
trol and Prevention reported that ASD has become increas-
ingly prevalent over the past 15 years, with one in
54 children being diagnosed with this condition at present
(Maenner et al., 2020). A major limitation when identifying
ASD in preschool-aged children is that the disorder is diag-
nosed mainly based on a child’s developmental history and
several psychological assessments at an early age. Due to
the methodological heterogeneity in diagnosing ASD and
inherent subjectivity among psychological assessments,
interest has shifted to investigations of altered neu-
roconnectivity during early brain development (Randall
et al., 2018). Consequently, identifying neuroimaging bio-
markers has been a major focus of ASD research over the
last decade to enable objective ASD diagnosis in young
children and to elucidate the underlying neuropathological
mechanism.

Despite neuroimaging advances and the emerging
understanding of ASD as a disorder of developmental
connectivity, limitations have been observed in the clini-
cal management of preschool-aged children with low-
functioning ASD because most studies regarding the
developmental trajectory of brain connectivity have been
conducted in high-functioning school-aged children. Of
note, a heterogeneous ASD population with low- and
high-functioning subjects impedes our understanding of
the underlying mechanisms of ASD, in terms of struc-
tural connectivity (overconnectivity or underconnectivity
compared to that in typically developing individuals).
Although failure to develop cognitive skills followed by
normal verbal performance is an early warning sign of
autism during early infancy, connectivity in low-
functioning ASD has not yet been characterized during
early brain development. Studies focusing on the neuro-
development of individuals with low-functioning ASD
have been very limited, but recent functional magnetic
resonance imaging (fMRI) studies have suggested a dis-
tinctive neurodevelopmental profile in these individuals

compared to that in individuals with high-functioning
ASD (Gabrielsen et al., 2018; Reiter et al., 2019).
Although resting-state fMRI studies have demonstrated
hyper- or hypo-connectivity of other cortical regions in
low-functioning ASD, there has been relatively little
research into the existence of atypicalities in structural
brain MRI of preschool-aged children. Furthermore, few
fMRI studies have shown differences in brain connectiv-
ity between low- and high-functioning ASD; therefore,
information about the relationship between the function-
ing level or symptom severity and altered connectivity
requires further study.

A recent longitudinal study of 429 children aged 2–
13 years reported that ASD boys with disproportionate
megalencephaly exhibited early cerebral enlargement and
found no evidence of cerebral brain volume regressions in
ASD through late childhood (Lee et al., 2020). Tract-
based spatial statistics (Andrews et al., 2019; Blanken
et al., 2017; Cheng et al., 2010; Weinstein et al., 2011) and
region-of-interest (ROI)-based analysis (Andrews
et al., 2021; Ben Bashat et al., 2007; Solso et al., 2016;
Temur et al., 2019) have demonstrated early accelerated
brain growth in various brain regions in preschool-aged
children with ASD. Weinstein et al. reported a significant
increase in fractional anisotropy (FA) in the left cingulum
as well as the midbody of the corpus callosum in children
with ASD between the ages of 2 and 6 years, supporting
the view that the atypical trajectory of brain development
results from early white matter overconnectivity
(Weinstein et al., 2011). Bashat et al. showed that, com-
pared to typically developing children (TDC), children
with ASD between the ages of 1.8 and 3.3 years exhibited
elevated FA values predominantly in the left frontal lobe,
suggesting an accelerated maturation of white matter and
early brain overgrowth (Ben Bashat et al., 2007). A meta-
analysis of diffusion tensor imaging (DTI) studies identi-
fied a decrease in FA values and increase in mean diffusiv-
ity (MD) in the corpus callosum, an essential structure for
interhemispheric communication, in individuals with ASD
as compared with TDC (Aoki et al., 2013; Di et al., 2018).

Recent studies considering changes in the develop-
mental trajectory may account for the inconsistent results
regarding age-dependent or region-specific abnormal
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brain connectivity, underlying how altered white matter
integrity across early childhood in individuals with ASD is
related to behavioral impairment. For example, a longitu-
dinal study of 125 children with ASD between 2.5 and
7 years of age showed that the FA values in several brain
regions of the splenium of the corpus callosum, superior
longitudinal fasciculus, internal capsule, and cingulum ini-
tially increased, but later decreased, contributing to a
slower developmental trajectory compared with TDC
(Andrews et al., 2021). Solso et al. discovered age-related
changes in brain connectivity in the frontal fiber tracts of
children with ASD, with abnormally higher FA suggesting
local axonal overconnectivity in the first two years of life
but slightly lower FA between the ages of 3 and 4 years
suggesting under-connectivity (Solso et al., 2016).

While previous DTI studies focused on microstructural
changes, graph theoretic analyses of DTI data have been
widely employed in various diseases since 2010. This
approach models the brain as a complex network, where
connectivity between brain regions is estimated from DTI
data using a computational algorithm called tractography
(Bullmore & Sporns, 2009; Mori & Barker, 1999). This
approach facilitates the investigation of abnormalities in
the connectivity and interaction between brain regions due
to neural diseases (Bullmore & Sporns, 2009; Mori &
Barker, 1999). In particular, network topological measures
capture various aspects of interactions and are sensitive to
the deterioration of brain networks. This approach may
overcome the limitations of previous approaches, includ-
ing volumetric analyses of structural MRI and microstruc-
tural changes of diffusion MRIs, and may complement
them by providing insights into abnormalities not only in
terms of local structural changes in single brain regions or
tissue, but also in the global interactions between brain
regions. Prior research on network connectivity using
graph theory in preschool-aged children with ASD is
scarce, with most studies focusing on functional connectiv-
ity rather than on structural connectivity in children with
high-functioning ASD. Different aspects and modalities
between structural and functional MRI could represent a
critical gap in our understanding of brain function across
the autism spectrum. Thus, in this study, we focused on
low-functioning ASD, using structural MRI, and
highlighted a functional relationship between altered con-
nectivity (based on graph theory) and symptom severity in
individuals with low-functioning ASD.

To date, only six studies that used the graph theory
have explored the structural network connectivity in
preschool-aged children with ASD (Billeci et al., 2019;
Carpenter et al., 2019; Lewis et al., 2014; Li et al., 2018;
Qian et al., 2018; Qin et al., 2018) (Supplementary
Table 1). To the best of our knowledge, no previous
study has used the graph theory to explore the different
patterns of brain networks in a low-functioning ASD
cohort with a mean age below 6 years. Based on struc-
tural connectivity MRI and graph theory, we aimed to
investigate different topological brain networks that are

associated with symptom severity as potential neuroim-
aging biomarkers between preschool-aged children with
low-functioning ASD and TDC.

MATERIALS AND METHODS

Subjects

Participants were infants aged 3–6 years who had been
diagnosed with ASD or were TDC at Hanyang University
Medical Center between January 2017 and November
2019. Infants who had been diagnosed with ASD at the
Child and Adolescent Psychiatry Department at Hanyang
University Medical Center were recruited to the Hanyang
Inclusive Clinic for Developmental Disorders at Hanyang
University Seoul Hospital. Infants with ASD underwent
intellectual quotient (IQ) assessment and Korean Social
Maturity Scale (K-SMS) evaluation as part of their clini-
cal assessment at the Hanyang Inclusive Clinic for Devel-
opmental Disorders. Thus, our study participants with
low-functioning ASD, referred to as preschool-aged chil-
dren with ASD and IQs below 70, were enrolled as part of
the Medicine�Engineering�Bio Research Project in Han-
yang Inclusive Clinic for Developmental Disorders. Sub-
jects with low-functioning ASD who met the cut-off
points for autism on the Autism Diagnostic Observation
Schedule (ADOS) and Childhood Autism Rating Scale
(CARS) and low-function IQ levels on the Wechsler Pre-
school and Primary Scale of Intelligence IV (WPPSI-IV)
were included in this study. The exclusion criteria for par-
ticipants with ASD were as follows: family history of
ASD, known genetic disorder, history of or current brain
trauma, structural brain abnormalities, seizure, other neu-
rological disorders, or any psychiatric disorder.

The diagnosis of ASD was confirmed at the Child and
Adolescent Psychiatry Outpatient Clinic at Hanyang Uni-
versity Hospital using the ADOS, CARS, and expert clini-
cal diagnosis by a pediatric psychologist according to the
criteria of the Diagnostic and Statistical Manual of Men-
tal Disorders, Fourth Edition (Kaufman et al., 1997; Kim
et al., 2004). The ADOS is a semi-structured observational
tool that scores two independent subdomains of autistic
symptoms: social affective (SA) and restrictive repetitive
behavior (RRB). It is currently considered the gold stan-
dard for diagnosing ASD (Lord et al., 2000). The exam-
iner administered one of the four modules according to
the participant’s language level and age (ranging from
nonverbal young children to verbally fluent adults). IQ
levels were determined using the WPPSI-IV, a commonly
used test of cognitive development for preschool children
aged 30–56 months (Wechsler, 2012), administered by
trained psychologists (Wechsler et al., 2019).

The TDC group included children with no signs of
developmental delay. Developmental ability was screened
in all infants at a routine health check-up using the
Korean Developmental Screening Test for Infants and
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Children at Hanyang University Medical Center Pediat-
rics Department. This screening tool is composed of six
subscales: motor function, fine motor function, cognition,
language, social interaction, and self-help and was cate-
gorized as screen-positive when any one of the domains
was <�2 standard deviations (SD) from an age-
appropriate level. TDC with developmental scores within
2 SDs of the mean on all subscales of the Korean Devel-
opmental Screening Test at the Hanyang Inclusive Clinic
for Developmental Disorders were recruited in the TDC
group. TDC who underwent a detailed neurological
examination and developmental assessment by a pediatri-
cian were enrolled in this study as a part of the
Medicine�Engineering�Bio Research Project at Hanyang
Inclusive Clinic for Developmental Disorders to obtain
developmental measures, such as MRI examination for
DTI, IQ, and CARS. Inclusion criteria for the TDC
group were no evidence of mental retardation, pervasive
developmental disorder, specific language impairment, or
any known developmental, neurological, or behavioral
problems and normal imaging as judged by a clinical
neuroradiologist. Individuals with developmental disabil-
ities (CARS score >28) were also excluded from the TDC
group. Those with an IQ <70 were also excluded.

Seventy-one participants aged 3–6 years were rec-
ruited from Hanyang University Medical Center. This
included 39 individuals who had been diagnosed with
ASD and 32 TDC. Nine patients with ASD and six TDC
were subsequently excluded due to poor imaging quality,
and four patients with ASD were excluded due to missing
IQ data. In total, 52 preschool-aged children (male/
female; 37/15), including 28 with ASD and 24 TDC were
included in the analysis. Basic clinical data, including ges-
tational age (GA), birth weight, sex, age at imaging, med-
ication history, and IQ were prospectively recorded for
all participants using clinical trial forms in the hospital.

The Institutional Review Board of Hanyang Univer-
sity Seoul Hospital (No. 2017-04-004) approved the study
protocol and scanning procedures. This study was con-
ducted in accordance with the principles of the Declara-
tion of Helsinki. Written informed consent was obtained
from all parents/guardians, and the children provided
verbal consent to participate after receiving an explana-
tion of the study prior to enrollment.

MRI scanning procedure

We used sedation to obtain MRI scans of all preschool-
aged children with ASD and all TDC. However,
obtaining MRI scans of preschool-aged children poses
many methodological challenges, such as head motion
and loud acoustic noise. To avoid these issues, we
focused on reducing head motion under sedation to
acquire high-quality images using earplugs, headphones,
or both. MRI brain scans were taken ranging from 20 to
30 min, and all children underwent an MRI scan during

their nap time. The sedation and details of the MRI pro-
cedure were explained to the parents. A documented
review of the medical history and physical examination
was performed by the physician. Sedation was adminis-
tered by a trained pediatric nurse after an appropriate
interval of fasting before sedation. Chloral hydrate was
selected due to its low complication rates and high effi-
cacy when used in accordance with the guidelines for chil-
dren’s sedation as published by the American Academy
of Pediatrics (Committee on Drugs. American Academy
of, 2002; Vade et al., 1995). All children sedated for the
MRI scanning procedure were carefully monitored using
pulse oximetry and were supervised by a skilled physician
who was trained in providing pediatric advanced life sup-
port. The children’s cardiorespiratory status and vital
signs were recorded every 5 min. The imaging session
was interrupted if the child moved or woke up during
scanning. After the imaging procedure was completed,
discharge was permitted only when sedation effects were
discontinued and proper recovery had been achieved.

MRI data acquisition

MRI brain scans were acquired using a 3.0-T MRI scanner
(Philips Real-Time Compact Magnet 3.0-T MRI system,
Achieva 3.0-T X-series; Philips Healthcare, Best, The
Netherlands), equipped with a 16-channel SENSE head coil.
T1-weighted images, including sagittal and axial T1 turbo
field echo sequences, were obtained with the following
parameters: TR = 8.3 ms, TE = 4.6 ms, field-of-view (FoV)
= 224 mm � 224 mm, spatial resolution =
0.6 mm � 0.6 mm � 1 mm, and slice thickness = 1 mm.
T2-weighted images were obtained to exclude white matter
abnormalities. The turbo spin echo T2 scan imaging parame-
ters were as follows: TR = 3000 ms, TE = 100 ms, FoV =
180 mm � 180 mm, spatial resolution = 0.5 mm
� 0.5 mm � 4 mm, and slice thickness = 4.0 mm. Radio-
logical evaluation was performed by an experienced pedi-
atric neuroradiologist who was blinded to all other data.
DTI was performed using a single-shot spin-echo planar
sequence with a SENSE factor of 2 and echo planar imag-
ing factor of 51 (TR = 8192 ms, TE = 76 ms, FoV =
224 mm � 224 mm, spatial resolution = 2 mm �
2 mm � 2 mm, and slice thickness = 2.0 mm). The slice
orientation was axial and parallel to the anterior–posterior
commissure line. Seventy-four axial sections covered the
entire hemisphere and brainstem. The diffusivities were
measured along 15 directions using an electrostatic gradi-
ent model (b = 800).

Image preprocessing and network construction

To define brain networks using processed MRI data, we
defined nodes as the brain regions and edges as the num-
ber of streamlines between a pair of brain regions. To
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define the nodes, we registered images in standard space
(MNI-152), in which the automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) resides on
diffusion-weighted images (DWIs), using statistical para-
metric mapping (SPM) 12 (Figure 1). We first segmented
DWIs to obtain the deformation field in a tissue probabil-
ity map (TPM) space. We used the average TPM template
because the subjects were children. Because the segmenta-
tion procedure was carried out in the TPM space, prior to
segmentation, SPM was performed for mutual
information-based affine registration and normalization of
the DWI of each subject onto the TPM space, resulting in
its deformation field. Second, we registered the AAL atlas
to the TPM space. The AAL atlas co-registered to the
TPM space was then normalized by applying the inverse of
the deformation fields obtained in the previous procedure,
resulting in the AAL atlas within the individual’s diffusion
space. We matched the voxel size by reslicing the image
with the original DWI. In the normalization and co-
registration procedure, we used the nearest-neighborhood
interpolation method, which led to clearer regional bound-
aries when converting the regions in the standard space into
other spaces. Finally, we obtained the registered AAL atlas
in the DWI space of each individual. We used 90 brain
regions (78 cortical and 12 subcortical brain regions) as the
nodes, excluding regions in the cerebellum.

To obtain streamline tractography from processed
DWIs, deterministic tractography was performed.
Because unwanted movements can occur during MRI
scanning, we performed eddy-current correction on the
DWIs. Specifically, we adjusted unwanted movements by
registering all volumes with non-zero gradient directions
to a reference volume without diffusion encoding, using
the eddy-current correction toolbox of the FMRIB’s Dif-
fusion Toolkit (v.3.0). We also rotated the gradient direc-
tions appropriately during the alignment procedure. We

restricted the seed regions to white matter to avoid arti-
facts in tractography. The white matter mask was
obtained using the FMRIB’s Automated Segmentation
Tool (FAST) (Zhang et al., 2001) on brain DWI processed
using the Brain Extraction Tool (v.2.1) (Jenkinson
et al., 2002). This was followed by using the Fiber Assign-
ment by Continuous Tracking (FACT) algorithm, with a
45� angular threshold, through the diffusion toolkit along
with TrackVis (Mori & Barker, 1999; Wang et al., 2007).

Finally, we obtained connectivity matrices of the
brain network by counting the number of streamlines
between any pair of two defined ROIs using the UCLA
multimodal connectivity package (UMCP, http://ccn.
ucla.edu/wiki/index.php). As a result, we obtained a
90 � 90 connectivity matrix.

Network measures

We quantified the properties of brain networks using the
Brain Connectivity Toolbox (Rubinov & Sporns, 2010).
For the nodal properties of the networks, we measured
the nodal degree and strength, clustering coefficient, local
efficiency, and regional efficiency for each node. For the
global properties of the networks, we measured the edge
density, total strength, clustering coefficient, characteris-
tic path length (CPL), small-worldness, global efficiency,
and local efficiency. This Toolbox supports MATLAB
implementation for computing these measures
(Rubinov & Sporns, 2010).

Nodal degree and edge density

The degree of a node is the number of neighboring nodes
connected to the node. If the connection between the ith

F I GURE 1 Schematic of the
registration of AAL of the
diffusion tensor imaging (DTI)
space using SPM software. In each
stage, blue lines indicate input
data and orange lines indicate
output data. We first segmented
DWIs to obtain a deformation
field to the tissue probability map
(TPM) space. We also registered
the AAL atlas to the TPM space.
The AAL atlas co-registered to the
TPM space was normalized by
applying the inverse of the
deformation field obtained in the
segmentation procedure. As a
result, we obtained the registered
AAL atlas in the DWI space for
each individual
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and jth nodes exists, aij = 1; otherwise, aij = 0. The degree
of the ith node, Ki, is defined by summing aij , where N is
the number of nodes [Equation (1)].

Ki ¼
X
j � N

aij ð1Þ

The edge density of a network, ρ, is defined as the ratio
of the number of connected edges to the number of all
possible edges in a network. It is a counterpart of the
nodal degree in the global measure [Equation (2)].

ρ¼ 1
N N�1ð Þ

X
i � N

Ki ð2Þ

Nodal strength and total strength

The nodal strength is the sum of all the edge weights con-
nected to the node. The nodal strength of the ith node,
Si, is defined by summing wij, where wij is the edge weight
between the ith and jth nodes, and N is the number of
nodes [Equation (3)].

Si ¼
X
J � N

wij ð3Þ

The total strength is defined by the summation of all edge
weights in the whole network. Because our connectivity
matrix is symmetric, the total strength is half of the
summation.

Clustering coefficient at the nodal and global
levels

The clustering coefficient measures how well nodes are
locally clustered. The clustering coefficient at the nodal
level is defined by the fraction of the number of triangles
connected with a node to the number of possible triangles
between all neighboring nodes. In a weighted network,
weights should be considered together while counting the
number of triangles; thus, the triangle intensity is
employed (Onnela et al., 2005). The triangle intensity is
d1efined as the cubic root of the product of the edge
weights in a triangle. The total intensity of the ith node,
ti, is calculated by the summation of the triangle intensi-
ties of all the connected triangles [Equation (4)].

ti ¼
X

j,k � N

wijwjkwki
� �1=3 ð4Þ

where wij , wjk, and wki represent the edge weights between
two neighboring nodes when the jth and kth nodes are

the neighboring nodes connected with the ith node, and
N is the number of nodes. The number of possible trian-
gles connected to the ith node is identical to selecting any
two neighboring nodes connected to the node
[Ki Ki�1ð Þ=2, where Ki is the degree of the node]. The
clustering coefficient of the node is calculated as follows
[Equation (5)].

Ci ¼ 2
Ki Ki�1ð Þ

X
j,k � N

ti ð5Þ

The clustering coefficient at the global level is defined as
the average of the nodal clustering coefficient over all
nodes.

Regional efficiency and CPL

The regional efficiency and CPL measure how well a
node communicates with others. Better communication
between two nodes can be measured through a shorter
path length, where the path length is the geodesic dis-
tance between two nodes. Since the strong edge weight
between two nodes represents better communication in
our weighted network, we remapped each edge weight as
its reciprocal to find the shortest path lengths through the
Dijkstra algorithm. The two topological measures are dif-
ferent in the way of averaging the shortest path lengths
over the whole network. For regional efficiency, we aver-
aged their reciprocals [Equation (6)], while the CPL was
defined as their average of the shortest path length [Equa-
tion (7)], where dij is the shortest path length between the
ith and jth nodes, and D is the number of finite dij .

Ei ¼ 1
N�1

X
i ≠ j � N

1
dij

ð6Þ

L¼

P
dij ≠ ∞

dij

D
ð7Þ

Local efficiency at the nodal and global level

Similar to the clustering coefficient, the local efficiency is
a measure of how well neighboring nodes, connected with
a node, communicate between them. While the clustering
coefficient focused on the number of edges and/or edge
strength, the local efficiency also considers the shortest
path lengths between neighboring nodes. Specifically,
local efficiency is defined as the average efficiency of a
local subgraph centered on a certain node. A local sub-
graph of the ith node consists of a set of neighboring
nodes for the local efficiency of a weighted network at
the nodal level. We calculated the total intensity com-
bined with the shortest path length for all pairs of any
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two nodes in the local subgraph. In contrast to the total
intensity of the clustering coefficient, the total intensity of
the local efficiency is calculated by replacing wjk with the
reciprocal of the shortest path length (djk) between the jth
and kth nodes [Equation (8), numerator]. We then aver-
aged these values [Equation (8)]. The local efficiency at
the global level is defined as the average local efficiency
at the nodal level.

Eloc,nodal ið Þ¼ 1
2

X
i � N

P
j,k � N,j ≠ i,k ≠ i wijwik djk

� ��1
� �1=3

Ki Ki�1ð Þ
ð8Þ

Global efficiency

Global efficiency measures how well nodes in a network
communicate with each other on average. We defined the
global efficiency by the average of the reciprocal of the
shortest path length between any pair of nodes, where
N is the number of nodes [Equation (9)].

Eglob ¼ 1
N

X
i � N

P
j � N,j ≠ id

�1
ij

N�1
ð9Þ

Small-worldness

Small-worldness characteristics capture a balance
between high clustering and low CPL. As explained
above, high clustering means that neighbors of a certain
node are also densely connected; thus, information com-
munication between them may also be good. On the
other hand, a lower CPL indicates better communication
at the global level. Thus, a network with small-worldness
characteristics has good information communication
capabilities, not only locally, but also globally. Small-
worldness (σ) is computed as the ratio between the clus-
tering coefficient and CPL [Equation (10)].

σ¼C
L

ð10Þ

Network-based statistics

Because changes in the network topology can affect
structural changes in the brain network, we investigated
the changes in structural connectivity in the brain net-
work using network-based statistics (NBS) with a general
linear model (GLM) (Zalesky et al., 2010). NBS with
GLM extract subnetworks that consist of edges with sig-
nificant group differences while controlling for the effect
of covariates. We constructed a GLM model that pro-
vided the test statistics for each connection. By applying

a certain threshold for the test statistics for all edges, the
connections exceeding the threshold formed topological
clusters that were connected to the graph components.
NBS estimates the significance level of whether each clus-
ter occurs higher than random chance. NBS uses permu-
tation testing for this estimation, as summarized below.
First, we randomly permuted the group information and
performed a GLM analysis for each connection with the
permuted group information. Then, using the same
threshold for the original group assignment, we
thresholded the connections and formed topological clus-
ters. The size of the largest component was collected for
permuted group information. Repeating this procedure
several times (10,000 times in this experiment), we
obtained an empirical null distribution of the size of the
largest component. Finally, we computed the family-wise
error rate for each component of the original group
assignment by simply counting the number of occur-
rences of randomly formed clusters that were larger than
the designated cluster.

Asymmetry index

We investigated the asymmetric properties of brain
regions using the asymmetry index (AI). The AI quan-
tifies the hemispheric imbalance of a certain topological
parameter. It is defined by Rmeasure�Lmeasureð Þ=
RmeasureþLmeasureð Þ, where Rmeasure and Lmeasure are topo-
logical measures of the right and left hemispheres, respec-
tively. Positive AI values represent a rightward bias of
the topological measure, while negative AI values repre-
sent a leftward bias.

Statistical analysis

We compared various network measures between groups
using permutation-based analysis of covariance
(ANCOVA) (Cho et al., 2018; Genovese et al., 2002;
Nichols et al., 2008), controlling for the effects of GA, sex,
and age at imaging. The permutation test is a method that
tests the null hypothesis that different groups come from
the same distribution. We obtained the null distribution
by resampling the data sets N-1 times by random assign-
ment of all subjects into one of two groups and computing
the test statistics (F) in each permuted dataset through
ANCOVA. To estimate the significance level of group dif-
ferences, we first computed the F-value for the original
dataset. Then, we defined the significance level by the frac-
tion of occurrences whose F-values of the resampled data
sets were not less than the F-value of the original dataset.
To compute the test statistics, we used our in-house codes
and the LinStat library (2006b) (Mulchrone, 2003). We
used 10,000 permutations as N. The seven global measures
were correlated with clinical severity scores using partial
correlation with p-values corrected using a false discovery
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rate (FDR) procedure. For the nodal measures, we per-
formed the FDR procedure on more than 90 nodes as
multiple comparison corrections (Benjamini &
Cohen, 2017; Benjamini & Hochberg, 1995).

To investigate how changes in the network topology
affected ASD symptoms, we performed a correlation
analysis between network measures that had group differ-
ences and autistic clinical symptoms (based on the CARS
and ADOS) in the ASD group. We used a partial correla-
tion coefficient to control for the effects of GA, sex, and
age at imaging in the ASD group. We tested whether AI
values were significantly different from zero using a
Wilcoxon signed-rank test and compared them between
groups using rank-sum tests as the data did not follow a
normal distribution. A Kolmogorov–Smirnov test was
performed to test for normality. In addition, we investi-
gated the relationship between AI and autistic clinical
symptoms (based on the CARS and ADOS) using partial
correlation analysis, while controlling for the effects of
GA, sex, and age at imaging.

RESULTS

There were no significant differences in age between the
low-functioning ASD and TDC groups. The low-
functioning ASD group demonstrated significantly
higher CARS scores and lower IQ scores than the TDC
group (Table 1). The IQ range of the ASD group was 40–
67, while that of the TDC group was 75–111.

Group differences in network topological
measures

We first compared the global properties of the brain
structural network between the low-functioning ASD and
TDC groups, correcting for GA, sex, and age at imaging.

There was no significant difference in the global measures
between the low-functioning ASD and TDC groups.
(Supplementary Table 2).

The nodal topological measures were compared
between the low-functioning ASD and TDC groups. We
found that the nodal strength of the right Heschl’s gyrus
(HG; FDR-adjusted p-value: 0.0315, in TDC:
168.1250 � 37.3099, in ASD: 201.3571 � 42.2473) and
right inferior temporal gyrus (ITG; FDR-adjusted p-
value: 0.0315, in TDC: 679.0417 � 94.0673, ASD:
774.8571 � 119.7602) were higher in the ASD group
(Figure 2(a)-(b) and Table 2).

Correlations with ASD symptoms

We analyzed the correlation between network measures
and autistic clinical symptoms with the CARS total score
and scores of all ADOS subdomains (SA, RRB, and
total, respectively). There was no significant correlation
between the global measures and symptoms of the ASD
group. (Supplementary Table 3).

The nodal strength of the right HG was associated with
all autistic clinical symptoms in the ASD group [total
ADOS score (r = 0.6807, p = 0.0019) and ADOS SA score
(r = 0.6113, p = 0.0070); Figure 2(c) and Table 2)].

Increased connectivity in the ASD group

Using the NBS, we identified a subnetwork that had
increased connectivity in the low-functioning ASD group
as compared to the TDC group (corrected p = 0.0327),
while controlling for GA, sex, and age at imaging. The
extracted subnetworks were identical, with threshold
values between 2.3 and 2.4. Here, we report on the sub-
networks with the largest threshold value. The identified
subnetwork consisted of the following connections:

TABLE 1 Clinical characteristics

TDC (n = 24) ASD (n = 28) p-valuea

Age (months) 46.6667 � 14.0702 43.3214 � 9.2017 0.4744a

GA (weeks) 38.2500 � 2.4539 36.4643 � 3.7167 0.0502a

Sex (Male/Female) 18/6 19/9 0.5709b

FSIQ 87.2857 � 14.4777 46.5200 � 9.4742 <0.001a

CARS 19.5556 � 3.2156 33.9167 � 5.0469 <0.001a

SMS 58.4776 � 9.2657

ADOS (total) 19.3333 � 3.6240

ADOS (SA) 16.7619 � 2.6815

ADOS (RRB) 2.5714 � 1.7485

Note: Data are presented as the mean � standard deviation.
aP-values from Student’s t-test.
bP-values from the chi-square test.
Abbreviations: TDC, typically developing children; ASD, autism spectrum disorder; FSIQ, full scale intelligence quotient; CARS, childhood autism rating scale; SMS,
social maturity scale; ADOS, autism diagnostic observation schedule; SA, social affective; RRB, restrictive repetitive behavior.
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connection between the right superior temporal gyrus
and right middle temporal gyrus, right ITG and right
middle temporal gyrus, right HG, and right postcentral
gyrus. All edges identified resided in the right hemisphere
and were stronger in the ASD group than in the TDC
group (Figure 3 and Table 3).

Asymmetry of nodal strength in the ASD group

As we found an abnormality in the nodal strength of HG
and ITG, we investigated their AI and compared the

asymmetry measure between the two groups. We found a
rightward asymmetry in the nodal strength of HG
(in TDC: 0.1067, in ASD: 0.1774, Supplementary
Table 4), but the difference was not statistically signifi-
cant (p = 0.0551). In the ITG, the TDC group exhibited
leftward asymmetry in nodal strength, while children
with ASD showed rightward lateralization in nodal
strength (in TDC: �0.0540, in ASD: 0.0226). Conse-
quently, we found a significant difference between groups
in the AI values of the ITG (rank-sum test, p < 0.0072),
representing right hemispheric lateralization in children
with ASD.

F I GURE 2 Group differences for the nodal measures and their correlations with autism spectrum disorder (ASD) symptoms. (a) Brain regions
with stronger nodal strength in the ASD group compared to in TDC were marked as yellow circles in a transverse view of both hemispheres. (b) the
nodal strength in each group was shown with scatter plots. Blue circles represent each subject, and red lines indicate the group average. (c) the nodal
strength was correlated with ASD symptoms (partial correlation coefficients in-set), where blue circles represent each subject and red lines are linear
fitting lines. HG, Heschl’s gyrus; ITG, inferior temporal gyrus
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TABLE 2 Differences in nodal strength between children with ASD and TDC and their correlations with ASD symptoms

Group difference Correlation with ASD symptoms

Nodes TDC ASD p-valuea Scores r-valueb p-valueb

Right Heschl’s gyrus 168.1250 � 37.3099 201.3571 � 42.2473 0.0315 CARS 0.2545 0.2661

– – – ADOS (TOTAL) 0.6807 0.0019

– – – ADOS (SA) 0.6113 0.0070

– – – ADOS (RRB) 0.4515 0.0600

Right inferior temporal gyrus 679.0417 � 94.0673 774.8571 � 119.7602 0.0315 CARS 0.2998 0.1868

– – – ADOS (TOTAL) �0.1096 0.6649

– – – ADOS (SA) �0.4365 0.0701

– – – ADOS (RRB) 0.3658 0.1355

Note: Data are presented as the mean � standard deviation.
aP-values from permutation-based ANCOVA controlling for gestational age, sex, and age at imaging.
bPartial correlation coefficient and P-value, controlling for gestational age, sex and age at imaging.
Abbreviations: ASD, autism spectrum disorder; TDC, typically developing children; ADOS, autism diagnostic observation schedule; SA, social affective; RRB, restrictive
repetitive behavior; CARS, childhood autism rating scale.

F I GURE 3 Abnormal subnetwork identified through NBS. Lateral view of the left hemisphere (a); transverse view of both hemispheres (b); and
lateral view of the right hemisphere (c). Yellow circles indicate brain regions, and orange lines indicate the connections between them. The
subnetwork consists of five nodes and four connections, and all connections were stronger in children with autism spectrum disorder than in TDC.
HG, Heschl’s gyrus; TPOsup, superior temporal pole gyrus; PoCG, postcentral gyrus; STG, superior temporal gyrus; ITG, inferior temporal gyrus;
MTG, middle temporal gyrus

TABLE 3 Structural connectivity within subnetworks identified through NBS

Connections TDC ASD T-Statisticsa

STG.R – MTG.R 381.5417 � 103.3504 460.7500 � 108.0475 2.7384

ITG.R – MTG.R 263.0417 � 48.3092 321.5714 � 64.1869 3.4681

HG.R – STG.R 48.5750 � 15.6297 63.5357 � 24.4790 2.4251

HG.R – TPOsup.R 1.7083 � 2.9997 4.6071 � 4.5570 2.6610

HG.R – PoCG.R 0.8333 � 1.8337 5.0357 � 7.1049 3.0261

Note: Data are presented as the mean � standard deviation.
aT-statistics of group differences for connections identified by network-based statistics.
Abbreviations: STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; HG, Heschl’s gyrus; TPOsup, superior temporal pole gyrus;
PoCG, postcentral gyrus.
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DISCUSSION

Global network characteristics of low-
functioning ASD

This study showed no significant difference in global topo-
logical measures between preschool-aged children with low-
functioning ASD and TDC. In another study, there were
significant reductions in global and local efficiency bilater-
ally in 24-month-old infants diagnosed with ASD compared
to infants not classified as ASD, supporting the under-
connectivity theory of ASD (Lewis et al., 2014). Another
study also showed a significant decrease in global efficiency
in both binary and density-weighted networks, which may
indicate reduced integration, in adult males with ASD com-
pared to typically developed adults (Roine et al., 2015). In
contrast, a previous study examining the graph metrics of
functional networks reported that adolescents with ASD
had a higher global efficiency and lower local efficiency
than TDC (Rudie et al., 2012). There was no significant
correlation between global network measures and clinical
symptoms of ASD in the present study. However, a previ-
ous study stated that overconnectivity is seen in the brains
of preschool-aged children with ASD (Qin et al., 2018),
while other studies provided evidence that under-
connectivity is associated with ASD in school-aged children
(Brito et al., 2009; Payabvash et al., 2019) with decreased
CPL, increased global efficiency, and an increased cluster-
ing coefficient compared with TDC (Li et al., 2018).

Of note, in children with ASD, the developmental
period under the age of 6 years is a crucial phase of neural
network formation that is critical for early intervention.
Although low-functioning ASD in preschool-aged children
is not completely identifiable in neuroimaging studies, low-
functioning ASD in the presence of cognitive impairment is
more likely to develop as early as the second year of life in
children with the core features of ASD. A recent study by
Gabrielsen et al. that targeted children with ASD and poor
verbal and cognitive performance found decreased within-
network connectivity in default, salience, auditory, and
frontoparietal networks and increased between-network
connectivity between the default and dorsal attention and
frontoparietal networks compared to those in high-
functioning ASD (Gabrielsen et al., 2018). This suggests
decreased network segmentation and integration in chil-
dren with low-functioning ASD (Gabrielsen et al., 2018).
Another study reported functional underconnectivity
within the default mode network and ventral visual stream,
suggesting reduced network integration in individuals with
low-functioning ASD and reduced network segregation in
those with high-functioning ASD (Reiter et al., 2019).

Altered nodal network in low-functioning ASD
and correlation with clinical severity

Atypical functional and structural brain connectivity has
been studied in multiple brain regions and white matter

tracks in individuals with ASD (Chien et al., 2015;
Keown et al., 2013; Qin et al., 2018). We showed signifi-
cant increases in nodal strength of the right HG and a
marginal increase in the right ITG of children with ASD
compared with TDC, which positively correlated with
the severity of ASD. In addition, NBS identified a poten-
tially disturbed subnetwork in the right hemisphere,
which predominantly comprised temporo-parietal con-
nectivity in the ASD group (Figure 3 and Table 3) and
positively correlated with the CARS total score and
scores of all ADOS subdomains. The nodal over-
connectivity in preschool-aged children with ASD may
be due to early brain overgrowth. In addition, reduced
synaptic pruning and synapse elimination in the brain
may be attributed to the clinical symptoms of ASD. Our
findings are consistent with those of an earlier study by
Keown et al. which used graph theory and showed
increased local connection density in the temporo-
occipital regions in the ASD group which positively cor-
related with ADOS scores (Keown et al., 2013). Likewise,
school-aged boys with high-functioning ASD have shown
overconnectivity between the right posterior temporo-
parietal junction and right temporo-occipital cortex com-
pared to controls; this overconnectivity positively corre-
lated with social deficits (Chien et al., 2015). In a DTI
study of topological networks in preschool-aged children,
Qin et al. showed that the nodal efficiency of the left
precuneus in the parietal lobe was higher in patients with
ASD than in controls; this was positively associated with
the severity of ASD symptoms (Qin et al., 2018). In con-
trast, another study of 24-month-old toddlers found sig-
nificantly lower global and local efficiency in the
temporal, parietal, and occipital lobes of infants with
ASD compared to those in low-risk infants who were not
diagnosed with ASD (Lewis et al., 2017). This difference
could be explained by the idea that underconnectivity
and overconnectivity in topological networks, with age-
dependent regional variation, coexist in preschool-aged
children with ASD and give rise to aberrant connectivity.
Another plausible explanation for such inconsistencies is
age-related differences. While previous studies investi-
gated ASD in toddlers aged 1–4 years, our study focused
on children aged 3–6 years. Along with these possible
interpretations of regional variation, we further speculate
that these inconsistencies may be attributable to the var-
ied ASD evaluations used. Previous research used either
the ADOS or CARS clinical scores for evaluation,
whereas both ADOS and CARS were assessed in our
study, potentially increasing the accuracy and reliability
of results.

Potential relationship with connectivity in the
HG and ITG of individuals with low-
functioning ASD

Of note, the nodal strength of the right HG was associ-
ated with increased ASD severity. Furthermore,
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significantly increased nodal strength and hyper-
connectivity were identified by NBS in the ASD group.
The HG has been ignored in topological network studies
of ASD using graph theory, with only a limited number
of studies examining volume (Prigge et al., 2013) and
asymmetry (Knaus et al., 2009; Rojas et al., 2002). More
focus should be placed on the role of the HG in early pre-
school age as an ROI in autism research, since some of
the core symptoms of individuals with autism are delayed
language and heightened auditory sensitivity.

The transverse gyrus of the HG, the most anterior
transverse gyrus on the superior temporal plane, plays a
pivotal role in early acoustic processing as the primary
auditory cortex (Galaburda & Kemper, 1978;
Galaburda & Sanides, 1980). Abnormalities in the early
processing of incoming auditory stimuli affect subsequent
sensory perception and higher-order processing, such as
speech perception and acquisition (Kuhl, 2004). In a
functional MRI study of adults with ASD, increased
activity in the HG was observed in the ASD group in
response to temporally complex sounds, indicating a sen-
sitive perceptual feature of auditory processing in individ-
uals with ASD (Samson et al., 2011). A longitudinal
study of HG growth in individuals with ASD between
the ages of 3 and 12 years showed an atypical trajectory
of the right HG volume compared to the TDC group,
although there was no difference between the ASD and
TDC groups at any particular timepoint (Prigge
et al., 2013). Consequently, increased connectivity leads
to increased nodal strength and may affect the severity of
ASD, considering the significant positive correlation
between nodal strength and symptoms. We suggest that
accelerated connection primarily in the right HG, which
is important for early auditory processing, may prema-
turely hinder developmental opportunities to acquire
social skills and higher-order processing.

Similar to the HG findings, along with the increased
nodal strength and hyper-connectivity identified by NBS,
the second finding of a mid-level, but marginally significant
(r = 0.5241, p = 0.0544) positive relationship between the
nodal strength of the ITG and CARS total score suggests
that the ITG may reflect the behavioral and clinical symp-
toms of ASD. The ITG is involved in the ventral streams
of visual processing and plays a role in language and cogni-
tion through its connection with the rest of the cortical
area. The primary functions of the ITG in learning lan-
guage are visual stimulus processing and visual perception
at an early age, which are related to visual object recogni-
tion (Herath et al., 2001). In addition, this region is con-
nected with the long-range fiber of the inferior longitudinal
fasciculus and short-range arcuate fasciculus, which sup-
port visual and language comprehension (Yeatman
et al., 2012). Considering the importance of the ITG in lan-
guage acquisition, over-enhancement of the right network
efficiency in our study may partly explain the language dis-
order and social dysfunction, as well as the occurrence of
compensated development for poorly functioning

connectivity, in preschool-aged children with low-
functioning ASD. Cai et al. found an increased gray matter
volume in the ITG of patients with low-functioning ASD
compared to in TDC, possibly reflecting delayed language
development (Cai et al., 2018). Interestingly, previous stud-
ies (Kaldy et al., 2016; Plaisted et al., 1998) reported that
infants with ASD had faster visual reactions than controls
in a feature-conjunction task, as early as 2.5 years of age,
leading to abnormal visual explorative behavior and exag-
gerated discrimination. This compensatory mechanism,
with a skew towards visual processing, may be prioritized
in preschool-aged children with weak receptive language
skills, as they are unable to follow verbal instructions. Our
results can be extended in these earlier studies and are
supported by neuroimaging analysis using graph theory,
suggesting that preschool-aged children with low-
functioning ASD have an abnormal ITG with aberrant
connectivity compared to that in TDC.

However, we were not able to determine whether the
aberrant connectivity found in our study was related to
ASD symptoms or low IQ. Our results should be inter-
preted with caution, as this study did not include an IQ-
matched control group (IQ <70, but without ASD). Also,
there has been controversy about estimates from IQ scores
when assessing the functional abilities in preschool-aged
children with ASD (Alvares et al., 2020), as IQ scores alone
do not always correlate with functional ability in
preschool-aged children with ASD. However, the previ-
ously mentioned study by Cai et al. found increased gray
matter volume in low-functioning ASD as well as high-
functioning ASD, suggesting that this feature may be
implicated in the pathophysiology of ASD across the
autism spectrum at different IQ levels (Cai et al., 2018).
Another study including children with ASD with lower
functional ability and an IQ-matched control group also
observed right amygdala enlargement as a compensatory
response in ASD relative to controls was more pronounced
between 2 and 4 years of age (Mosconi et al., 2009). With
regards to the HG, previous studies have found positive
associations in ASD participants as a selective feature
(Prigge et al., 2013; Samson et al., 2011), but the relation-
ship with intellectual disability has not been reported,
suggesting that the connectivity of the HG may be a unique
finding, rather than primarily being affected by IQ level.
HG is associated with social attention and language devel-
opment in preschool-aged children with ASD. Impairments
in these functions may be considered the first behavioral
signs between 3 and 6 years of age. However, further stud-
ies on individuals with an IQ <70 without ASD as a con-
trol group are warranted to differentiate the effects of ASD
symptoms and IQ.

Altered cerebral lateralization in the ASD group

The rightward lateralization of the ITG in the ASD
group, relative to the TDC group, may be associated with
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the aberrant developmental trajectory of right hemi-
spheric dominance in ASD, contributing to communica-
tion problems in language processing. This rightward
lateralization in the temporal network supports the find-
ings of an earlier brain network study in children with
ASD (Conti et al., 2016), where the degree of rightward
lateralization in language-related networks positively cor-
related with the severity of ASD. An atypical lateraliza-
tion across the hemisphere in the cerebral cortex and
white matter was also reported in a previous longitudinal
study, which showed widespread rightward asymmetry in
an ASD group between the ages of 2 and 5 years (Fu
et al., 2020). These results explain the complexity of the
atypical lateralization observed in ASD, where the theory
of left hemisphere dysfunction is mostly related to the
social and communicative disturbances observed in ASD.
However, due to the sample size, we were unable to
obtain significant results from the correlation analysis
with clinical severity scores. It remains to be determined
at which age these atypical patterns of lateralization
occur, and particularly, if a reduced structural asymmetry
is present at birth, or rather develops over time as a com-
pensatory response to abnormal brain development. A
lack of maturation of the left-lateralized temporal cortex
may be an early biological sign of deficient response to
speech and language in preschool-aged children
with ASD.

Limitations

First, the number of subjects was insufficient; thus, the
results should be carefully interpreted. However, it
should be considered that data collection from a large
neuroimaging cohort of very young children is extremely
difficult. Second, DTI and deterministic tractography
have inherent limitations, including the issue of crossing
fibers. Other tracking methods, including probabilistic
tractography (Behrens et al., 2007) should be considered
in future research.

Conclusion

Our findings highlight the potential of graph theory-
based network characteristics and underlying structural
networks in preschool-aged children with low-functioning
ASD. Furthermore, increased connectivity in the right
HG and ITG in children with ASD may reflect impaired
social communication and disrupted interhemispheric
connections, supporting the theory of atypical develop-
ment of the right hemisphere at an early age in
preschool-aged children with low-functioning ASD.
These findings provide a structural foundation for a more
comprehensive understanding of neuropathological
abnormalities in children with ASD and may facilitate
early diagnosis and intervention based on relevant

neuroimaging biomarkers of clinical severity for
preschool-aged children with ASD.
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