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Abstract

We concern C2-compactness of the solution set of the boundary Yamabe problem on smooth compact Riemannian manifolds 
with boundary provided that their dimensions are 4, 5 or 6. By conducting a quantitative analysis of a linear equation associated 
with the problem, we prove that the trace-free second fundamental form must vanish at possible blow-up points of a sequence 
of blowing-up solutions. Applying this result and the positive mass theorem, we deduce the C2-compactness for all 4-manifolds 
(which may be non-umbilic). For the 5-dimensional case, we also establish that a sum of the second-order derivatives of the trace-
free second fundamental form is non-negative at possible blow-up points. We essentially use this fact to obtain the C2-compactness 
for all 5-manifolds. Finally, we show that the C2-compactness on 6-manifolds is true if the trace-free second fundamental form on 
the boundary never vanishes.
© 2021 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let (M, g) be an N -dimensional (N ≥ 3) smooth compact Riemannian manifold with boundary ∂M . Let also �g

be the Laplace-Beltrami operator on M , R[g] the scalar curvature on M , ν the inward normal vector to ∂M , and 
H [g] be the mean curvature of ∂M . In [22], Escobar asked if (M, g) can be conformally deformed to a scalar-flat 
manifold with boundary of constant mean curvature. This problem, which we will call the boundary Yamabe problem, 
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can be understood as a generalization of the Riemann mapping theorem and is equivalent to finding a positive smooth 
solution to a nonlinear boundary value problem with critical exponent{

LgU = 0 in M,

BgU = Q(M,∂M)U
N

N−2 on ∂M.
(1.1)

Here Lg is the conformal Laplacian and Bg is the associated conformal boundary operator defined as

Lg = −�g + N − 2

4(N − 1)
R[g] and Bg = − ∂

∂ν
+ N − 2

2
H [g],

and Q(M, ∂M) is a constant whose sign is determined by the conformal structure of M .
Weak solutions to (1.1) correspond to critical points of the functional

Q(U) =
∫
M

(|∇gU |2g + N−2
4(N−1)

R[g]U2)dvg + ∫
∂M

H [g]U2dvh

(
∫
∂M

|U | 2(N−1)
N−2 dvh)

N−2
N−1

defined for an element U in the Sobolev space H 1(M) with U �= 0 on ∂M , where ∇g represents the gradient on 
(M, g), h is the restriction of the metric g on ∂M , and dvg and dvh are the volume form on M and on ∂M , respectively. 
Escobar [22] proved that the Sobolev quotient

Q(M,∂M) = inf
{
Q(U) : U ∈ H 1(M), U �= 0 on ∂M

}
attains its minimizer if Q(M, ∂M) < Q(BN, ∂BN) where the unit ball BN = {x ∈ RN : |x| < 1} is endowed with the 
Euclidean metric. This is analogous to the observation of Aubin [7] for the classical Yamabe problem.

Thanks to the effort of several researchers, the existence of a solution to (1.1) is now well-established: Escobar 
[22,24], Marques [42,43], Almaraz [1] and Chen [12] found a minimizer of the functional Q for almost all manifolds. 
By applying the barycenter technique of Bahri and Coron, Mayer and Ndiaye [34] covered all the remaining cases. 
Regularity property of (1.1) was investigated by Cherrier [13].

Concerning multiplicity of solutions to (1.1), the only interesting case is when Q(M, ∂M) > 0. If Q(M, ∂M) < 0, 
the conformal covariance of the operators Lg and Bg shows that (1.1) has only one solution. If Q(M, ∂M) = 0, it is a 
linear equation and its solution is unique up to positive multiplicative constants. On the other hand, the case that M is 
conformally equivalent to the unit ball BN (so that Q(M, ∂M) = Q(BN, ∂BN) > 0) is special, and the solution set of 
(1.1) was completely classified thanks to the works of Escobar [21] and Li and Zhu [39]; see Subsection 2.2.

In about two decades, several results on C2(M)-compactness of the solution set of (1.1) appeared under the as-
sumption that Q(M, ∂M) > 0. Felli and Ould Ahmedou [25,26] deduced compactness results for locally conformally 
flat manifolds and 3-manifolds provided that their boundaries are umbilic. Very recently, the umbilicity condition was 
lifted for 3-manifolds by Almaraz et al. [5]. If the dimension N of the manifold M satisfies N ≥ 7 and the trace-free 
second-fundamental form on ∂M is nonzero everywhere, the result of Almaraz [2] shows that the C2(M)-compactness 
continues to hold. If either N > 8 and the Weyl tensor of M never vanishes on ∂M , or N = 8 and the Weyl tensor of 
∂M never vanishes on ∂M , the C2(M)-compactness is still true for manifolds M with umbilic boundary, as shown by 
Ghimenti and Micheletti [27].

Compactness results for other boundary Yamabe-type problems can be found in Han and Lin [30], Djadli et al. 
[17,18], Disconzi and Khuri [16], and so on. By using the compactness property, Cádenas and Sierra [11] yielded 
uniqueness of solutions to (1.1) for some manifolds whose metrics are non-degenerate.

As far as the authors know, compactness results on (1.1) have been known only for manifolds with boundary of 
dimension N = 3 or N ≥ 7, unless manifolds are locally conformally flat. The main purpose of this paper is to treat 
all manifolds with boundary of dimension N = 4 and 5, and generic manifolds with boundary of dimension N = 6.

Theorem 1.1. For N = 4, 5, 6, let (M, g) be an N -dimensional smooth compact Riemannian manifold with boundary 
∂M such that Q(M, ∂M) > 0 and M is not conformally equivalent to the unit ball BN . If N = 6, we also assume that 
the trace-free second-fundamental form never vanishes on ∂M . Then, for any ε0 > 0 small, there exists a constant 
C > 1 depending only on M, g and ε0 such that

C−1 ≤ U ≤ C on M and ‖U‖C2(M) ≤ C
1764
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for any solution U ∈ H 1(M) to{
LgU = 0 in M,

BgU = Q(M,∂M)Up on ∂M
(1.2)

with p ∈ [1 + ε0, N
N−2 ].

The transversality argument shows that if N ≥ 4, the set of metrics on M whose trace-free second fundamental 
form on ∂M vanishes nowhere is open and dense in the space of all Riemannian manifolds on M . This justifies the 
terminology ‘generic’ used above. Also, as can be observed in Theorem 1.1, we will deal with a slightly generalized 
equation (1.2) instead of (1.1).

Our strategy follows the argument in the lecture note [44] of Schoen where he raised the question of C2-
compactness of the solution set of the classical Yamabe problem and resolved it for locally conformally flat manifolds. 
It has been further developed by Li and Zhu [40], Druet [19], Marques [41], Li and Zhang [37,38] and Khuri et al. 
[31]. Furthermore, Li [35] and Li and Xiong [36] studied compactness results of the Q-curvature problem, which is 
the fourth-order analogue of the Yamabe problem.

Once Theorem 1.1 is established, one can deduce the existence of a solution to (1.1) by applying the standard 
Leray-Schauder degree argument as in [25,30]. There also should exist the strong Morse inequality in our framework 
as in [31, Theorem 1.4].

We leave two more remarks for the theorem.

Remark 1.2. The key idea of our main theorem is to perform a fine analysis of associated linearized equations with 
(1.2) in proving that the trace-free second fundamental form must vanish at possible blow-up points of a sequence 
of blowing-up solutions. Interestingly, this process is somehow related to the way that Marques [43] constructed test 
functions in his existence theorem for (1.1) on low-dimensional manifolds with non-umbilic boundary. Indeed, his test 
functions consist of not only truncated bubbles but also some additive correction terms. This is a distinctive feature of 
the boundary Yamabe problem compared with the classical one.

Our argument can be further applied in the following settings.

(1) Based on the existence results of Marques [42] and Almaraz [1] for (1.1) on manifolds with umbilic boundary, 
we expect that one can lower the threshold dimension 8 in the aforementioned compactness theorem of Ghimenti 
and Micheletti [27] to 6.

(2) As a matter of fact, the boundary Yamabe problem can be seen as the special case of the fractional Yamabe prob-
lem where the symbol of the differential operator is the same as that of the half-Laplacian. In [33], we proved that 
the solution set of the fractional Yamabe problem is C2-compact on conformal infinities of asymptotically hyper-
bolic manifolds, under the assumptions that the dimension is sufficiently high and the second-fundamental form 
never vanishes. In view of our existence result [32], we expect that the compactness result holds for conformal 
infinities of dimension ≥ 4 as far as the same geometric condition is maintained.

(3) To examine stability issue under small perturbation of (1.1), Ghimenti et al. [28,29] constructed blowing-up 
solutions when the linear perturbation of the mean curvature on the boundary is strictly positive everywhere; see 
also Deng et al. [15] where analogous results were derived in the setting of the fractional Yamabe problem. In 
building suitable approximation solutions, they had to analyze an associated linearized equation with (1.1) which 
is essentially the same as ours. Due to this reason, their results require some dimensional assumptions. Our method 
can allow one to treat lower-dimensional cases.

Remark 1.3. The proof of the main theorem shows that remarkable phenomena happen on 5-manifolds (M, g) with 
boundary.

(1) Given a point y0 ∈ M , let Gy0 be the Green’s function defined in (7.1). In Lemma 2.4 and the first paragraph of 

Section 7, we construct an asymptotically flat manifold (M \ {y0}, G
4

N−2
y0 g), which we call a conformal blow-up 
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of (M, g). Corollary 7.4 reveals that its mass is involved with not only the Green’s function Gy0 but also the trace-
free second fundamental form on the boundary ∂M . Therefore, the mass carries global and local information 
simultaneously. This is in striking contrast with manifolds without boundary in that the mass of their conformal 
blow-ups depends only on the Green’s function, namely, global information.

(2) In Subsection 5.2, we will see that the sign of the local information of mass is encoded in the ε3| log ε|-order of 
the expansion of a local Pohozaev identity (2.9) with respect to a small scaling parameter ε > 0. This is totally 
different from the classical Yamabe problem. In the classical one, the order involving the logarithm contains 
meaningful geometric information only if the manifold is even-dimensional.

In [3], Almaraz constructed manifolds with umbilic boundary of dimension N ≥ 25 on which the solution set of 
(1.1) is L∞-unbounded (in particular, C2-noncompact). In view of the full compactness result of Khuri et al. [31] and 
the non-compactness results of Brendle [8] and Brendle and Marques [10] for the classical Yamabe problem, a natural 
expectation is that the solution set of (1.1) is C2-compact for all manifolds with boundary of dimension N ≤ 24 under 
the validity of the positive mass theorem. However, although Schoen’s argument in [44] works in principle and we 
develop several efficient methods for the boundary Yamabe problem in this paper, fully achieving this seems still a 
difficult task.

To establish the C2-compactness result for general manifolds of high dimension, we must prove that the trace-less 
second fundamental form and the Weyl tensor vanish up to some high order at each blow-up point. This requires a very 
accurate pointwise estimate of blowing-up solutions, which can be achieved only if one has a good understanding of 
linearized equations. In the analysis on the classical Yamabe problem, Khuri et al. [31] observed that solutions of their 
linearized problems can be written explicitly in the form of rational functions. Unfortunately, the boundary Yamabe 
problem seems not to have a similar property.

On the other hand, we may also need a quite precise control of the Green’s function G of the conformal Laplacian 
with Neumann boundary condition; see (7.1) of its definition. In our analysis, we only need a rough control of G
(described in Lemma 2.4) as in the proof of the compactness theorem for 3-dimensional manifolds [5].

The rest of the paper is organized as follows:

- In Section 2, we recall some analytic and geometric tools which we need throughout the proof of Theorem 1.1. 
These include the expansion of the metric in Fermi coordinates, definition of the bubbles, a local Pohozaev’s 
identity and the positive mass theorem on asymptotically flat manifolds with boundary.

- In Section 3, we characterize blow-up points of solutions to (1.2) and provide basic qualitative properties of 
solutions near blow-up points.

- In Section 4, we study a linearized equation associated with (1.2) arising from the first-order expansion of the 
metric. In order to treat low-dimensional manifolds, we need to understand its solution more precisely than higher-
dimensional cases. For this aim, we decompose the solution into two pieces and analyze them quantitatively. This 
is one of the key parts of the proof. We also perform a refined blow-up analysis.

- In Section 5, we carry out the proof of the vanishing theorem of the trace-free second fundamental form at any 
isolated simple blow-up point. For 5-manifolds, we also establish that a sum of the second-order derivatives of 
the trace-free second fundamental form is non-negative at each isolated simple blow-up point. These results are 
based on the quantitative analysis of the linearized equation conducted in the previous section.

- In Section 6, employing the vanishing theorem, we prove a local Pohozaev sign condition that guarantees that 
every blow-up point is isolated simple.

- In Section 7, by applying the positive mass theorem, we conclude that the solution set of (1.2) is C2-compact for 
every 4- and 5-manifold unless it is conformally equivalent to the unit ball. For 6-manifolds, we also show that the 
C2-compactness of the solution set holds provided that the trace-free second fundamental form on the boundary 
never vanishes.

- In Appendix A, we provide technical arguments regarding the two pieces of the solutions to the linearized equation 
to (1.2).

To elucidate our method, we will omit most of the proofs of intermediate results which closely follow the correspond-
ing ones in similar settings, leaving appropriate references instead.
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Notations.

- Let n = N − 1. Moreover, for any x ∈ RN+ = {(x1, · · · , xn, xN) ∈ RN : xN > 0}, we denote x̄ = (x1, · · · , xn) ∈ Rn. 
We often identify x̄ ∈ Rn and (x̄, 0) ∈ ∂RN+ .

- We will sometimes use ∂a = ∂
∂xa

, ∂ab = ∂2

∂xa∂xb
, etc.

- Given x ∈ RN+ , x̄ ∈ Rn and r > 0, let BN+ (x, r) be the N -dimensional upper half-ball centered at x of radius r , and 
Bn(x̄, r) the n-dimensional ball centered at x̄ of radius r . We often identify Bn(x̄, r) and ∂BN+ ((x̄, 0), r) ∩ ∂RN+ . Set 
∂IB

N+ ((x̄, 0), r) = ∂BN+ ((x̄, 0), r) ∩RN+ .

- S represents a surface measure. Its subscript x or x̄ denotes the dependent variables.

- D1,2(RN+) is the homogeneous Sobolev space in RN+ defined as

D1,2(RN+) =
{
U ∈ L

2N
N−2 (RN+) : ∇U ∈ L2(RN+)

}
.

- |Sn−1| is the surface area of the unit (n − 1)-sphere Sn−1.

- The metric h on the boundary ∂M of the Riemannian manifold (M, g) is the restriction of the metric g to ∂M .

- For any y ∈ ∂M and r > 0 small, Bg(y, r) and Bh(y, r) stand for the geodesic half-ball on (M, g) and the geodesic 
ball on (∂M, h), respectively. Also, dg is the distance function on (M, g).

- The Einstein summation convention for repeated indices is adopted throughout the paper. Unless otherwise stated, 
the indices i, j , k and l always range over values from 1 to n, while a, b, c and d take values from 1 to N . Also, δab

is the Kronecker delta.

- We denote by Rabcd [g] the full Riemannian curvature tensor on (M, g), by Rab[g] the Ricci curvature tensor on M , 
and by R[g] the scalar curvature on M . The quantities Rijkl[h], Rij [h] and R[h] are the corresponding curvatures 
defined on the boundary (∂M, h).

- We write by II[g] the second fundamental form of ∂M , by H [g] = 1
n
hij IIij [g] the mean curvature on ∂M , and by 

π[g] = II[g] −Hg the trace-free second fundamental form of ∂M . Furthermore, ‖π[g]‖2 = hikhjlπij [g]πkl[g] stands 
for the square of its norm.

- For an r-tensor T , we write

Symi1···ir Ti1···ir = 1

r!
∑
σ∈Sr

Tiσ(1)···iσ (r)

where Sr is the symmetric group over a set of r symbols.

- For a multi-index α = (α1, · · · , αn) ∈ (N ∪ {0})n,

|α| =
n∑

i=1

αi, α! =
n∏

i=1

αi ! and
∂

∂xα

= ∂α1

∂x
α1
1

· · · ∂αn

∂x
αn
n

. (1.3)

β , β ′ and β ′′ also denote multi-indices.

- The letter C denotes a generic positive constant that may vary from line to line.

2. Preliminaries

2.1. Metric expansion and conformal Fermi coordinates

Fix a point y∗ ∈ ∂M . For any y ∈ ∂M near y∗, let x̄ = (x1, · · · , xn) ∈ Rn be normal coordinates on ∂M (centered 
at y∗) of y. Denote by ν(y) the inward normal vector to ∂M at y. We say that x = (x̄, xN) ∈ RN+ are Fermi coordinates 
on M (centered at y∗) of the point expy(xNν(x)) ∈ M .

In Lemma 2.2 of Marques [42], the following expansion of the metric g near y∗ was given.
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Lemma 2.1. In Fermi coordinates centered at y∗ ∈ M , it holds that

gij (x) = δij + Aij (x) + O(|x|4),
giN (x) = 0 and gNN(x) = 1, where

Aij (x) = −2IIij [g]xN − 1

3
Rikjl[h]xkxl − 2IIij,k[g]xkxN + (−RiNjN [g] + IIis[g]IIsj [g])x2

N

− 1

6
Rikjl,m[h]xkxlxm +

(
−IIij,kl[g] + 2

3
Symij (Riksl[h]IIsj [g])

)
xkxlxN

+ (−RiNjN,k[g] + 2Symij (IIis,k[g]IIsj [g]))xkx
2
N

+ 1

6

(−2RiNjN,N [g] + 8Symij (IIis[g]RjNsN [g]))x3
N.

Every tensor in the expansion is evaluated at y∗ and commas denote covariant differentiation.

The next lemma describes the existence of conformal Fermi coordinates. Refer to Propositions 3.1 and 3.2 of [42].

Lemma 2.2. For a given point y∗ ∈ M and an integer κ ≥ 2, there exists a metric g̃ on M conformal to g such that

det g̃(x) = 1 + O(|x|κ ) (2.1)

in g̃-Fermi coordinates centered at y∗. In particular,

H [g] = H,i[g] = Rij [h] = 0 and RNN [g] = −‖π[g]‖2 at y∗. (2.2)

Moreover, g̃ can be written as g̃ = ω
4

N−2 g for some positive smooth function w on ∂M such that w(y∗) = 1 and 
∇w(y∗) = 0.

2.2. Bubbles in the Euclidean half-space

Assume that N ≥ 3. For λ > 0 and ξ ∈ Rn, let a bubble Wλ,ξ be a function defined as

Wλ,ξ (x) = λ
N−2

2

(|x̄ − ξ |2 + (xN + λ)2)
N−2

2

for x ∈RN+ , (2.3)

which is an extremal function of the Sobolev trace inequality D1,2(RN+) ↪→ L
2(N−1)
N−2 (Rn); see Escobar [20]. According 

to Li and Zhu [39], any solution to the boundary Yamabe problem on RN+⎧⎪⎪⎨⎪⎪⎩
−�U = 0 in RN+ ,

U > 0 in RN+ ,

− ∂U

∂xN

= (N − 2)U
N

N−2 on Rn

(2.4)

must be a bubble. Note that a sequence {W 1
n
,0}n∈N of bubbles exhibits a blow-up phenomenon as n → ∞, and in 

particular, the family of all bubbles is not L∞(RN+)-bounded. Furthermore, Dávila et al. [14] proved that the solution 
space of the linear problem⎧⎪⎪⎨⎪⎪⎩

−�� = 0 in RN+ ,

− ∂�

∂xN

= Nw
2

N−2
λ,ξ � on Rn,

‖�(·,0)‖L∞(Rn) < ∞,

where wλ,ξ (x̄) = Wλ,ξ (x̄, 0) on Rn, is spanned by

Z1
λ,ξ = ∂Wλ,ξ

∂ξ1
, · · · , Zn

λ,ξ = ∂Wλ,ξ

∂ξn

and Z0
λ,ξ = −∂Wλ,ξ

∂λ
;

refer also to Lemma 2.1 of [2].
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2.3. Conformally invariant equations

Let δ = N
N−2 − p ≥ 0. It turns out that it is more convenient to deal with the following form of the equation{

LgU = 0 on M,

BgU = (N − 2)f −δUp on ∂M
(2.5)

than (1.2). Indeed, by the conformal covariance property of the operators Lg and Bg , the metric g̃ = ω
4

N−2 g conformal 
to g and the function Ũ = ω−1U > 0 on M satisfy{

Lg̃Ũ = 0 on M,

Bg̃Ũ = (N − 2)f̃ −δŨp on ∂M
(2.6)

where f̃ = ωf . Obviously, it is an equation of the same type as (2.5).
We will study a sequence {Um}m∈N of solutions to (2.5) with suitable choices of exponents p = pm ∈ [1 +ε0, N

N−2 ]
and δ = δm = N

N−2 −pm, metrics g = gm on M and smooth positive functions f = fm on ∂M . Although we postpone 
their specific description to Section 3, we stress that our choices will induce that pm → p0, gm → g0 in C4(M, RN×N)

and fm → f0 > 0 in C2(∂M) as m → ∞, and g0 is a metric on M .

2.4. Pohozaev’s identity

In the analysis of blowing-up solutions, we shall rely on the following version of local Pohozaev’s identity. For its 
derivation, see Proposition 3.1 of [2].

Lemma 2.3. Assume that N ≥ 3. Let U ∈ H 1(BN+ (0, ρ1)) be a solution to⎧⎨⎩−�U = Q in BN+ (0, ρ1),

− ∂U

∂xN

+ N − 2

2
HU = f Up on Bn(0, ρ1)

where p ∈ [1, N
N−2 ], Q ∈ L∞(BN+ (0, ρ1)) and H, f ∈ C1(Bn(0, ρ1)). For any ρ ∈ (0, ρ1), we define

P ′(U,ρ) =
∫

∂I BN+ (0,ρ)

[
−
(

N − 2

2

)
U

∂U

∂ν
− ρ

2
|∇U |2 + ρ

∣∣∣∣∂U

∂ν

∣∣∣∣2
]

dSx (2.7)

and

P(U,ρ) = P ′(U,ρ) + ρ

p + 1

∫
∂Bn(0,ρ)

f Up+1dSx̄ (2.8)

where ν is the inward unit normal vector with respect to ∂IB
N+ (0, ρ). Then we have

P(U,ρ) = −
∫

BN+ (0,ρ)

Q

[
xa∂aU +

(
N − 2

2

)
U

]
dx

+ N − 2

2

∫
Bn(0,ρ)

H

[
xi∂iU +

(
N − 2

2

)
U

]
Udx̄

− 1

p + 1

∫
Bn(0,ρ)

xi∂if Up+1dx̄ +
(

N − 1

p + 1
− N − 2

2

) ∫
Bn(0,ρ)

f Up+1dx̄

(2.9)

for all ρ ∈ (0, ρ1).
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2.5. Positive mass theorem

In [4], Almaraz et al. introduced the mass of N -dimensional asymptotically flat manifolds with non-compact 
boundary and proved the associated positive mass theorem for arbitrary manifolds of dimension 3 ≤ N ≤ 7 and 
spin manifolds of dimension N ≥ 3. In [5], Almaraz et al. used the positive mass theorem to describe the asymptotic 
behavior of the Green’s function of the conformal Laplacian on a smooth compact Riemannian manifold (M, g) with 
boundary in terms of the mass.

The version of the positive mass theorem which we will apply in this paper is summarized in the following lemma. 
This is a combination of Theorem 1.3 of [4] and Proposition 3.5 of [5].

Lemma 2.4. For 3 ≤ N ≤ 7, let (M, g) be an N -dimensional smooth compact Riemannian manifold with boundary, 
and y0 be an arbitrarily fixed point on M . Suppose that we have the metric expansion

gab(x) = δab + Aab(x) + O(|x|2d+2), d =
⌊

N − 2

2

⌋
(2.10)

with

AiN(x) = ANN(x) = 0, Aij (x) = O(|x|d+1), trace(A(x)) = O(|x|2d+2) (2.11)

in Fermi coordinates centered at y0. Assume also that G is a smooth positive function on M \ {y0} such that

G(x) = |x|2−N + φ(x) (2.12)

in the same coordinates, where φ is a smooth function on M \ {y0} satisfying

φ(x) = O(|x|d+3−N | log |x||) as |x| → 0. (2.13)

Let

I(y0, ρ) = 4(N − 1)

N − 2

∫
∂I BN+ (0,ρ)

(
|x|2−N∂aG(x) − ∂a|x|2−NG(x)

) xa

|x| dSx

−
∫

∂I BN+ (0,ρ)

(
ρ3−2Nxa∂bAab(x) − 2Nρ1−2NxaxbAab(x)

)
dSx.

(2.14)

If

R
[
G

4
N−2 g

]≥ 0 on M \ {y0} and H
[
G

4
N−2 g

]≥ 0 on ∂M \ {y0}, (2.15)

then the manifold (M \ {y0}, G 4
N−2 g) is asymptotically flat with the mass

m0 = lim
ρ→0

I(y0, ρ) ≥ 0. (2.16)

Furthermore, m0 > 0 provided that (2.15) holds and M is not conformally equivalent to the standard unit ball in RN .

The integral expression I for the mass was introduced by Brendle and Chen [9]. In Lemma 7.3, we will examine 
the relationship between the integral I and the function P ′ defined in (2.7), after choosing the function G concretely.

3. Basic properties of blow-up

3.1. Characterization of blow-up points

We recall the notion of blow-up, isolated blow-up and isolated simple blow-up. By virtue of Proposition 3.2, it is 
enough to consider when the blow-up occurs near a point on the boundary. The version we will use here is identical 
to those in [2,5].
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Definition 3.1. Pick a small number ρ1 > 0 such that gm-Fermi coordinates centered at y ∈ ∂M is well-defined in the 
closed geodesic half-ball BN+ (y,ρ1) ⊂ M for every m ∈N and y ∈ ∂M .

(1) y0 ∈ ∂M is called a blow-up point of a sequence {Um}m∈N in H 1(M) if there exists a sequence of points 
{ym}m∈N ⊂ ∂M such that ym is a local maximum of Um|∂M satisfying that Um(ym) → ∞ and ym → y0 as m → ∞. 
For the sake of brevity, we will often say that ym → y0 is a blow-up point of {Um}m∈N .

(2) y0 ∈ ∂M is an isolated blow-up point of {Um}m∈N if y0 is a blow-up point such that

Um(y) ≤ Cdgm(y, ym)
− 1

pm−1 for any y ∈ M \ {ym}, dgm(y, ym) < ρ2

for some C > 0 and ρ2 ∈ (0, ρ1].
(3) Let Um be a weighted spherical average of Um, i.e.,

Um(ρ) = ρ
1

pm−1

(∫
∂I BN+ (ym,ρ)

Um dSgm∫
∂I BN+ (ym,ρ)

dSgm

)
, ρ ∈ (0, ρ1). (3.1)

We say that an isolated blow-up point y0 of {Um}m∈N is simple if there exists a number ρ3 ∈ (0, ρ2] such that Um

possesses exactly one critical point in the interval (0, ρ3) for large m ∈N .

Hereafter, we always assume that Um ∈ H 1(M) is a solution to (2.5) with p = pm, g = gm and fm = 1 for each 
m ∈ N . For simplicity, we will just say that {Um}m∈N is a sequence of solutions to (2.5). We also assume that ym →
y0 ∈ ∂M is a blow-up point of {Um}m∈N . Set Mm = Um(ym) and εm = M

−(pm−1)
m for each m ∈N . Obviously, Mm →

∞ and εm → 0 as m → ∞.

Choose a suitable positive smooth function ωm on M so that the metric g̃m = ω
4

N−2
m gm on M satisfies properties 

depicted in Lemma 2.2 where y∗ is replaced with ym. Then Ũm = ω−1
m Um is a solution to (2.6) with g̃ = g̃m and 

f̃ = f̃m = ωmfm, and a sequence {g̃m}m∈N of the metrics converges to a metric g̃0 in C4(M, RN×N) as m → ∞. We 
shall often use x ∈RN+ to denote g̃m-Fermi coordinates centered at ym so that Ũm can be regarded as a function in RN+
near the origin.

3.2. Basic properties of blowing-up solutions

Firstly, we study asymptotic behavior of a sequence {Um}m∈N of solutions to (2.5) near blow-up points. It can be 
proved as in e.g. Proposition 1.1 of [30] or Proposition 3.2 of [25].

Proposition 3.2. Assume that N ≥ 3 and p ∈ [1 + ε0, N
N−2 ]. Given arbitrary small ε1 > 0 and large R > 0, there are 

constants C0, C1 > 0 depending only on (MN, g), ε0, ε1 and R such that if U ∈ H 1(M) is a solution to (1.2) with 
the property that maxM U ≥ C0, then N

N−2 − p < ε1 and U |∂M possesses local maxima y01, · · ·y0N ∈ ∂M for some 
integer N = N (U) ≥ 1, for which the following statements hold:

(1) It is valid that

Bh(y0m1, ρm1) ∩ Bh(y0m2, ρm2) = ∅ for 1 ≤ m1 �= m2 ≤N

where ρm = RU(y0m)−(p−1).

(2) For each m = 1, · · · , N , we have∥∥∥U(y0m)−1U
(
U(y0m)−(p−1)·

)
− W1,0

∥∥∥
C2(BN+ (0,2R))

≤ ε1

in g-Fermi coordinates centered in ym.

(3) It holds that

U(y)dh(y, {y01, · · · , y0N }) 1
p−1 ≤ C1 for y ∈ M.
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Secondly, we discuss behavior of a sequence of solutions {Um}m∈N to (2.5) near isolated blow-up points. The next 
lemma can be proved as in e.g. Proposition 1.4 of [30] or Lemma 2.6 of [25].

Lemma 3.3. Let ym → y0 ∈ ∂M be an isolated blow-up point of a sequence {Um}m∈N of solutions to (2.5). In ad-
dition, suppose that {Rm}m∈N and {τm}m∈N are arbitrary sequences of positive numbers such that Rm → ∞ and 
τm → 0 as m → ∞. Then pm → N

N−2 as m → ∞, and {U�}�∈N and {p�}�∈N have subsequences {U�m}m∈N and 
{p�m}m∈N such that∥∥∥∥∥ε

1
p�m

−1

�m
U�m

(
ε�m ·)− W1,0

∥∥∥∥∥
C2(BN+ (0,Rm))

≤ τm (3.2)

in gm-Fermi coordinates centered in ym and Rmε�m → 0 as m → ∞.

Therefore, we can select {Rm}m∈N and {U�m}m∈N satisfying (3.2) and Rmε�m → 0. In order to simplify notations, 
we will use {Um}m∈N instead of {U�m}m∈N , and so on.

The following result is a simple consequence of Lemma 3.3 with the selection τm = 1
2w1,0(Rm). Its proof is given 

in Corollary 3.6 of [33].

Corollary 3.4. Suppose that ym → y0 ∈ ∂M is an isolated blow-up point of a sequence {Um}m∈N of solutions to (2.5).

(1) If {Ũm}m∈N is a sequence of solutions to (2.6) constructed as in Subsection 3.1, then ym → y0 ∈ ∂M is an isolated 
blow-up point of {Ũm}m∈N .

(2) The function Um in (3.1) has exactly one critical point in the interval (0, Rmεm) for large m ∈ N . In particu-
lar, if the isolated blow-up point y0 ∈ ∂M of {Um}m∈N is also simple, then U

′
m(r) < 0 for all r ∈ [Rmεm, r3); see 

Definition 3.1 (3).

Thirdly, we examine how a sequence {Um}m∈N of solutions to (2.5) behaves near isolated simple blow-up points. 
See Proposition 4.3 of [2] for its proof.

Proposition 3.5. Assume that N ≥ 3 and ym → y0 ∈ ∂M is an isolated simple blow-up point of a sequence {Um}m∈N
of solutions to (2.5), and {Ũm}m∈N is a sequence of solutions to (2.6) constructed as in Subsection 3.1. Then there 
exists C > 0 and ρ4 ∈ (0, ρ3) independent of m ∈N such that

Mm

∣∣∣∇�Ũm(x)

∣∣∣≤ C|x|−(N−2+�) in
{
x ∈RN+ : 0 < |x| ≤ ρ4

}
(3.3)

for � = 0, 1, 2 and

MmŨm(x) ≥ C−1Gm(x) in
{
x ∈RN+ : Rmεm ≤ |x| ≤ ρ4

}
in g̃m-Fermi coordinate system centered at ym. Here, Gm is the Green’s function satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩

LgmGm = 0 in BN+ (0, ρ4),

BgmGm = δ0 on Bn(0, ρ4),

Gm = 0 on ∂IB
N+ (0, ρ4),

lim|x|→0 |x|N−2Gm(x) = 1,

and δ0 is the Dirac measure centered at 0 ∈RN+ . Also,

Mδm
m = M

N
N−2 −pm

m → 1 as m → ∞. (3.4)
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4. Linear problems and refined blow-up analysis

4.1. Linear problems

In this subsection, we study the linear problem⎧⎨⎩−�� = 2επij xN∂ijW1,0 in RN+ = Rn × (0,∞),

− lim
xN→0

∂�

∂xN

= Nw
2

N−2
1,0 � on Rn,

(4.1)

which arises from the first-order expansion of the metric on M ; see Lemma 2.1. Here, ε > 0 is a small parameter, 
W1,0 is the function defined in (2.3), w1,0(x̄) = W1,0(x̄, 0) for x̄ ∈ Rn, and π is a trace-free symmetric 2-tensor (that 
is, n × n-matrices).

Proposition 4.1. Suppose that N ≥ 3. There exists a smooth solution � to (4.1) and a constant C > 0 depending only 
on N such that∣∣∣∇��(x)

∣∣∣≤ Cε

(
max

i,j=1,··· ,n |πij |
)

1

1 + |x|N−3+�
in RN+ (4.2)

for any � ∈N ∪ {0},
�(0) = ∂�

∂x1
(0) = · · · = ∂�

∂xn

(0) = 0 and
∫
Rn

w
N

N−2
1,0 �dx̄ = 0. (4.3)

Proof. Pick a smooth function χ : [0, ∞) → [0, 1] such that χ(t) = 1 on [0, 1] and 0 in [2, ∞). Set also χ�(t) =
χ( t

�
) for any � > 0. In Proposition 5.1 of [2], it was proved that for each � > 0, there exists a smooth function ��

to ⎧⎨⎩−�� = 2επijχ�(|x|)xN∂ijW1,0 in RN+ ,

− lim
xN→0

∂�

∂xN

= Nw
2

N−2
1,0 � on Rn

(4.4)

satisfying (4.2)-(4.3) for some constant C > 0 depending only on N (thereby being independent of � > 0).
Now, we choose a sequence {�m}m∈N of positive increasing numbers which diverges to ∞. By the standard elliptic 

estimates, we may assume that the sequence {��m}m∈N of solutions to (4.4) with � = �m converges to a smooth 

solution � to (4.1) in C2
loc(R

N+). In particular, � satisfies (4.2)-(4.3). �
Remark 4.2. If N ≥ 5, we infer from (4.2) that � ∈ D1,2(RN+). In this case, one can argue as in Proposition 4.1 of 
[33] to deduce the above proposition. Also, (4.1), (4.3) and the condition trace(π) = 0 imply∫

RN+

∇� · ∇W1,0dx = 0.

For a better understanding of the function �, we decompose it into two pieces: The first part � is a rational 
function with parameters a1, a2 ∈ R whose Laplacian is the same as that of � in RN+ , whose precise form is given 
in Lemma 4.3. The second part � is a harmonic function with prescribed boundary condition, which is described in 
Lemma 4.5. The proof of the lemmas are postponed until Appendix A.

Lemma 4.3. Suppose that N ≥ 4. Given any a1, a2 ∈ R, let

�(x) = επij xixj

(|x̄|2 + (xN + 1)2)
N
2

[(
N − 2

2

)
(xN − 1) + a1(xN + 1)

(|x̄|2 + (xN + 1)2)2 + a2

|x̄|2 + (xN + 1)2

]
(4.5)

in RN+ . Then it is a solution of

−�� = 2επij xN∂ijW1,0 in RN+ . (4.6)
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Remark 4.4. The function � in (4.5) and the correction term ψε defined in Page 387 of Marques [43] share a similar 
pointwise behavior. However, � have two degrees of freedom on the coefficients, while ψε has only one.

Lemma 4.5. Suppose that N ≥ 4. The function � = � − � satisfies⎧⎨⎩−�� = 0 in RN+ ,

− lim
xN→0

∂�

∂xN

= Nw
2

N−2
1,0 � + q on Rn

(4.7)

where

q(x̄) = επij xixj

(|x̄|2 + 1)
N
2

[
N − 2

2
+ a1

{
1

(|x̄|2 + 1)2 − 4

(|x̄|2 + 1)3

}
− 2a2

(|x̄|2 + 1)2

]
(4.8)

on Rn.

We prove an auxiliary lemma that comes from the mountain pass structure of the boundary Yamabe problem in 
RN+ . It will be used in the proof of Proposition 5.1 for N = 5 and 6.

Lemma 4.6. For N ≥ 5, it holds that � ∈ D1,2(RN+) and∫
RN+

|∇�|2dx − N

∫
Rn

w
2

N−2
1,0 �2dx̄ ≥ 0. (4.9)

Proof. By (4.2) and (4.5), we readily observe that � ∈ D1,2(RN+).
Testing � in (2.4) and W1,0 in (4.7) gives

(N − 2)

∫
Rn

w
N

N−2
1,0 �dx̄ =

∫
RN+

∇� · ∇W1,0dx

= N

∫
Rn

w
N

N−2
1,0 �dx̄ +

∫
Rn

qw1,0dx̄ = N

∫
Rn

w
N

N−2
1,0 �dx̄

where the last equality holds owing to the condition that trace(π) = 0. Thus∫
RN+

∇� · ∇W1,0dx =
∫
Rn

w
N

N−2
1,0 �dx̄ = 0. (4.10)

One can now argue as in the proof of Lemma 4.5 of [15] to deduce the validity of (4.9). Here we provide a more direct 
proof.

Define the energy functional J of (2.4) as

J (U) = 1

2

∫
RN+

|∇U |2dx − (N − 2)2

2(N − 1)

∫
Rn

U
2(N−1)
N−2+ dx̄ for U ∈ D1,2(RN+)

and the Nehari manifold M associated with J as

M =

⎧⎪⎪⎨⎪⎪⎩U ∈ D1,2(RN+) \ {0} :
∫
RN+

|∇U |2dx = (N − 2)

∫
Rn

U
2(N−1)
N−2+ dx̄

⎫⎪⎪⎬⎪⎪⎭
where U+ = max{U, 0}. Then J is a functional of class C2, M is a C1-Hilbert manifold and W1,0 ∈ M. Moreover, 
the tangent space TW1,0M of M at W1,0 is
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TW1,0M =

⎧⎪⎪⎨⎪⎪⎩U ∈ D1,2(RN+) :
∫
RN+

∇W1,0 · ∇Udx = (N − 1)

∫
Rn

w
N

N−2
1,0 Udx̄

⎫⎪⎪⎬⎪⎪⎭ .

In particular, (4.10) implies that � ∈ TW1,0M. By Theorem 1.1 of [20], W1,0 is a minimizer of J in M. Therefore

0 ≤ d2J (W1,0 + ε�)

dε2

∣∣∣∣
ε=0

=
∫
RN+

|∇�|2dx − N

∫
Rn

w
2

N−2
1,0 �2dx̄,

which is (4.9). �
4.2. Refined blow-up analysis

By using Proposition 4.1, we can analyze the εm-order behavior of a sequence {Um}m∈N of solutions to (2.5) near 
isolated simple blow-up points. Owing to Corollary 3.4 (i) and Lemma 2.2, ym → y0 is an isolated blow-up point of 
a sequence {Ũm}m∈N of solutions to (2.6) constructed in Subsection 3.1, and Mm = Ũm(ym).

Proposition 4.7. Suppose that N ≥ 4 and ym → y0 ∈ ∂M is an isolated simple blow-up point of {Um}m∈N . Let �m

be the solution of (4.1) with ε = εm and π = π[g̃m](ym), and

Ṽm(x) = ε
1

pm−1
m Ũm (εmx) in BN+ (0, ρ4ε

−1
m ). (4.11)

Then there exists C > 0 and ρ5 ∈ (0, ρ4] independent of m ∈N such that∣∣∣∇�
x̄ Ṽm − ∇�

x̄(W1,0 + �m)

∣∣∣ (x) ≤ Cε2
m

1 + |x|N−4+�
in BN+ (0, ρ5ε

−1
m ) (4.12)

for � = 0, 1, 2.

For N ≥ 5, the proposition was proved in Proposition 6.1 of [2] and Proposition 4.2 of [33]. Also, a slight modifica-
tion of the arguments in [2,33] shows that it also holds for N = 4. Check Proposition 5.3 of [5] where its 3-dimensional 
version was derived.

5. Quantitative analysis on the trace-free second fundamental form

5.1. Vanishing theorem of the trace-free second fundamental form

In the next proposition, we prove that the trace-free second fundamental form must vanish at each isolated simple 
blow-up point of blowing-up solutions when N = 4, 5, 6. An analogous result for N ≥ 7 can be found in Theorem 7.1 
of [2].

Proposition 5.1. Suppose that N = 4, 5, 6 and ym → y0 ∈ ∂M is an isolated simple blow-up point of the sequence 
{Um}m∈N of the solutions to (2.5). If {g̃m}m∈N is a sequence of the metrics constructed in Subsection 3.1, then there 
exists C > 0 independent of m ∈N such that

‖π[g̃m](ym)‖2 ≤

⎧⎪⎪⎨⎪⎪⎩
C

| log εm| for N = 4,

Cεm| log εm| for N = 5,

Cεm for N = 6.

(5.1)

Particularly, π[g̃0](y0) = 0.
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Let {Ũm}m∈N be a sequence of solutions to (2.6) depicted in Subsection 3.1. By appealing g̃m-Fermi coordinates 
on M centered at ym, we regard Ũm as a function defined near 0 ∈RN+ . For brevity, we write πm = π[g̃m](ym) for all 
m ∈ N .

Denoting ĝm = g̃m(εm·) and f̂m = f̃m(εm·), we see from (2.6) that the function Ṽm introduced in (4.11) solves⎧⎪⎪⎨⎪⎪⎩
−�Ṽm = −

[
N − 2

4(N − 1)

]
ε2
mR[g̃m](εm·)Ṽm + (�ĝm

− �)Ṽm in BN+ (0, ρ5ε
−1
m ),

−∂Ṽm

∂xN

+
[

N − 2

2

]
εmH [g̃m](εm·)Ṽm = (N − 2)f̂

−δm
m Ṽ

pm
m on Bn(0, ρ5ε

−1
m ).

Thus, employing Pohozaev’s identity (2.9), one can write

P
(
Ṽm,ρε−1

m

)
= P1m

(
Ṽm,ρε−1

m

)
+ δm

pm + 1
P2m

(
Ṽm,ρε−1

m

)
for any ρ ∈ (0, ρ5] (5.2)

where P is the function defined in (2.8) with f = (N − 2)f̂
−δm
m ,

P1m(U,ρ)

=
∫

BN+ (0,ρ)

[{
N − 2

4(N − 1)

}
ε2
mR[g̃m](εm·)U + (� − �ĝm

)U

]
·
[
xa∂aU +

(
N − 2

2

)
U

]
dx

+
(

N − 2

2

)
εm

∫
Bn(0,ρ)

H [g̃m](εm·)
[
xi∂iU +

(
N − 2

2

)
U

]
Udx̄ (5.3)

and

P2m(U,ρ) = −
∫

Bn(0,ρ)

xi∂i f̂mf̂ −(δm+1)
m Upm+1dx̄ +

(
N − 2

2

) ∫
Bn(0,ρ)

f̂ −δm
m Upm+1dx̄.

The left-hand side of (5.2) involves with the boundary integrals only. By (3.3), (3.4) and (4.11), there exists a 
constant C > 0 independent of m ∈N and ρ ∈ (0, ρ5] such that

P
(
Ṽm,ρε−1

m

)
= O(εN−2

m ). (5.4)

The right-hand side of (5.2) involves with the interior integrals. We can take ρ so small that

P2m

(
Ṽm,ρε−1

m

)
≥ 0. (5.5)

Also, choosing κ ≥ 2 in (2.1), we may assume that the second integral in the right-hand side of (5.3) is bounded by

εm

∫
Bn(0,ρε−1

m )

|H [g̃m](εmx̄)|
∣∣∣∣xi∂i Ṽm +

(
N − 2

2

)
Ṽm

∣∣∣∣ ∣∣Ṽm

∣∣dx̄

≤ Cεκ+1
m

∫
Bn(0,ρε−1

m )

|x̄|κ
1 + |x̄|2(N−2)

dx̄ = O(ε3
m) + O(εN−2

m );

see the derivation of (7.2) below. Hence, by fixing ρ small enough and invoking (4.12), we get

P1m

(
Ṽm,ρε−1

m

)
= Fm(W1,0,W1,0)+

[
Fm(W1,0,�m) + Fm(�m,W1,0)

]+
⎧⎪⎨⎪⎩

O(ε2
m) for N = 4,

O(ε3
m| log εm|) for N = 5,

O(ε3
m) for N ≥ 6

(5.6)

where
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Fm(V1,V2) =
∫

BN+ (0,ρε−1
m )

[{
N − 2

4(N − 1)

}
ε2
mR[g̃m](εmx)V1 + (� − �ĝm

)V1

]

×
[
x · ∇V2 +

(
N − 2

2

)
V2

]
dx (5.7)

and �m is the solution of (4.1) with ε = εm and π = πm. To estimate (5.6), we divide the cases according to the 
dimension N . We examine the case N = 5 first, N = 6 second, and N = 4 at last.

CASE N = 5: By putting n = 4 and γ = 1
2 in (5.9) of [33], one can compute that

Fm(W1,0,W1,0) = C1ε
2
m‖πm‖2 + O(ε3

m| log εm|) (5.8)

where

C1 = −1

8

∫
R5+

x2
5 |∇x̄W1,0|2dx = −9

8

∣∣∣S3
∣∣∣ ∞∫

0

x2
5dx5

(x5 + 1)4

∞∫
0

t5dt

(t2 + 1)5

= −9

8

∣∣∣S3
∣∣∣ · 1

3
· 1

24
= − 1

64

∣∣∣S3
∣∣∣ .

Besides, it was shown in (5.10) of [33] that

Fm(W1,0,�m) + Fm(�m,W1,0) ≥ O(ε3
m| log εm|).

However, it is not enough to deduce the proposition because C1 < 0. We will improve the estimate in the next result.

Lemma 5.2. It holds that

Fm(W1,0,�m) + Fm(�m,W1,0) (5.9)

≥
∣∣∣S3

∣∣∣(− 1

128
+ a1

480
− 11a2

1

60480
+ a2

160
− a1a2

1680
− a2

2

1680

)
ε2
m‖πm‖2 + O(ε3

m| log εm| · ‖πm‖).

Proof of Lemma 5.2. We see from Derivation of (5.10) of [33] that

Fm(W1,0,�m) + Fm(�m,W1,0)

= −2εm(πm)ij

⎡⎢⎢⎣∫
R5+

x5∂ijW1,0

(
x · ∇�m + 3

2
�m

)
dx +

∫
R5+

x5∂ij�mZ0
1,0dx

⎤⎥⎥⎦
+ O(ε3

m| log εm| · ‖πm‖)
= −2εm(πm)ij

∫
R5+

x5∂iW1,0∂j�mdx + O(ε3
m| log εm| · ‖πm‖)

= 2εm(πm)ij

⎛⎜⎜⎝∫
R5+

x5∂ijW1,0�mdx +
∫
R5+

x5∂ijW1,0�mdx

⎞⎟⎟⎠+ O(ε3
m| log εm| · ‖πm‖)

(5.10)

where �m and �m are defined by (4.5) and (4.7) with ε = εm and π = πm, and so �m = �m + �m.
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On the other hand, by testing �m in (4.1), we obtain

2εm(πm)ij

∫
R5+

x5∂ijW1,0�mdx

=
∫
R5+

∇�m · ∇�mdx − 5
∫
R4

w
2
3
1,0�m�mdx̄

=
∫
R5+

∇�m · ∇�mdx − 5
∫
R4

w
2
3
1,0�m�mdx̄ +

∫
R5+

|∇�m|2dx − 5
∫
R4

w
2
3
1,0�

2
mdx̄.

Testing �m in (4.7), we find∫
R5+

∇�m · ∇�mdx = 5
∫
R4

w
2
3
1,0�m�mdx̄ +

∫
R4

qm�mdx̄

where qm is the function defined by (4.8) with ε = εm and π = πm. Thus it follows from (4.9) that

2εm(πm)ij

∫
R5+

x5∂ijW1,0�mdx ≥
∫
R4

qm�mdx̄. (5.11)

Combining (5.10) and (5.11), we obtain

Fm(W1,0,�m) + Fm(�m,W1,0)

≥ (πm)ij

⎛⎜⎜⎝2εm

∫
R5+

x5∂ijW1,0�mdx +
∫
R4

qm�mdx̄

⎞⎟⎟⎠+ O(ε3
m| log εm| · ‖πm‖). (5.12)

By applying (4.5), we evaluate

2εm(πm)ij

∫
R5+

x5∂ijW1,0�mdx

= 30εm(πm)ij

∫
R5+

xixj x5

(|x̄|2 + (x5 + 1)2)
7
2

�mdx

= 30ε2
m(πm)ij (πm)kl

∫
R5+

xixj xkxl

[
3

2
· x5(x5 − 1)

(|x̄|2 + (x5 + 1)2)6

+a1
x5(x5 + 1)

(|x̄|2 + (x5 + 1)2)8 + a2
x5

(|x̄|2 + (x5 + 1)2)7

]
dx (5.13)

=
∣∣∣S3

∣∣∣
⎡⎣15

4

∞∫
0

x5(x5 − 1)dx5

(x5 + 1)4

∞∫
0

t7dt

(t2 + 1)6
+ 5a1

2

∞∫
0

x5dx5

(x5 + 1)7

∞∫
0

t7dt

(t2 + 1)8

+5a2

2

∞∫
0

x5dx5

(x5 + 1)6

∞∫
0

t7dt

(t2 + 1)7

⎤⎦ ε2
m‖πm‖2

=
∣∣∣S3

∣∣∣( 1

64
+ a1

3360
+ a2

960

)
ε2
m‖πm‖2
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and ∫
R4

qm�mdx̄

= ε2
m(πm)ij (πm)kl

∫
R4

xixj xkxl

(|x̄|2 + 1)5

[
3

2
+ a1

{
1

(|x̄|2 + 1)2 − 4

(|x̄|2 + 1)3

}
− 2a2

(|x̄|2 + 1)2

]

×
[
−3

2
+ a1

(|x̄|2 + 1)2 + a2

|x̄|2 + 1

]
dx̄

= 1

12

∣∣∣S3
∣∣∣ ∞∫

0

r7

(r2 + 1)5

[
3

2
+ a1

{
1

(r2 + 1)2 − 4

(r2 + 1)3

}
− 2a2

(r2 + 1)2

]
(5.14)

×
[
−3

2
+ a1

(r2 + 1)2 + a2

r2 + 1

]
dx̄ · ε2

m‖πm‖2

=
∣∣∣S3

∣∣∣(− 3

128
+ a1

560
− 11a2

1

60480
+ a2

192
− a1a2

1680
− a2

2

1680

)
ε2
m‖πm‖2.

Putting (5.12)-(5.14), we deduce (5.9). �
Corollary 5.3. It holds that

Fm(W1,0,W1,0) + [
Fm(W1,0,�m) + Fm(�m,W1,0)

]
≥ 3

2560

∣∣∣S3
∣∣∣ ε2

m‖πm‖2 + O(ε3
m| log εm|) + O(ε3

m| log εm| · ‖πm‖). (5.15)

Proof. Thus we conclude from (5.8) and (5.9) that

Fm(W1,0,W1,0) + [
Fm(W1,0,�m) + Fm(�m,W1,0)

]
≥
∣∣∣S3

∣∣∣P(a1, a2)ε
2
m‖πm‖2 + O(ε3

m| log εm|) + O(ε3
m| log εm| · ‖πm‖)

where

P(a1, a2) = − 3

128
+ a1

480
− 11a2

1

60480
+ a2

160
− a1a2

1680
− a2

2

1680
.

It holds that

max
a1,a2∈R

P(a1, a2) = P

(
−63

4
,

105

8

)
= 3

2560
.

Hence the assertion follows. �
Completion of the proof of Proposition 5.1 for N = 5. Because g̃m → g̃0 in C4(M, RN×N) as m → ∞, the values 
of ‖πm‖ are uniformly bounded in m ∈N . From (5.2), (5.4), (5.5) and (5.15), we discover

O(ε3
m) ≥ 3

2560

∣∣∣S3
∣∣∣ ε2

m‖πm‖2 + O(ε3
m| log εm|).

Accordingly,

O(εm) ≥ 3

2560

∣∣∣S3
∣∣∣‖πm‖2 + O(εm| log εm|).

Taking m → ∞ on the both sides, we get (5.1) for N = 5. �
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CASE N = 6: The strategy is the same as the case N = 5. By inserting n = 5 and γ = 1
2 in (5.9) of [33], one can 

compute that

Fm(W1,0,W1,0) = O(ε3
m).

Also, computing as in Lemma 5.2, we obtain

Lemma 5.4. It holds that

Fm(W1,0,�m) + Fm(�m,W1,0)

≥
∣∣∣S4

∣∣∣(− π

320
+ a1π

3584
− 3a2

1π

163840
+ a2π

1280
− a1a2π

16384
− a2

2π

16384

)
ε2
m‖πm‖2 + O(ε3

m).

Choosing the parameters a1 = − 128
7 and a2 = 544

35 , we get

Corollary 5.5. It holds that

Fm(W1,0,W1,0) + [
Fm(W1,0,�m) + Fm(�m,W1,0)

]≥ 31π

78400

∣∣∣S3
∣∣∣ ε2

m‖πm‖2 + O(ε3
m).

From this, the desired result (5.1) for N = 6 follows.

CASE N = 4: Because of the integrability issue on W1,0, the computation becomes a little bit trickier than before. 
Especially, it turns out that the terms involving a1 and a2 contribute nothing. This is because the integrals involving 
them are O(ε2

m), while the main order of P1m(Ṽm, ρε−1
m ) is ε2

m| log εm|. Hence we set a1 = a2 = 0.

Lemma 5.6. It holds that

Fm(W1,0,W1,0) = − π

24

∣∣∣S2
∣∣∣‖πm‖2ε2

m log(ρε−1
m ) + O(ε2

m). (5.16)

Proof. Lemma 2.2 and the Gauss-Codazzi equation implies that

R[g̃m](εmx) = −‖πm‖2 + O(εm|x|) in B5+(0, ρε−1
m ).

From this, Lemma 2.1 (more precisely, Lemmas 3.1 and 3.2 of [22]) and (5.7), we find that

Fm(W1,0,W1,0) = F̃0m + F̃1m + F̃2m + O(ε2
m) (5.17)

where

F̃0m = 1

6
ε2
m

∫
B4+(0,ρε−1

m )

R[g̃m](εmx)W1,0Z
0
1,0dx

= −1

6
ε2
m‖πm‖2

∫
B4+(0,ρε−1

m )

W1,0Z
0
1,0dx + O(ε2

m),

F̃1m =
∫

B4+(0,ρε−1
m )

(δij − ĝ
ij
m)∂ijW1,0Z1,0dx

= −1

3
ε2
m

[
3‖πm‖2 + RNN [g̃m](ym)

] ∫
B4+(0,ρε−1

m )

x2
4�x̄W1,0Z

0
1,0dx + O(ε2

m)

= −2

3
ε2
m‖πm‖2

∫
B4+(0,ρε−1

m )

x2
4�x̄W1,0Z

0
1,0dx + O(ε2

m)
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and

F̃2m = −
∫

B4+(0,ρε−1
m )

(
∂a

√|ĝm|√|ĝm|

)
ĝab

m ∂bW1,0Z1,0dx

= ε2
m

[
‖πm‖2 + RNN [g̃m](ym)

] ∫
B4+(0,ρε−1

m )

ĝab
m ∂bW1,0Z1,0dx + O(ε2

m) = O(ε2
m).

(5.18)

On the other hand, since∫
B4+(0,ρε−1

m )

W1,0Z
0
1,0dx

=
ρε−1

m∫
0

∫
R3

1 − |x̄|2 − x2
4

(|x̄|2 + (x4 + 1)2)3 dx̄dx4 + O(1)

= −
∣∣∣S2

∣∣∣
⎡⎢⎣ ρε−1

m∫
0

dx4

x4 + 1

∞∫
0

t4dt

(t2 + 1)3 +
ρε−1

m∫
0

x2
4dx4

(x4 + 1)3

∞∫
0

t2dt

(t2 + 1)3

⎤⎥⎦+ O(1)

= −π

4

∣∣∣S2
∣∣∣ log(ρε−1

m ) + O(1),

we have

F̃0m = π

24

∣∣∣S2
∣∣∣‖πm‖2ε2

m log(ρε−1
m ) + O(ε2

m). (5.19)

Moreover,∫
B4+(0,ρε−1

m )

x2
4�x̄W1,0Z

0
1,0dx

= 2

ρε−1
m∫

0

∫
R3

x2
4

[|x̄|2 − 3(x4 + 1)2
]
(1 − |x̄|2 − x2

4)

(|x̄|2 + (x4 + 1)2)5
dx

= −2
∣∣∣S2

∣∣∣ ρε−1
m∫

0

∞∫
0

r2x2
4

[
r2 − 3(x4 + 1)2

]
(r2 + x2

4)

(r2 + (x4 + 1)2)5
drdx4 + O(1)

= π

8

∣∣∣S2
∣∣∣ log(ρε−1

m ) + O(1),

from which we deduce that

F̃1m = − π

12

∣∣∣S2
∣∣∣‖πm‖2ε2

m log(ρε−1
m ) + O(ε2

m). (5.20)

Combining (5.17)-(5.20), we obtain (5.16). �
Unlike the cases N = 5 and 6, we do not exploit the mountain pass structure of the boundary Yamabe problem in 

RN+ . Instead, we use the integrability (or the decay property) of the functions involving the problem.
We define

�δ(x) = επij xixj

[
x4 − 1

(|x̄|2 + (x4 + 1)2)2 + δ

2 2 3
2

]
(5.21)
(|x̄| + (x4 + 1) )
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for δ small, which resembles the modified correction term ψε,δ defined in Page 400 of [43]. If δ = 0, the function �δ

is reduced to � in (4.5) with a1 = a2 = 0. Let also �δ = � − �δ where � is the solution of (4.1). Then it satisfies⎧⎪⎪⎨⎪⎪⎩
−��δ = 9δεπij xixj

(|x̄|2 + (x4 + 1)2)
5
2

in R4+,

− lim
x4→0

∂�δ

∂x4
= 4w1,0�δ + qδ on R3

(5.22)

where

qδ(x̄) = επij xixj

(|x̄|2 + 1)2 + δεπij xixj

(|x̄|2 + 1)
5
2

on R3.

Lemma 5.7. It holds that

Fm(W1,0,�m) + Fm(�m,W1,0) ≥
(

π

24
+ 64

105
δ + O(δ2)

)∣∣∣S2
∣∣∣ ε2

m log(ρε−1
m )‖πm‖2 + O(ε2

m) (5.23)

for δ small.

Proof. Let �m,δ be the function �δ in (5.21) with ε = εm and π = πm. Set �m,δ and qm,δ in an analogous manner. 
By (4.5) and (4.2) of [33], it holds that

|�m,δ(x)| + |�m,δ(x)| ≤ Cεm|πm|∞
1 + |x| and |∇�m,δ(x)| + |∇�m,δ(x)| ≤ Cεm|πm|∞

1 + |x|2 (5.24)

where |πm|∞ = maxi,j=1,2,3 |(πm)ij |. Integrating by parts, and employing (5.24),

∫
B3(0,ρε−1

m )

dx̄

1 + |x̄|3 + (ρε−1
m )3

≤
∣∣∣S2

∣∣∣ ρε−1
m∫

0

r2dr

r3 + (ρε−1
m )3

=
∣∣∣S2

∣∣∣ 1∫
0

dt

t3 + 1
= O(1)

and

ρε−1
m∫

0

∫
∂B3(0,ρε−1

m )

dx

1 + |x|3 ≤ C

ρε−1
m∫

0

(ρε−1
m )2dx4

1 + (ρε−1
m )3 + x3

4

≤ C

1∫
0

dt

t3 + 1
= O(1),

we calculate that

Fm(W1,0,�m) + Fm(�m,W1,0)

= −2εm(πm)ij

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

x4
[
∂ijW1,0 (xk∂k�m + x4∂4�m + �m)

+∂ij�m

(
xk∂kW1,0 + x4∂4W1,0 + W1,0

)]
dx̄dx4 + O(ε2

m)

= 2εm(πm)ij

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

x4
[
4 ∂iW1,0∂j�m + ∂iW1,0(xk∂jk�m + x4∂j4�m) (5.25)

+(xk∂ikW1,0 + x4∂i4W1,0)∂j�m

]
dx + O(ε2

m)
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= −2εm(πm)ij

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

x4∂iW1,0∂j�mdx + O(ε2
m)

= 2εm(πm)ij

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

(
x4∂ijW1,0�m,δ + x4∂ijW1,0�m,δ

)
dx + O(ε2

m).

On the other hand, by testing �m,δ in (4.1) and applying (5.24) once more, we obtain

2εm(πm)ij

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

x4∂ijW1,0�m,δdx

=
ρε−1

m∫
0

∫
B3(0,ρε−1

m )

∇�m,δ · ∇�m,δdx +
ρε−1

m∫
0

∫
B3(0,ρε−1

m )

|∇�m,δ|2dx + O(ε2
m).

Also, testing �m,δ in (5.22) shows

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

∇�m,δ · ∇�m,δdx

=
ρε−1

m∫
0

∫
B3(0,ρε−1

m )

9δεmπij xixj

(|x̄|2 + (x4 + 1)2)
5
2

�m,δdx +
∫

B3(0,ρε−1
m )

qm,δ�m,δdx̄ + O(ε2
m).

Consequently,

2εm(πm)ij

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

x4∂ijW1,0�mdx

≥
ρε−1

m∫
0

∫
B3(0,ρε−1

m )

9δεmπij xixj

(|x̄|2 + (x4 + 1)2)
5
2

�m,δdx +
∫

B3(0,ρε−1
m )

qm,δ�m,δdx̄ + O(ε2
m). (5.26)

Combining (5.25) and (5.26), we obtain

Fm(W1,0,�m) + Fm(�m,W1,0) ≥ (πm)ij

⎛⎜⎝2εm

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

x4∂ijW1,0�m,δdx

+
ρε−1

m∫
0

∫
B3(0,ρε−1

m )

9δεmπij xixj

(|x̄|2 + (x4 + 1)2)
5
2

�m,δdx

+
∫

B3(0,ρε−1
m )

qm,δ�m,δdx̄

⎞⎟⎠+ O(ε2
m). (5.27)
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By applying (5.21), we evaluate

2εm(πm)ij

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

x4∂ijW1,0�m,δdx

= 16ε2
m(πm)ij (πm)kl

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

xixj xkxl

[
x2

4

(|x̄|2 + (x4 + 1)2)5
+ δ

x4

(|x̄|2 + (x4 + 1)2)
9
2

]
dx + O(ε2

m)

= 32

15

∣∣∣S2
∣∣∣
⎡⎢⎣ ρε−1

m∫
0

x2
4dx4

(x4 + 1)3

∞∫
0

t6dt

(t2 + 1)5

+δ

ρε−1
m∫

0

x4dx4

(x4 + 1)2

∞∫
0

t6dt

(t2 + 1)
9
2

⎤⎥⎦ ε2
m‖πm‖2 + O(ε2

m)

=
(

π

24
+ 32

105
δ

)∣∣∣S2
∣∣∣ ε2

m log(ρε−1
m )‖πm‖2 + O(ε2

m),

(5.28)

9δεm(πm)ij

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

xixj

(|x̄|2 + (x4 + 1)2)
5
2

�m,δdx

= 9δε2
m(πm)ij (πm)kl

ρε−1
m∫

0

∫
B3(0,ρε−1

m )

xixj xkxlx4

(|x̄|2 + (x4 + 1)2)
9
2

dx

+ O(δ2 log(ρε−1
m )‖πm‖2) + O(ε2

m)

= 6

35
δ

∣∣∣S2
∣∣∣ ε2

m log(ρε−1
m )‖πm‖2 + O(δ2 log(ρε−1

m )‖πm‖2) + O(ε2
m)

(5.29)

and ∫
B3(0,ρε−1

m )

qm,δ�m,δdx̄ = ε2
mδ(πm)ij (πm)kl

∫
B3(0,ρε−1

m )

xixj xkxl

(|x̄|2 + 1)
7
2

dx̄ + O(ε2
m)

= 2

15
δ

∣∣∣S2
∣∣∣ ε2

m log(ρε−1
m )‖πm‖2.

(5.30)

Putting (5.27)-(5.30), we deduce (5.23). �
Corollary 5.8. It holds that

Fm(W1,0,W1,0)+
[
Fm(W1,0,�m) + Fm(�m,W1,0)

]≥
(

64

105
δ + O(δ2)

)∣∣∣S2
∣∣∣ ε2

m log(ρε−1
m )‖πm‖2 +O(ε2

m)

for δ small.

Proof. The result immediately follows from (5.16) and (5.23). �
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Completion of the proof of Proposition 5.1 for N = 4. By taking δ > 0 in Corollary 5.8 small enough, we infer 
from (5.2), (5.4) and (5.5) that

O(ε2
m) ≥ 32

105
δ

∣∣∣S2
∣∣∣ ε2

m log(ρε−1
m )‖πm‖2 + O(ε2

m).

Accordingly,

O

(
1

| log εm|
)

≥ ‖πm‖2 + O

(
1

| log εm|
)

.

This implies that (5.1) holds for N = 4. �
5.2. Non-negativity of a sum of the second-order derivatives of the trace-free second fundamental form

To derive Proposition 5.1, we analyzed the ε2
m-order of the asymptotic expansion of the term P1m

(
Ṽm,ρε−1

m

)
. We 

will prove the next result by examining its ε3
m| log εm|-order.

Proposition 5.9. Suppose that N = 5 and ym → y0 ∈ ∂M is an isolated simple blow-up point of the sequence 
{Um}m∈N of the solutions to (2.5). If {g̃m}m∈N is a sequence of the metrics constructed in Subsection 3.1, then

π[g̃0]ij,ij (y0) ≥ 0. (5.31)

Proof. Fix any ρ ∈ (0, ρ5]. By appealing (5.1), one can improve the error in (5.6) so that

P1m

(
Ṽm,ρε−1

m

)
= Fm(W1,0,W1,0) + [

Fm(W1,0,�m) + Fm(�m,W1,0)
]+ O(ε3

m)

where Fm is the map defined in (5.7). From this, (5.2), (5.4) and (5.5), we deduce

O(ε3
m) ≥ Fm(W1,0,W1,0) + [

Fm(W1,0,�m) + Fm(�m,W1,0)
]+ O(ε3

m). (5.32)

Moreover, arguing as in the proof of Lemma 5.6, we see

Fm(W1,0,W1,0) + 1

64

∣∣∣S3
∣∣∣ ε2

m‖πm‖2

= −ε3
m(πm)ij,kl

∫
B5+(0,ρε−1

m )

x5xkxl∂ijW1,0Z
0
1,0dx

− 2ε3
m(πm)ij,ik

∫
B5+(0,ρε−1

m )

x5xk∂jW1,0Z
0
1,0dx + O(ε3

m)

= −15

8
ε3
m(πm)ij,ij

ρε−1
m∫

0

∫
R4

x5|x̄|4(1 − |x̄|2 − x2
5)

(|x̄|2 + (x5 + 1)2)6
dx

+ 9

4
ε3
m(πm)ij,ij

ρε−1
m∫

0

∫
R4

x5|x̄|2(1 − |x̄|2 − x2
5)

(|x̄|2 + (x5 + 1)2)5
dx + O(ε3

m)

= − 9

64

∣∣∣S3
∣∣∣ ε3

m log(ρε−1
m )(πm)ij,ij + O(ε3

m).

To deduce each equality, we took κ ≥ 4 in Lemma 2.2 so that RNN,N [g̃m](ym) = 0, and used Lemma 2.1, the symme-
try of the integral and (5.1). After setting a1 = − 63

4 and a2 = 105
8 as in the proof of Corollary 5.3 and applying (5.1)

once more, we arrive at
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Fm(W1,0,W1,0) + [
Fm(W1,0,�m) + Fm(�m,W1,0)

]
≥ 3

2560

∣∣∣S3
∣∣∣ ε2

m‖πm‖2 − 9

64

∣∣∣S3
∣∣∣ ε3

m log(ρε−1
m )(πm)ij,ij + O(ε3

m) + O(ε3
m| log εm| · ‖πm‖)

≥ − 9

64

∣∣∣S3
∣∣∣ ε3

m log(ρε−1
m )(πm)ij,ij + O(ε3

m) + O

(
ε

7
2
m| log εm| 3

2

)
.

Inserting this estimate to (5.32), we obtain

O

(
1

| log εm|
)

≥ − 9

64

∣∣∣S3
∣∣∣ (πm)ij,ij + O

(
1

| log εm|
)

+ O

(
ε

1
2
m| log εm| 3

2

)
.

Taking m → ∞ on the both sides, we obtain (5.31). �
6. Local sign restriction and set of blow-up points

Under the validity of Proposition 5.1, we derive the local sign restriction of the function P ′.

Proposition 6.1. Assume that N ≥ 4 and ym → y0 ∈ ∂M is an isolated simple blow-up point for the sequence 
{Um}m∈N to the solutions to (2.5). Then, given m ∈ N large and ρ > 0 small, there exist constants C0 ≥ 0 and 
C1, C2, C3 > 0 independent of m and ρ such that

εN−2+o(1)
m P ′ (Ũm(0)Ũm,ρ

)≥ ε2
mC0 − ε2+η

m ρ2−ηC1 − εN−2
m ρ−N+3C2 − εN−1

m ρN−1C3

ε
2(N−1)+o(1)
m + ρ2(N−1)+o(1)

for N ≥ 5 and

ε2+o(1)
m P ′ (Ũm(0)Ũm,ρ

)≥ ε2
m log(1 + ρε−1

m )C0 − ε2
mC1 − ε3

mρ3C2

ε
6+o(1)
m + ρ6+o(1)

for N = 4, in g̃m-Fermi coordinates centered in ym. Here, P ′ is the function defined in (2.7), η > 0 is an arbitrarily 
small number and εo(1)

m → 1 as m → ∞.

Proof. If N ≥ 5, the proof follows the same lines as that of Lemma 6.1 in [33]; cf. Theorem 7.2 of [2]. Slightly mod-
ifying the argument, one can also establish the inequality for N = 4. Here we allow the possibility that π[g̃0](y0) = 0
as opposed to [33]. Thus we cannot exclude that C0 = 0. �

From the previous proposition, we conclude the following results. It can be derived as in Section 6 of [33].

Lemma 6.2. Assume that N ≥ 4, and y0 ∈ ∂M is an isolated blow-up point for the sequence {Um}m∈N to (2.5). Then 
it is an isolated simple blow-up point of {Um}m∈N .

Proposition 6.3. Assume the hypotheses of Theorem 1.1. Let ε0, ε1, R, C0 and C1 be positive numbers in the statement 
of Proposition 3.2. Suppose that U ∈ H 1(M) is a solution to (2.5) and {y1, · · · , yN } is the set of its local maxima on 
∂M . Then there exists a constant C2 > 0 depending only on (M, g), N , ε0, ε1 and R such that if max∂M U ≥ C0, then 
dh(ym1, ym2) ≥ C2 for all 1 ≤ m1 �= m2 ≤ N (U). In particular, the set of blow-up points of {Um}m∈N is finite and it 
consists of isolated simple blow-up points.

7. The compactness result

Let Gy0 be the normalized Green’s function of the conformal Laplacian on (M, g̃0) with Neumann boundary 
condition with pole at y0 ∈ ∂M , that is, the solution of⎧⎪⎪⎨⎪⎪⎩

Lg̃0Gy0(y) = 0 in M,

Bg̃0Gy0(y) = δy0 on ∂M,

lim
dg̃ (y,y0)→0

dg̃0(y, y0)
N−2Gy0(y) = 1

(7.1)
0
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where δy0 is the Dirac measure centered at y0. It will serve as the function G when we apply the positive mass theorem 
(described in Lemma 2.4).

In the following two lemmas, we verify the necessary conditions to apply Lemma 2.4 for 4- and 5-manifolds. Note 
that the number d in (2.10) is 1.

Lemma 7.1. Suppose that N = 4 or 5, y0 ∈ ∂M is an isolated simple blow-up point of the sequence {Um}m∈N of the 
solutions to (2.5). If we take κ ≥ 4 in (2.1), we can expand the metric g = g̃0 as in (2.10) and (2.11).

Proof. By Lemma 2.1 and Proposition 5.1, it clearly holds that

AiN(x) = ANN(x) = 0 and Aij (x) = O(|x|2).
Therefore,

expA(x) = I + A(x) + O(|x|4) and so g(x) = expA(x) + O(|x|4)
where I is the N × N -identity matrix. From this, we see that

detg(x) = etraceA(x)+O(|x|4) = 1 + trace(A(x)) + O(|x|4).
By virtue of our choice κ ≥ 4, it follows that trace(A(x)) = O(|x|4) as desired. �
Lemma 7.2. Suppose that N = 4 or 5, and y0 ∈ ∂M is an isolated simple blow-up point of the sequence {Um}m∈N of 
the solutions to (2.5). If we choose the integer κ in (2.1) large enough, we obtain that

Gy0(x) =
{

|x|−2 + O(| log |x||) for N = 4,

|x|−3 + O(|x|−1| log |x||) for N = 5

in g̃0-Fermi coordinates centered at y0. As a particular consequence, Gy0 is a smooth positive function on M \ {y0}
which can be expressed as in (2.12)-(2.13).

Proof. We will employ Proposition B.2 of [6], in which Almaraz and Sun constructed the Green’s function on mani-
folds with boundary using parametrices.

According to their result, if there exists a sufficiently large integer κ0 such that

|H [g̃0](y)| ≤ Cdg̃0(y, y0)
κ0 for all y ∈ ∂M, (7.2)

then one can find a smooth positive solution Gy0 on M \ {y0} to (7.1) with g = g̃0. Moreover, if g̃0 = expB for some 
2-tensor B on M , then∣∣∣Gy0(x) − |x|2−N

∣∣∣≤ C

n∑
i,j=1

d∑
|α|=1

∣∣Bij,α(0)
∣∣ |x||α|+2−N +

{
C(1 + | log |x||) for N = 3,4,

C|x|d+3−N for N ≥ 5
(7.3)

in g̃0-Fermi coordinates centered at y0, where d = �N−2
2 � as before. Check also (1.3) for the notations involving 

multi-indices.
Differentiating (3.4) of [22] |β|-times, we obtain

∂

∂xN

∂
√|g̃0|
∂xβ

(x̄,0) = −n
∑

β ′+β ′′=β

β!
β ′!β ′′!

⎛⎜⎝∂

√
|h̃0|

∂xβ ′
∂H [g̃0]
∂xβ ′′

⎞⎟⎠ (x̄) for x̄ ∈ Rn, (7.4)

in normal coordinates on ∂M centered at y0. Here h̃0 is the restriction of g̃0 to ∂M . In light of (2.1) and (7.4), the 
coefficient of xβxN in the Taylor expansion of 

√|g̃0| at x = 0 has to be

− n

(|β| + 1)!
∂βH [g̃0]

∂x
(0) = 0 for all |β| ≤ κ − 1.
β
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Thus, if we take κ ≥ κ0, all partial derivatives of H of order ≤ κ0 − 1 must vanish at 0, and so (7.2) holds.
On the other hand, we know that A(x) = O(|x|2) and g̃0 = expA + O(|x|4) from the proof of Lemma 7.1. There-

fore, for |α| = 1,

Bij,α(x) = Aij,α(x) + O(|x|) = O(|x|), and so Bij,α(0) = 0.

This implies that the right-hand side of (7.3) is bounded by{
C(|x|4−N + 1 + | log |x||) = C(1 + | log |x||) = O(| log |x||) for N = 4,

C|x|4−N = C|x|−1 = O(|x|−1| log |x||) for N = 5.

The proof is finished. �
We next examine the relationship between the flux integral I(y0, ρ) given in (2.14) and the quantity P ′(Gy0 , ρ)

defined by (2.7).

Lemma 7.3. Under the assumptions of Lemma 7.1, it holds that

P ′(Gy0 , ρ) =

⎧⎪⎨⎪⎩
−1

6
I(y0, ρ) + O(ρ) for N = 4,

− 9

32
I(y0, ρ) − 3

512

∣∣S3
∣∣π[g̃0]ij,ij (y0) + O(ρ| logρ|) for N = 5.

(7.5)

Proof. Lemma 3.2 of [5] leads us that

P ′(Gy0 , ρ) = −
(

N − 2

2

) ∫
∂I BN+ (0,ρ)

(
|x|2−N∂aGy0(x) − ∂a |x|2−NGy0(x)

) xa

|x| dSx

+ O(ρ6−N | logρ|).
(7.6)

Therefore, we infer from (2.14) that

P ′(Gy0 , ρ) = − (N − 2)2

8(N − 1)
[I(y0, ρ)

+
∫

∂I BN+ (0,ρ)

(
ρ3−2Nxa∂bAab(x) − 2Nρ1−2NxaxbAab(x)

)
dSx

⎤⎥⎥⎦+ O(ρ6−N | logρ|). (7.7)

On the other hand, by setting κ ≥ 4 in Lemma 2.2 and applying Proposition 5.1, we obtain

SymklmRikjl,m[h̃0] = SymklH,kl[g̃0] = RNN,k[g̃0] = RNN,N [g̃0] = 0 at y0 (7.8)

where h̃0 = g̃0|T ∂M . Thanks to (2.11), (2.2), (7.8), the Ricci identity and the symmetry of the integral, we find∫
∂I BN+ (0,ρ)

(
ρ3−2Nxi∂jAij (x) − 2Nρ1−2NxixjAij (x)

)
dSx

= ρ5−N |Sn−1|
[

2(N − 3)

(N − 1)(N + 1)(N + 3)

]
π[g̃0]ij,ij (y0) + O(ρ6−N) (7.9)

for any N ≥ 4.
Combining (7.7) and (7.9), we derive (7.5). �
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The above lemma shows that Proposition 3.6 of [5] is valid for N = 4, but is not in general for N = 5.
As a by-product of the previous lemma, we can evaluate the mass m0.

Corollary 7.4. Under the assumptions of Lemma 7.1, it holds that

m0 =

⎧⎪⎨⎪⎩
−6 lim

ρ→0
P ′(Gy0 , ρ) for N = 4,

−32

9
lim
ρ→0

P ′(Gy0 , ρ) − 1

48

∣∣S3
∣∣π[g̃0]ij,ij (y0) for N = 5.

Proof. Taking ρ → 0 on the both sides of (7.5) and using (2.16), we get the result. �
One can see from (2.7) or (7.6) that the value of P ′(Gy0 , ρ) is completely determined by the Green’s function 

Gy0 . Therefore, the above corollary tells us that the mass is involved with not only the Green’s function but also the 
trace-free second fundamental form if N = 5. As mentioned in Remark 1.3, it is a unique property of manifolds with 
boundary.

We are now ready to complete the proof of our main result.

Proof of Theorem 1.1. Suppose that y0 ∈ ∂M is a blow-up point of the sequence {Um}m∈N of the solutions to (2.5). 
By Proposition 6.3, it is isolated simple. By Proposition 3.5 and elliptic regularity theory, there also exists a constant 
a > 0 such that

Um(ym)Um → aGy0 in C2(Bg̃0(y0, ρ) \ {y0}) as m → ∞.

Thanks to Proposition 6.1, it follows that

lim inf
ρ→0

P ′(aGy0 , ρ) = a2 lim inf
ρ→0

P ′(Gy0 , ρ) ≥ 0. (7.10)

We split the proof into two cases according to the dimension of the manifold M .

CASE N = 4 AND 5: By virtue of Lemmas 7.1 and 7.2, all the conditions needed to apply Lemma 2.4 hold. Besides, 

(7.1) yields that R
[
G

4
N−2
y0 g

] = 0 and H
[
G

4
N−2
y0 g

] = 0 on their respective domains, which trivially implies (2.15). 
Employing Lemma 2.4, Corollary 7.4, Proposition 5.9 and (7.10), we deduce

0 < m0 =

⎧⎪⎨⎪⎩
−6 lim

ρ→0
P ′(Gy0 , ρ) ≤ 0 for N = 4,

−32

9
lim
ρ→0

P ′(Gy0 , ρ) − 1

48

∣∣S3
∣∣π[g̃0]ij,ij (y0) ≤ 0 for N = 5,

a contradiction. Consequently, there is no blow-up point of a solution to (2.5), which means that its solution set is 
L∞(M)-bounded. Elliptic regularity tells us that it is C2(M)-compact. Theorem 1.1 must be true in this case.

CASE N = 6: We remind that the trace-free second fundamental form π[g] is assumed to be never zero on ∂M . 
There is a positive smooth function ω0 on M such that g̃0 = ω0g on M . In Proposition 1.2 of [23], it was proved that 
π[g̃0] = √

ωπ[g] on ∂M . This produce a contradiction, since Proposition 5.1 reads

0 = ‖π[g̃0](y0)‖ = ω(y0)
− 1

2 ‖π[g](y0)‖ > 0.

The same reasoning as above shows that Theorem 1.1 is also valid in this case. �
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Appendix A. Proof of Lemmas 4.3 and 4.5

Throughout this section, we assume that N ≥ 5. The case N = 4 can be handled similarly.

In order to prove Lemma 4.3, we first need two preliminary observations.

Lemma A.1. Suppose that N ≥ 5. The function

�1(x) = 1

4(N − 4)

xN + 1

(|x̄|2 + (xN + 1)2)
N−4

2

+ a1
xN + 1

(|x̄|2 + (xN + 1)2)
N
2

in RN+

for a1 ∈R satisfies

−��1 = xN + 1

(|x̄|2 + (xN + 1)2)
N−2

2

in RN+ .

Proof. It holds that

xN + 1

(|x̄|2 + (xN + 1)2)
N−2

2

= −
(

1

N − 4

)
∂N

[
1

(|x̄|2 + (xN + 1)2)
N−4

2

]
in RN+ .

Thus, if we have a solution �0 of the equation

−��0 = 1

(|x̄|2 + (xN + 1)2)
N−4

2

in RN+ ,

we will be able to choose

�1 = −
(

1

N − 4

)
∂N�0. (A.1)

On the other hand, we see that

−�[�0(x̄, xN − 1)] = 1

(|x̄|2 + x2
N)

N−4
2

= 1

|x|N−4 in Rn × (1,∞).

If we assume that �0(x̄, xN − 1) is radial symmetric, i.e., φ0(|x|) = �0(x̄, xN − 1), then it is reduced to

−φ′′
0 − N − 1

r
φ′

0 = 1

rN−4 in (0,∞).

Its general solution is expressed as

φ0(r) =

⎧⎪⎨⎪⎩
1

4(N − 6)

1

rN−6
+ a1

rN−2 + a′
1 for N = 5 or N ≥ 7,

− log r

4
+ a1

r4 + a′
1 for N = 6

for r ∈ (0, ∞) and a1, a′ ∈ R. Consequently,
1

1790



S. Kim, M. Musso and J. Wei Annales de l’Institut Henri Poincaré – Analyse non linéaire 38 (2021) 1763–1793
�0(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

4(N − 6)

1

(|x̄|2 + (xN + 1)2)
N−6

2

+ a1

(|x̄|2 + (xN + 1)2)
N−2

2

+ a2

for N = 5 or N ≥ 7,

−1

8
log(|x̄|2 + (xN + 1)2) + a1

(|x̄|2 + (xN + 1)2)2 + a′
1

for N = 6

(A.2)

in RN+ .
By (A.1) and (A.2), the assertion in the statement holds. �

Lemma A.2. The function

�2(x) = 1

2(N − 4)

1

(|x̄|2 + (xN + 1)2)
N−4

2

+ a2
1

(|x̄|2 + (xN + 1)2)
N−2

2

+ a′
2 in RN+

for a2, a′
2 ∈R satisfies

−��2 = 1

(|x̄|2 + (xN + 1)2)
N−2

2

in RN+ . (A.3)

Proof. Equation (A.3) is equivalent to

−�[�2(x̄, xN − 1)] = 1

(|x̄|2 + x2
N)

N−2
2

= 1

|x|N−2 in RN+ .

If we assume that �2(x̄, xN − 1) is radial symmetric, i.e., φ2(|x|) = �2(x̄, xN − 1), then it is reduced to

−φ′′
2 − n

r
φ′

2 = 1

rN−2 in (0,∞).

The general solution is expressed as

φ2(r) = 1

2(N − 4)rN−4 + a2

rN−2 + a′
2

for r ∈ (0, ∞) and a2, a′
2 ∈ R. As a result, the assertion in the statement holds. �

Corollary A.3. The function

(�1 − �2)(x) = 1

4(N − 4)

xN − 1

(|x̄|2 + (xN + 1)2)
N−4

2

+ a1
xN + 1

(|x̄|2 + (xN + 1)2)
N
2

+ a2
1

(|x̄|2 + (xN + 1)2)
N−2

2

+ a′
2

in RN+

for a1, a2, a′
2 ∈ R satisfies

−�(�1 − �2) = xN

(|x̄|2 + (xN + 1)2)
N−2

2

= xNW1,0 in RN+ .

Proof. It is a direct consequence of Lemmas A.1 and A.2. �
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Completion of the proof of Lemma 4.3. Define �̃ij = ∂ij (�1 − �2) so that � = 2πij �̃ij . By Corollary A.3,

�̃ij (x) = −xN − 1

4

[
δij

(|x̄|2 + (xN + 1)2)
N−2

2

− (N − 2)
xixj

(|x̄|2 + (xN + 1)2)
N
2

]

+ a1(xN + 1)

[
δij

(|x̄|2 + (xN + 1)2)
N+2

2

− (N + 2)
xixj

(|x̄|2 + (xN + 1)2)
N+4

2

]

+ a2

[
δij

(|x̄|2 + (xN + 1)2)
N
2

− N
xixj

(|x̄|2 + (xN + 1)2)
N+2

2

] in RN+ .

Since the trace of π is assumed to be 0, we have (4.5). This completes the proof. �
Completion of the proof of Lemma 4.5. It follows from (4.1) and (4.6) that U is harmonic in RN+ . Note also that

lim
xN→0

∂U

∂xN

+ Nw
2

N−2
1,0 U = − lim

xN→0

∂�

∂xN

− Nw
2

N−2
1,0 � on Rn.

Plugging (4.5) into the right-hand side, we find the boundary condition that U satisfies. �
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