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Interpretable machine 
learning for early neurological 
deterioration prediction in atrial 
fibrillation‑related stroke
Seong‑Hwan Kim1,16, Eun‑Tae Jeon1,16, Sungwook Yu2, Kyungmi Oh3, Chi Kyung Kim3, 
Tae‑Jin Song4, Yong‑Jae Kim5, Sung Hyuk Heo6, Kwang‑Yeol Park7, Jeong‑Min Kim7, 
Jong‑Ho Park8, Jay Chol Choi9, Man‑Seok Park10, Joon‑Tae Kim10, Kang‑Ho Choi11, 
Yang Ha Hwang12, Bum Joon Kim13, Jong‑Won Chung14, Oh Young Bang14, 
Gyeongmoon Kim14, Woo‑Keun Seo14* & Jin‑Man Jung1,15*

We aimed to develop a novel prediction model for early neurological deterioration (END) based on an 
interpretable machine learning (ML) algorithm for atrial fibrillation (AF)‑related stroke and to evaluate 
the prediction accuracy and feature importance of ML models. Data from multicenter prospective 
stroke registries in South Korea were collected. After stepwise data preprocessing, we utilized logistic 
regression, support vector machine, extreme gradient boosting, light gradient boosting machine 
(LightGBM), and multilayer perceptron models. We used the Shapley additive explanation (SHAP) 
method to evaluate feature importance. Of the 3,213 stroke patients, the 2,363 who had arrived at the 
hospital within 24 h of symptom onset and had available information regarding END were included. 
Of these, 318 (13.5%) had END. The LightGBM model showed the highest area under the receiver 
operating characteristic curve (0.772; 95% confidence interval, 0.715–0.829). The feature importance 
analysis revealed that fasting glucose level and the National Institute of Health Stroke Scale score 
were the most influential factors. Among ML algorithms, the LightGBM model was particularly useful 
for predicting END, as it revealed new and diverse predictors. Additionally, the effects of the features 
on the predictive power of the model were individualized using the SHAP method.

Early neurological deterioration (END) is a sudden worsening of neurological symptoms during the acute period 
of stroke. END leads to devastating clinical outcomes despite marked advances in acute stroke management over 
the past several years. The incidence of END is considerably high, ranging from 5 to 40%, and is associated with 
a poor 3-month clinical prognosis and high  mortality1,2. The standard treatment strategy for END has not been 
established, and an accurate prediction of END is unavailable in clinical practice owing to its complexity and 
heterogeneity. In addition, there has been no consensus on the definition. Therefore, various inclusion criteria 

OPEN

1Department of Neurology, Korea University Ansan Hospital, Korea University College of Medicine, Gojan 
1-Dong, Danwon-Gu, Ansan-Si, Gyeonggi-Do 15355, South Korea. 2Department of Neurology, Korea University 
Anam Hospital, Korea University College of Medicine, Seoul, South Korea. 3Department of Neurology, Korea 
University Guro Hospital, Korea University College of Medicine, Seoul, South Korea. 4Department of Neurology, 
Seoul Hospital, Ewha University College of Medicine, Seoul, South Korea. 5Department of Neurology, Eunpyeong 
St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea. 6Department of Neurology, Kyung Hee 
University College of Medicine, Seoul, South Korea. 7Department of Neurology, Chung-Ang University College of 
Medicine, Chung-Ang University Hospital, Seoul, South Korea. 8Department of Neurology, Hanyang University 
Myongji Hospital Seoul, Seoul, South Korea. 9Department of Neurology, Jeju National University, Jeju, South 
Korea. 10Department of Neurology, Chonnam National University Hospital, Chonnam, South Korea. 11Department 
of Neurology, Chonnam National University Hwasun Hospital, Hwasun, South Korea. 12Department of Neurology, 
Kyungpook National University Hospital, Dae-gu, South Korea. 13Department of Neurology, Asan Medical Center, 
University of Ulsan College of Medicine, Seoul, South Korea. 14Department of Neurology and Stroke Center, 
Samsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 06351, South Korea. 15Korea University Zebrafish 
Translational Medical Research Center, Ansan, South Korea. 16These authors contributed equally: Seong-Hwan 
Kim and Eun-Tae Jeon. *email: mcastenosis@gmail.com; dr.jinmanjung@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99920-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20610  | https://doi.org/10.1038/s41598-021-99920-7

www.nature.com/scientificreports/

and study designs have been used, with some studies preferring to define END according to specific stroke sub-
types (e.g., cardioembolism), making each predictor and recent nomograms difficult to use in real-world clinical 
 practice3–6. Those obstacles make it difficult to design a prospective early detection and early interventional study. 
Accurate prediction of END is of paramount importance not only for the prognostication but also to motivate 
prospective, early interventional studies to prevent or restore END in patients with stroke.

Of the etiologies attributed to cardioembolic stroke, atrial fibrillation (AF) is one of the predictors of  END7,8. 
Several markers, including clinical, radiological, and laboratory findings, have been associated with END in AF-
related  stroke9–11. However, in those studies, using a single marker had limited predictive power, since the diverse 
biomarkers and imaging markers relevant to END in AF-related stroke were not considered at the same time.

Continuous advancements in machine learning (ML) algorithms have led to their wide application in the 
medical field, as numerous variables and massive data can be included and analyzed. In contrast to transitional 
statistical models, ML models are compatible with predicting complex clinical events that can be affected by 
diverse situations and conditions. Nevertheless, the clinical application of ML models has been limited owing to 
the ‘black box problem’ of interpretability and  explanation12. Therefore, it is essential that ML models be interpret-
able to the current medical  fields13. The Shapley additive explanations (SHAP) method is a novel, cutting-edge 
method designed to aid in clinical interpretation and intuitive understanding of feature importance by providing 
visualizations of the relationship between each feature and the associated predictive  power14. Therefore, the aim 
of our study was to develop an interpretable ML model that could predict END using the feature importance 
technique in AF-related stroke using a real-world multicenter cohort database.

Methods
Study design and participants. The dataset from this study can be provided by the corresponding author 
upon reasonable request.

This study was based on the Korean Atrial Fibrillation Evaluation Registry in Ischemic Stroke Patients 
(K-ATTENTION), a real-world cohort composed of prospective stroke registries from 11 tertiary centers in 
South Korea. K-ATTENTION focused on characteristics, oral anticoagulant use, and outcomes in AF-related 
stroke  patients15. Between January 2013 and December 2015, patients who were admitted to one of the participat-
ing centers within 7 days of stroke onset were enrolled. Detailed information regarding management and follow-
up of the included patients has been provided  previously15. In our study, only those who arrived at the hospital 
within 24 h of symptom onset and had information regarding END were included. Using the internet-based 
clinical recording system, we acquired the following patient information from each center: demographic char-
acteristics, vascular risk factors, brain imaging results, laboratory findings, pre-admission medication histories, 
stroke severity on admission (according to the National Institutes of Health Stroke Scale [NIHSS] score), and 
functional status (modified Rankin score [mRS]). Additional information on variable acquisition and evaluation 
is provided in Supplemental Table I and Supplemental Methods I. This study followed the Transparent Reporting 
of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) reporting  guidelines16. The 
institutional review boards of Korea University Ansan Hospital (2016AS0051), Korea university Anam hospital, 
Korea University Guro Hospital, Ewha University College of Medicine, Eunpyeong St. Mary’s Hospital, Kyung 
Hee University College of Medicine, Chung-Ang University Hospital, Hanyang University Myongji Hospital, Jeju 
National University, Chonnam National University Hospital, Chonnam National University Hwasun Hospital, 
Kyungpook National University Hospital, Asan Medical Center, and Samsung Medical Center approved the 
study. The need for informed consent was waived by the ethics committee of all participating centers due to the 
retrospective design of the study using anonymous and de-identified information.

Definition of END as the main outcome. END was defined as an increase of at least 2 points in the total 
NIHSS score and at least 1 point on the level of consciousness or motor item score within 72 h of arrival at the 
 hospital17.

Data splitting and preprocessing. Binary variables with less than 80% missing values and multinomial 
and numeric variables with less than 60% missing values were included to generate the available  dataset18. In the 
first step, 25% of the dataset was randomly separated according to END stratification and used only in the final 
evaluation of model performance as a test set. The remaining 75% of the dataset was used as a training set for 
hyperparameter determination and training processes using leave-one-out cross-validation. In this data split-
ting process, we used the stratified random sampling method, stratifying institution sites to reduce the multi-site 
correction problem. Isolation forest and multivariate imputation by chained equations were used for outlier 
detection and imputation. Details of the methods are provided in Supplemental Methods II.

Feature selection and feature importance analysis. Recursive feature  elimination19 was used to 
select the top-k ranked features that contributed to the overall model performance of the area under the receiver 
operating characteristic curve (AUROC). In this feature selection analysis, we also included institution site vari-
able to evaluate the multi-site correction issue. Since the purpose of this study was to evaluate a predictive model 
based on variables that can be obtained at the time of admission to the hospital, variables that cannot be evalu-
ated at the initial time point were excluded. To measure and rank the contribution of each variable, we obtained 
mean absolute SHAP  values14 with a gradient boosted tree-based model, light gradient boosting machine (Light-
GBM)20, which can deal natively with categorical  features21 using leave-one-out cross-validation. The positive 
SHAP value for each variable indicated that the variable contributed positively to the model’s positive prediction, 
and vice versa. We performed an additional stepwise process to prevent underestimation of the relative impor-
tance of features due to multicollinearity, the details of which are described in Supplemental Methods III.
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Modeling. We selected and tested one conventional statistical model, logistic  regression22, as a baseline com-
parator, and four popular ML models: support vector  machine23, extreme gradient  boosting24 (XGBoost), Light 
GBM, and multilayer  perceptron25 (MLP) with a basic architecture. Detailed instructions for the applied models 
are provided in Supplemental Methods IV. All the processes were implemented in Python 3.8.2 with Tensor-
Flow-GPU 2.4.026 and scikit-learn 0.22.127 libraries.

Primary outcome and evaluation criteria. AUROC was chosen as a primary evaluation metric for 
model performance, and all cross-validation and early stopping strategies in the modeling process were per-
formed to maximize the AUROC score. The models were evaluated for the frequency of confident answers and 
errors, with a threshold of 0.50.

Statistical analysis. Categorical variables are presented as number (percentage), and continuous variables 
are presented as mean ± standard deviation or median (interquartile range), as appropriate. A simple compari-
son was performed using the χ2 test for categorical variables and the Kruskal–Wallis test for continuous vari-
ables. Data analyses were performed using IBM SPSS version 20 software (IBM Corp. Armonk, NY, USA). The 
AUROC, with a 95% confidence interval (CI), was calculated using the Delong method and a CI that spanned 
0.50 or more was not considered statistically different from a random  performance28. To evaluate the calibration 
error of the models, the Brier score, which is the mean squared difference between the predicted probability 
and the actual outcome, was  calculated29, with a lower score indicating better probabilistic prediction accuracy. 
In addition, the area under the precision-recall curve, accuracy, precision, recall, and F1 score were calculated 
as secondary outcome metrics. We also calculated the sensitivity, specificity, and precision values for various 
thresholds. The significance level was set at p< 0.05 and Bonferroni correction was used for multiple compari-
sons of the AUROC between models.

Results
Comparisons of baseline characteristics. Figure 1 shows the patient flow chart. A total of 2,363 patients 
were included in this study, of whom 318 (13.5%) had END. Comparisons of baseline clinical characteristics and 
MRI variables are listed in Supplemental Tables II and III.

Missing value imputation. The binary variables with missing values over 80% and multinomial and 
numeric variables with missing values over 60% were excluded from the model construction dataset according 
to the missing data imputation strategy described in a previous  study30. The variables were as follows: all Holter 
monitoring parameters, smoking pack-years, alcohol consumption, duration of PR and P-axis wave on electro-
cardiogram, susceptibility vessel sign (SVS) size, urine albumin, serum free fatty acid level, brain natriuretic 
peptide (BNP), N-terminal pro-BNP, and troponin T. The remaining missing values were imputed, with non-
categorical missing values imputed using the multivariate imputation by chained equations imputation method, 
and categorical missing values were replaced with a single constant of -1. Details concerning the number of 
missing values for each variable are listed in Supplemental Table IV.

Model performances. A flow diagram of the ML model development process is presented in Supplemental 
Figure I. The performance of each model is shown in Table 1, and the receiver operating characteristic curve and 
precision-recall curve are shown in Fig. 2. LightGBM had the highest AUROC value (0.772 [0.715–0.829]); how-
ever, there was no significant difference between the ML models. Light GBM and MLP had significantly higher 
AUROC values than logistic regression (p = 0.003 and 0.002, respectively). At various discrimination thresholds, 

Figure 1.  Flowchart of included patients.
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the sensitivity, specificity, and precision of the model were calculated, and our model showed relatively superior 
performance for specificity.

Identification of important features. From the recursive feature elimination, a total of 23 features were 
selected as important features. The SHAP feature importance matrix plots show important features according 
to the degree of contribution (bar plot, Fig. 3A) and the overall correlation and directionality between features 

Table 1.  Comparison of model performance. *Significant difference at p < 0.005. † Comparison with logistic 
regression on AUROC. Abbreviations: AUROC, area under the receiver operating characteristic curve; 
AUPRC, area under the precision-recall curve; SVM, support vector machine; XGBoost, extreme gradient 
boosting; LightGBM, light gradient boosting machine; MLP, multilayer perceptron.

Model AUROC [95% CI] AUPRC [95% CI] Brier score ACC (%) Precision Recall F1 score p value†

Baseline model

Logistic regression 0.696 [0.636–0.755] 0.288 [0.207–0.368] 0.110 86.5 0.253 0.585 0.353

Machine learning models

SVM 0.722 [0.667–0.777] 0.261[0.168–0.356] 0.112 86.2 0.254 0.695 0.373 0.182

XGBoost 0.759 [0.700–0.817] 0.367 [0.260–0.466] 0.105 86.5 0.349 0.537 0.423 0.024

LightGBM 0.772 [0.715–0.829] 0.385 [0.273–0.497] 0.103 86.7 0.328 0.695 0.445 0.003*

MLP 0.768 [0.714–0.822] 0.374 [0.265–0.482] 0.103 86.9 0.432 0.463 0.447 0.002*

Figure 2.  Model performance. (A), Solid lines and shades represent receiver operating characteristics curves 
and its 95% confidence intervals. An asterisk (*) indicates significant difference (P < 0.005) in comparison with 
logistic regression. (B), Solid lines and shades represent precision-recall curves and its 95% confidence intervals. 
Only the confidence intervals of the baseline model (logistic regression, “LogReg”) are represented with polka 
dot pattern in both plots. (C), Detailed performance analysis for the best model (LightGBM) in different 
discrimination thresholds. Solid lines and shades represent mean values and 95% confidence intervals in each 
variable. Abbreviations: AUC, area under the curve; CI, confidence interval; LogReg, Logistic regression; SVM, 
Support vector machine; XGBoost, Extreme gradient boosting; LightGBM, light gradient boosting machine; 
MLP, Multilayer perceptron.
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and the SHAP value (violin plot, Fig. 3B) during model construction. Among them, fasting glucose levels and 
initial NIHSS score contributed the most to the model. The next highest-ranking features were the initial mRS 
and initial glucose level. All other features contributed less to the model. It was confirmed that the institute site 
variable had not significantly affected the model. In addition, most of the continuous variables, such as fasting 
glucose, initial NIHSS score, initial mRS, initial glucose, QRS axis, alkaline phosphatase, homocysteine, fibrin 
degradation product, initial diastolic blood pressure, D-dimer, hematocrit, total cholesterol, and T axis tended to 
be positively correlated with END. Activated partial thromboplastin time, aspartate aminotransferase, total bili-
rubin, and low-density lipoprotein (LDL) cholesterol showed complex patterns with mixed positive and negative 
trends. LA diameter and uric acid levels showed a negative correlation.

SHAP values corresponding to changes in the four representative features are presented in partial SHAP 
dependence plots (Fig. 4), and other representative feature plots are listed in Supplemental Figure II. The fasting 
glucose level and initial NIHSS score showed a positive correlation with the sigmoid or double sigmoid curve. 
The LA diameter declined negatively. LDL cholesterol was associated with a U-shaped trend line that initially 
showed a declining tendency followed by a reversed, increasing trend. The cut-off value for each variable that 
could predict the positive and/or negative probability of END occurrence is marked on each graph.

Lateralization of ischemic lesions, concomitant intracranial atherosclerosis, SVS signs, and hemorrhagic 
transformation were included as categorical variables. The presence of concomitant intracranial atherosclerosis, 
SVS signs, and symptomatic ICH among hemorrhagic transformations is likely to related to END occurrence. 
Posterior circulation lesions were unlikely to develop END (Supplemental Figure II).

In addition, we acquired information about the importance and contribution of each patient according to 
the specific features selected during modeling. Representative cases are summarized in Supplemental Figure III.

Discussion
In this study, we first demonstrated that integrated ML algorithms can be applied to predict END in AF-related 
stroke cases. Among the ML models investigated, LightGBM had the best performance, with an AUROC value of 
0.772. This is a novel method with efficient computational power and wide scalability for processing categorical, 
multidimensional, and incredibly large  datasets20, which makes it a suitable ML model in clinical settings. In 

Figure 3.  Matrix plots of top 23 important features. Bar plot (A) and violin plot (B). In the bar plot, the SHAP 
value implies the degree of contribution of a specific feature. The higher the SHAP value, the larger the model 
contribution of a specific feature. In the violin plot, each dot represents one patient and accumulates vertically 
to depict the density. The color reflects the high and low values of each feature, with the red color indicating a 
higher value and the blue color indicating a lower value. The X-axis of the graph represents the SHAP value, and 
a positive SHAP value indicates that it contributes positively to predicting the model, and that the probability 
of END occurring is high, and vice versa. Abbreviations: NIHSS, National Institute of Health Stroke Scale; 
mRS, modified Rankin scale; ALP, alkaline phosphatase; SVS, susceptibility vessel sign; ICAS, intracranial 
atherosclerosis; aPTT, activated partial thromboplastin time; FDP, fibrin degradation product; LA, left atrium; 
DBP, diastolic blood pressure; AST, aspartate aminotransferase; Hct, hematocrit; LDL, low-density lipoprotein.
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addition, this model was implemented using SHAP, which can visualize the level of contribution and directional-
ity of specific input features using the entire dataset as well as individual patient information.

The highest contributing feature in our study was the fasting glucose level, followed by the initial NIHSS 
score. These variables have been consistently reported as risk factors for END in all-type as well as AF-related 
stroke  cases2,10,11. A possible explanation is that the impairment of glucose control causes vascular endothe-
lial  dysfunction31, post-ischemic inflammatory response, and neuroprotective heat-shock chaperone gene 
 attenuation32, which could exacerbate post-stroke brain damage through increasing lactate production and lead-
ing to the breakdown of the blood–brain barrier, development of brain edema and hemorrhagic transformation, 
and enlargement of infarct  volume18. The initial neurological functional deficits represented using the NIHSS 
score and mRS were also known to be prone with symptomatic intracranial hemorrhage, malignant edema or 
stroke-related  infection33, which are important causes of  END2. In fact, symptomatic cerebral hemorrhage of the 
hemorrhagic transformation subtype was positively associated with END in this study. In addition, homocyst-
eine, which is related to vascular endothelial  dysfunction3, and fibrin degradation product and D-dimer, which 
are important hematologic markers related to the coagulation system and thrombosis, were important features 
similar to previous  studies34–36. Other features were SVS presence implying large-size infarction; specific ischemic 
lesion location limited to anterior or posterior  circulation37; cardiac electrophysiological, and echocardiographic 
markers such as QRS axis, T axis and left atrium diameter; alkaline  phosphatase38,39 as surrogate markers of 
atherosclerosis, systemic inflammation, malnutrition, or metabolic syndrome; and the burden of atherosclerosis, 
such as concurrent intracranial  atherosclerosis37,40. Among cholesterol lipoproteins, total cholesterol and LDL 
were included as important features in this study, which have been previously reported as important  predictors41.

Figure 4.  Partial SHAP dependence plot of the four representative features. Values are plotted with a scatter 
plot and a regression line represented with the orange line of mean and shade of SD. A red diamond represents 
a cut-off value of the variable. Histograms on the right and top of each plot are distributions of the SHAP and 
values of variables. Abbreviations: NIHSS, National Institute of Health Stroke Scale; LA, left atrium; LDL, low- 
density lipoprotein.
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Interestingly, the clinical implication of cut-off values in selected features may be applicable to real-world 
clinical practice. With regard to initial stroke severity measured using the NIHSS, cut-off values in the SHAP 
partial dependence plot were presented according to the effect direction of END prediction, suggesting that 
patients with severe stroke (NIHSS ≥ 15) tended to develop END, thus emphasizing that awareness and close 
medical attention are necessary for these patients, and patients with mild to moderate stroke (NIHSS ≤ 6) have a 
lower chance of developing END. Some cut-off values were statistically significantly similar to the clinical values. 
Indeed, the cut-off value for fasting glucose predicting END in our study was 116 mg/dL, which corresponds to 
the current diagnostic criteria for diabetes mellitus (≥ 126 mg/dL)42.

The SHAP and its corresponding graphs, which were used to evaluate the effect of continuous variables 
on the prediction of END, were characterized by four patterns. First, a positive correlation with or without a 
sigmoid or double sigmoid shape was observed. The initial glucose level, fasting glucose level, initial NIHSS 
score, homocysteine, D-dimer, fibrin degradation product, initial diastolic blood pressure, total cholesterol, 
QRS-axis, and T-axis corresponded to this pattern. Most of these variables have been reported as predictors of 
END in previous  studies2. Second, a U-shaped or J-shaped pattern with both cut-off values was observed for 
aspartate aminotransferase, alkaline phosphatase, total bilirubin, and LDL cholesterol. The lower cut-off value of 
each feature may have been associated with poor nutritional status and over the upper cut-off value may imply 
comorbid conditions including liver disease and hyperlipidemia. However, it is not possible to investigate the 
underlying pathomechanisms of these phenomena in this study. Third, the following had a negative correlation 
with END, with a reverse S or J shape: LA diameter and uric acid. In particular, the negative association between 
LA diameter and END is not consistent with the positive correlation found in a previous  report43. However, 
more accurate parameters, such as the LA volume index, have recently been identified as important predictors. 
Considerable imputation (21.1%) could lead to incorrect directions and biased results. Finally, a bizarre pattern 
with multidirectionality was observed in the activated partial thromboplastin time.

One strength of our study is that our interpretable ML model was constructed using many variables, includ-
ing demographics and laboratory, radiological, and echocardiographic findings, all of which can be obtained 
upon arrival at the hospital. Additionally, an interpretable and explainable ML model was created to promote 
the use of applications for making clinical decisions. Our study demonstrates the potential of interpretable ML 
methods to predict END and individualize such predictions. Previous studies have focused on each risk factor 
individually and its pathophysiological interpretation, but there has been a shortage of clinical use of a large 
combination of variables  once3–5. Moreover, no standardized risk stratification scheme for predicting END has 
been available until now. Therefore, our ML model has the advantage of being able to predict END using diverse 
variables extracted from real-world clinical situations upon arrival at the hospital.

Our study has some limitations. First, the implementation and evaluation of the model were difficult to 
generalize because of the lack of external validation. Although this study is based on a multicenter dataset, it is 
difficult to clearly evaluate the exportability of the model if external validation is not carried out, particularly 
considering that Light GBM is prone to an overfitting problem. However, to the best of our knowledge, this is 
the first ML study based on a multicenter and nationwide dataset reflecting various environments across cent-
ers. This could partially contribute to the generalizability and representativeness of our ML model because our 
model could be generally applicable in various external conditions. Nonetheless, further verification is required 
through well-designed prospective clinical studies and external validation in the future. Second, since this was a 
registry-based study with a retrospective design, the ML model’s performance is not sufficient to be an absolute 
criterion for clinical use. It is necessary to develop a more accurate prediction model, and discover novel bio-
markers, especially using neuroimaging with more advanced analysis methodology, for a deeper understanding 
of the pathophysiology, in parallel. Third, a considerable amount of data was missing because of the multicenter 
retrospective nature of the study. Although imputation of missing data was performed using the ML technique, 
the results may be biased and contradict previous findings. In particular, it seemed to occur with some elements 
(such as left atrial size) that were less important. In addition, laboratory and imaging protocols in each center 
were not concretely established before data collection. Additionally, Holter and electrocardiography parameters 
were not standardized; therefore, many variables were excluded.

In conclusion, ML algorithms, using the LightGBM model in particular, can be used to predict END in 
AF-related stroke cases. New and diverse predictors for END were revealed through this ML model, suggesting 
that the pathophysiology of END development could be a complex mechanism. Further verification through 
prospective clinical studies is required.
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