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ABSTRACT Gait analysis is one of the most basic methods for assessing a patient’s biopsychological status.
Doctors can distinguish people with mental and neurological disorders by monitoring their gait. To perform
gait analysis in a more quantitative and accurate manner, many studies have used inertial measurement
units (IMUs), cameras and ground reaction force platforms. However, conventional gait analysis requires
sensors to be attached to the subject’s body, and some of them are cost prohibitive. Currently, studies of
noncontact gait analysis using radar sensors are being performed. Such studies have successfully measured
several gait parameters associated with the noncontact method but have been unable to distinguish between
individual legs. In this study, we proposed a method for noncontact gait analysis with a treadmill that could
separate the left and right legs using multi-input and multi-output frequency-modulated continuous-wave
(MIMO FMCW) radar. By recognizing two legs in a range-Doppler map and estimating their angles, ranges
and velocities, the gait parameters of the individual legs could be identified. We performed experiments
with 15 participants in 4 scenarios (walking, running, left leg limping, right leg limping) and compared
gait parameters obtained using FMCW radar and IMUs. The gait parameter measurements were validated
using the intraclass correlation value, and they showed excellent agreement except for flight time. Moreover,
a parameter was identified that can accurately detect gait asymmetry, and its sensitivity (0.83) and specificity
(1.00) were validated. Our future research will analyze not only feet movement but also arm movement so
that it can be further applied to the medical field.

INDEX TERMS Ambient-assisted living, gait analysis, gait asymmetry, individual leg perception, MIMO
FMCW radar.

I. INTRODUCTION
Gait analysis encompasses the measurement and assessment
of quantities that represent human motion characteristics.
Several fields, including orthopedics, rheumatism, neurol-
ogy, and rehabilitation, have investigated the relationship
between human walking styles and symptoms of diseases,
such as frailty and dementia. In particular, many pathological
diseases cause differences in left and right leg movements,
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which is known as gait asymmetry [1]. Early detection of
gait asymmetry can aid in early diagnosis, facilitating proper
treatment and improved prognosis.

Recently, many types of sensors have been studied and
applied to gait analysis, one of which is an inertial mea-
surement unit (IMU) sensor [2], [3]. IMU sensor-based gait
analysis systems have been proposed for continuous moni-
toring of a person’s gait and foot trajectory [4] during daily
life activities. An IMU sensor-based body alignment method
[5] can monitor the joint angles of the lower limb, but there
are limitations to measuring a fast gait. IMU sensors are also
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used for assisted sensing in gait rehabilitation [6]. Most of the
sensors usually need to be attached to the body. Unlike non-
contact sensors that can observe movement from a distance
without any interference, it is inconvenient and can cause
discomfort to the user. There have been several studies using
noncontact sensors, such as RGB cameras, depth cameras and
radar. RGB camera-based gait analysis [7] demonstrates the
classification of normal and abnormal human gaits. In [8],
image-based physical features were extracted, and small dif-
ferences could be detected between the step motions, which
resulted in gait asymmetry. The four subjects with different
diagnosed gait disorders participated in the experiment and
showed that gait asymmetry could be detectedwith high accu-
racy. However, in that study, data had to be collected, classi-
fied, and processed offline before use. In addition, the system
could not differentiate between the left and right feet. In [9],
a depth camera was used to evaluate gait symmetry with
mirrors, but the experimental environment was too complex
to construct. Most importantly, cameras can compromise pri-
vacy and are susceptible to ambient light. Table. 1 shows the
most commonly used or studied gait sensors and evaluates
them based on several items. Because of the many advantages
that radar sensors have, interest in radar has increased, and
there have beenmany studies, including people counting [10],
vital signmonitoring [11], [12], gesture recognition [13], [14]
and movement quantification [15], using radar.

TABLE 1. Qualitative comparison of gait sensors.

Previous studies involving radar include the identification
of gait-motion characteristics of subjects and the classifi-
cation of different arm motions [16]. In [17], the authors
demonstrated the possibility of using Doppler radar to extract
medically relevant parameters, such as stride rate andwalking
velocity, to characterize a subject’s gait. In [18] and [19],
the authors aimed to identify subjects and classify gait
according to an individual’s walking styles using a machine
learning technique. Data measured using radar can provide
more quantitative diagnostic evidence than a doctor’s visual
diagnosis, thus reducing intra- and interobserver variability
and the likelihood of human error in gait analysis.

Even though radar has been applied to noncontact gait
analysis in a concise and low-cost manner, previous studies

could not provide gait parameters for the left and right feet
separately with high accuracy. In the medical field, it is
important to obtain detailed gait parameters to analyze a
patient’s symptoms. In [20], older women with knee extensor
strength asymmetry were found to experience gait asym-
metry, leading to a high probability of falling, which can
be detrimental. In older adults, gait asymmetry is proven
to be relevant to fall risk, and their daily living quality can
be affected [21]. Prosthetics users who exhibit unnatural gait
patterns have been shown to require more effort to com-
pensate for their unwanted motions [22]. Moreover, in [23],
Parkinson’s disease and elderly fallers showed a great level
of gait asymmetry during the natural walking condition com-
pared with the control group. Especially for older people,
it is important to monitor gait separation of the left and right
feet.

In this paper, a quantitative gait analysis on a tread-
mill that can separate the left and right foot using
multi-input and multi-output (MIMO) frequency-modulated
continuous-wave (FMCW) radar is proposed. FMCW radar
was developed based on Doppler radar and can measure
range and velocity accurately. The IMU sensors are used as
a reference sensor to compare the agreement of the radar
measurements. IMU sensor-based motion capture methods
have previously been utilized for human motion capture [24].
In [25], the authors showed an IMU sensor for indoor position
estimation. The experiment was performed with 15 partici-
pants in 4 scenarios. In the scenarios, participants were asked
to walk and run on a treadmill, and they were then asked to
walk on a treadmill with knee flexion and wearing a knee
orthosis, which limited the walking motion, to simulate an
abnormal gait. The gait parameters, such as stride time, stance
time, flight time, step time, maximum foot velocity interval
and cadence, were measured from the left and right legs sepa-
rately, and the agreement between the FMCW radar and IMU
sensor was compared (Fig. 1). Moreover, gait asymmetry was
detected using some of the gait parameters measured with
FMCW radar.

FIGURE 1. Example of gait parameter definition.

This paper is organized as follows: Section II describes
background information on FMCW radar, including the
signal model and basic signal processing. Section III
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introduces the algorithm that recognizes the left and right
feet and extracts gait parameters. Section IV describes
the experimental environment, including the sensor setup,
baseline information, experimental protocol and statistical
analysis. Section V shows the statistical results, including
agreement between the FMCW radar and IMU sensor, and
the numerical results, including gait asymmetry detection.
Finally, Section VI draws conclusions and describes future
research.

II. BACKGROUND
A. FMCW RADAR SIGNAL MODEL
The FMCW signal transmitted in the time domain can be
defined as [26]:

x0(t) = exp
(
j2π

(
fct +

µ

2
t2
))

(1)

where fc is the carrier frequency, µ is the rate of
change (slope) of the instantaneous frequency of a chirp
signal (µ = fBW /Tc), fBW is the bandwidth of the chirp signal,
and Tc is the sweep time of a chirp signal. In an FMCW signal
frame, the number of chirps can be multiple, and the total
length of L chirps is defined as:

x(t) =
L−1∑
l=0

x0(t) Rect (t − lTc) (2)

where l is the count of the lth chirp in a frame and Rect(t) is
the normalized rectangular function. x(t) is the total length of
L chirps in a data frame.
ConsiderM targets impinging on a uniform linear array of

a total of K antenna elements. The received signal of the kth
antenna of the lth chirp is denoted by rl,k (t) and is expressed
as:

rl,k (t) =
M∑
m=1

Amx0(t − τm) exp
(
j2π

(
fd,mTcl

))
× exp

(
j
2π
λ
sk sin θm

)
+ Nl,k

for k = 1, . . . ,K (3)

where Am is the complex amplitude of the mth target, τm
is the round-trip delay corresponding to the range of the
mth target, fd,m is the Doppler frequency of the mth mov-
ing target, s is the spacing between adjacent antennas, θm
denotes the DOA of the mth target, and Nl,k is the addi-
tive white Gaussian noise (AWGN) at the kth antenna and
lth chirp. In the receiving part, the dechirping process is
defined as the multiplication of the received FMCW signal
rl,k (t) and the conjugation of the transmitted chirp signal
x∗0 (t). Here, s is assumed to be s = λ/2, where λ is
the wavelength of the carrier frequency. Ãm is the ampli-
tude of the mth target, Rm(t) is the time of arrival (TOA)
term, and vlm and zkm are the Doppler term and direction
of arrival (DOA) term, respectively. Ñl,k (t) is the receiving

noise term.

yl,k (t) = rl,k (t)x∗0 (t)

=

M∑
m=1

Am exp(−j2π(fcτm − µτ 2m/2

+µτmt − fd,mTl−k sin θm/2))+ Nl,kx∗0 (t)

=

M∑
m=1

ÃmRm(t)vlmz
k
m + Ñl,k (t) (4)

B. BASIC SIGNAL PROCESSING
The received signal passes to the analog-to-digital converter
(ADC), and equation (4) can be converted into the discrete
time equation, which is denoted by yl,k [n], where yl,k [n] =
yl,k (nTs) for n = 0, 1, . . .N −1, and Ts = 1/fs with the ADC
sampling frequency fs. The yl,k (t) can be rewritten as:

yl,k [n] =
M∑
m=1

ÃmRm[n]vlmz
k
m + Ñl,k [n] (5)

As shown in Fig. 2, the TOA term Rm[n] can be used to
estimate the range of the target using a 1D discrete Fourier
transform (DFT) for each chirp. The Doppler term vlm can
be used to estimate the velocity of a moving target using
1D-DFT for chirps in a frame. Some 2D-DFTs are used to
estimate the range and velocity at once [27].
The figure below the block labeled ’Velocity Estimation’

in Fig. 2 describes the range-velocity map after applying
2D-DFT to a received radar frame. The blue color in the
figure indicates that the value is small, meaning noise or
clutter, and the yellow color indicates the moving target.
Subsequently, peaks can be found in the range-velocity map
to estimate the DOA, corresponding to the block labeled
’Find Peaks’ in Fig. 2. The blue triangles in the red dotted
box indicate the peaks detected using the MATLAB built-in
function (findpeaks) [28].
To estimate the DOA of the detected peaks of moving

targets, DFT was applied. In the DOA estimation process,
the TOA and Doppler terms can be expressed as a new
variable Gm, where Gm = ÃmRm[n]vlm, and yl,k [n] can be
rewritten as γk,m for the mth peak at the kth antenna; (5) is
simply expressed as follows:

γk,m = Gmzkm + N̂k (6)

The ith K point DFT output of γk,m is denoted by ψi,m

ψi,m =

K∑
k=1

γk,m exp
(
−j2π
K

i(k − 1)
)

for i = 1, 2, . . .K

(7)
where K is the number of receiving antenna elements and
ψi,m is the ith-point DFT result calculated from the mth
peak in a frame range-velocity map. Before making the angle
estimation, Doppler compensation was performed due to the
use of time-division multiplexing (TDM) MIMO, which is
described in detail in the Sensor Setup part of Section IV.
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FIGURE 2. Flow diagram of extracting gait parameters from FMCW raw data.

To estimate the angle, the peak detection processing for the
DFT result is performed, i.e., angm is the peak index of the
DFT result, corresponding toM peaks inψi,m, and is obtained
for m = 1, . . . ,M ; here, M = 25 assuming enough peaks of
the left and right foot were detected.

III. METHODS
As shown in Fig. 2, this section describes the method of
identifying the left and right foot after extracting the peaks
from the range-velocity map. The method extracts medical
gait parameters from the range, velocity, and angle motion
trajectory data.

A. LEFT OR RIGHT LOWER LIMB RECOGNITION AND
NOISE SUPPRESSION USING A DYNAMIC MODEL
Before grouping the total M peaks from the range-velocity
map, we rewrite the Doppler (velocity) and TOA (range)
terms as velm and dism, respectively. Pm is the set of range,
velocity and angle information of the mth peak.

Pm = {velm, dism, angm} for m = 1 : M (8)

where M is the total number of peaks detected in the
range-velocity map.

Clustering is a useful tool for finding structures in data
sets, and the mixed likelihood method is a popular clustering
method, of which the expectation-maximization (EM) algo-
rithm is the most commonly used method. The EM algorithm
is an iterative approach that cycles between two steps. The
first step is to estimate the missing variables, called the
E-step. The second step attempts to optimize the parameters
of the model to best explain the data, called theM-step. In one
study, [29] developed an algorithm that is suitable for cluster-
ing high-dimensional data in an accurate and time-efficient
manner. In [30], the author developed a robust EM clustering

algorithm that can solve the initialization problem and auto-
matically obtain the number of clusters.

In this work, the previously extracted data set has range,
velocity and angle features. To identify whether these data are
from the left or right foot, we need to group the data according
to the features. Assuming the detected peaks Pm in (8) are all
from the moving targets, the grouping number g is set to 2,
corresponding to the left and right foot groups.

The peak data set {P1,P2, . . .Pm} is detected from the
range-velocity map with size m. Three features can be con-
sidered as a mixture model for g = 2 clusters. The peak data
could be from the d-variate Gaussian mixture model

f (p;α, θ) =
g∑

k=1

αk f (p; θk )

=

g∑
k=1

αk√
|6k |(2π )d

× exp
(
−
1
2
(p− µk )6

−1
k (p− µk )T

)
(9)

where αk > 0 denotes the mixing proportions with the
constraint

∑g
k=1 αk = 1 and f (p; θk ) denotes the density of p

from the kth cluster with corresponding parameters θk ; here,
θk is the mean vector (µk ) and covariance matrix (6k ) of the
distribution.

E-step: zkm is the missing value for each cluster and is
unknown; the conditional expected value of E(Zkm|pi;α, θ)
is substituted for zkm.

ẑkm = E(Zkm|pi;α, θ) =
αk f (pm; θk )∑g
s=1 αk f (pm; θk )

(10)

where ẑkm indicates the expectation value belonging to each
cluster.
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M-step: under the constraint
∑C

k=1 αk = 1, to maximize

L̂(α, θ; x1, . . . xn) =
n∑
i=1

C∑
k=1

ẑkmln[αk f (xm; θk )] (11)

The parameter θk consists of a mean vector and a covari-
ance matrix, and the update equations are as follows:

µk =

∑M
m=1 ẑkmxm∑M
m=1 ẑkm

(12)

6k =

∑M
m=1 ẑkm(xm − µk )(xm − µk )

T∑M
m=1 ẑkm

(13)

The update equation for mixing proportions is expressed
by

αk =

∑M
m=1 ẑkm
M

(14)

The stop condition is when ‖µ(s+1)
k −µ

(s)
k ‖ < ε is satisfied;

otherwise, the E-step, M-step and s = s + 1 are run. ε is the
stop threshold, and s is the iteration number starting from 1.
Finally, the group information is obtained from

Gm =

{
1 if ˆz1,m ≥ ˆz2,m
0 if ˆz1,m < ˆz2,m.

Once the group information is obtained, we compare the
angle information of each group and determine the left and
right groups. This is possible because the detected peaks from
the left foot and right foot have different DOAs. The peaks of
the left and right feet after grouping are shown in Fig. 3. The
point closest to the center point in each group is used as the
motion parameter for the current data frame.

FIGURE 3. Example of grouping and separating the left and right feet
according to range, velocity and angle measurements from FMCW radar.

In the ideal case, the peaks are only from the left or right
foot. However, in actual experiments, the moving targets also
come from the knee and leg, which may lead to false detec-
tion. Before the grouping process, we have the range, velocity
and angle data; however, we do not know the left or right

foot information, so we cannot perform the noise reduction
algorithm on nonsequential data. Once the data are grouped
into left and right feet, the peaks can be linked sequentially
by the group information on the time axis. Then, the Kalman
filter [31] can be performed separately for each group of
sequential data. In this part, we use the dynamic motion
model to estimate the a priori parameters (state parameters
and covariance matrix) in the prediction phase. In the update
phase, the improved a posteriori state is estimated by the
residual difference between the currently predicted and cur-
rently observed data. From Fig. 4, the result after Kalman
filtering shows smoothness, low noise and fewer false peaks.
The next step is to extract the gait parameters from the motion
trajectory.

FIGURE 4. Example of velocity, range and angle measurements before
and after applying the Kalman filter.

B. EXTRACTION OF GAIT PARAMETERS
The gait cycle is defined as the time between the initial
contact of the foot with the ground and the next occurrence
of the same event in the same lower limb. A gait cycle
consists of a stance phase and swing phase (Fig. 1). The
stance phase lasts from the heel-stride event to the toe-off
event and occupies 60% of the gait cycle. The swing phase
lasts from a toe-off event to a heel-stride event. In this study,
6 gait parameters were measured from the received radar
signal. The significance and definition of each gait parame-
ter are discussed elsewhere [1]. The methods of calculating
gait parameters using FMCW radar and IMU sensors are
described as follows.

1) STRIDE TIME
The stride time is the total amount of time of one gait cycle
and is defined as the time elapsed from one heel strike to the
next heel strike of the same foot. The stride time describes the
duration of a gait cycle. In the case of radar, when a subject is
walking toward the radar, the heel strike can be the moment
when the foot is closest to the radar, and toe off can be the
moment when the foot is farthest from the radar. In the graph
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of the measured range (Fig. 5), the heel strike is the trough
of the measured range graph, and toe off is the peak of the
measured range graph. The stride time can be measured by
measuring the time interval from the heel strike to the next
heel-strike event. Furthermore, in this study, FMCW radar
can identify the side of each foot; that is, stride time can be
measured from each foot.

FIGURE 5. Range and velocity measurements of individual legs using
FMCW radar.

2) STANCE TIME
The duration of stance time is the time interval during which
the foot is in contact with the ground in a gait cycle. This
means that the stance time is the time interval from heel
strike to toe off. In this study, because the experiment was
performed on a treadmill, the foot velocity was the same
as the speed of the treadmill belt. The stance time can be
measured from each of the left and right feet.

3) FLIGHT TIME
The flight time is the time interval while the foot is in the
air. In contrast to the stance time, the flight time is the time
interval from toe off to heel strike. The maximum speed
appears during the flight time.

4) STEP TIME
The step time is the time interval from the moment one foot
touches the floor to the moment the other foot touches the
floor. From a radar point of view, the step time can be defined
as the time interval from the heel strike of one foot to the heel
strike of the other foot following in succession.

5) CADENCE
The cadence is defined as the number of steps per minute.
For FMCW radar, the cadence can be calculated based on the
number of stance times per minute. Based on [32], sponta-
neous cadence is usually between 98 and 138 steps/min for
women and 91 and 135 steps/min for men, both applicable

to 18- to 49-year-olds. Women usually have a smaller step
length and higher cadence.

6) MAXIMUM FOOT VELOCITY AND ITS INTERVAL
The foot velocity represents the overall performance of
walking and is regarded as the sixth vital sign. It can be
simply calculated as the product of step length and cadence.
However, the FMCW radar has the capability of measuring
velocity with high accuracy. The maximum foot velocity can
be measured from the range-velocity map in every frame.
In the velocity graph (Fig. 5), the local maximum value is the
maximum foot velocity, and the interval between the peaks is
the maximum foot velocity interval.

IV. EXPERIMENTAL ENVIRONMENT
A. SENSOR SETUP
The model name of the FMCW radar was an IWR6843ISK
evaluation board from Texas Instruments with a data capture
card DCA1000EVM board. The IWR6843ISK model is a
millimeter wave sensor with a carrier frequency of 60 GHz
used for industrial applications and has a 120◦ azimuth field
of view (FOV) and 30◦ elevation FOV.

dres =
c

2BW
(15)

The bandwidth (BW) was set to 3.48 GHz, and the cor-
responding range resolution (dres) was 4.31 cm (15). The
maximum range (dmax) is proportional to the sampling rate
(fs) of the analog-to-digital converter (ADC) and inversely
proportional to the chirp slope (µ), so the maximum range
was set to 5 meters (16). c represents the speed of light
(299792458 m/s). This range is sufficient to cover the exper-
imental area and capture the gait motion on the treadmill.

dmax =
fsc
2µ

(16)

The velocity resolution (vres) is inversely proportional to
the chirp time (Tc) and number of chirps (Nc). In this experi-
ment, the chirp time was 35µsec, and the number of chirps
was 128; thus, the vres was 0.15 m/s (17). The number of
frames per second (FPS) was set to 40.

vres =
λ

2NcTc
(17)

The FMCW module IWR6843ISK has 3tx and 4rx anten-
nas, and among them, 2tx and 4rx were enabled to use
MIMO antenna topology. By using TDM, 8 elements of the
antenna array were configured as virtual antennas [33], [34].
The angle resolution of the array antenna (θres) is inversely
proportional to the number of antenna elements (Nan).

θres =
2
Nan

(18)

The number of antenna elements used was 8; therefore,
the angle resolution was 15◦. Because there is a time delay
between the transmission time of each tx when apply-
ing TDM, a phase shift occurs due to the target’s speed.
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TABLE 2. FMCW radar features.

TABLE 3. IMU sensor features.

To compensate for the phase shift and measure the angle
accurately, Doppler compensation was applied to the received
signals [35].

The detailed parameter settings in this experiment are listed
in Table 2 and Table 3. As shown in Fig. 6a, the radar was
placed at the front of the treadmill at a 30-cm distance and
at a 30-cm height from the floor. The height of the radar
was chosen to avoid interference from the signals reflected
by the hand or knee and to obtain the line of sight (LoS),
as the height of the treadmill was 13 cm. A more detailed
explanation of the radar height and angle is described in the
next subsection. The radar measured the radial velocity (vrad )
of movement and velocity along the electromagnetic wave
propagation direction.

IMU sensors have been used in several gait analysis tech-
niques, such as monitoring postoperative gait abnormali-
ties [36], fall detection [37], fall-related gait parameters
measured on a treadmill and in daily life [38], the nature
of the Parkinsonian gait [39], analysis of daily life char-
acteristics of the elderly [40] and assessment of foot tra-
jectory in humans when walking [4]. The model of the
IMU sensor used in this study was EBIMU-9DOFV5, which
is a 9-degree-of-freedom IMU sensor (E2BOX, Hanam-si,
Gyeonggi-do, Republic of Korea). We collected data by con-
necting the sensors to MATLAB (MathWorks, New York,
MA, USA) on a PC using a UART-to-USB converter board.
The IMU sensors were attached to each ankle (lateral malle-
olus). The treadmill model used in this study was KSP-1201
(HOMETREKKING, Seoul, Republic of Korea). The speed
of the treadmill was fixed at level 3 and level 6, and the
velocities were 0.6 and 1.2 m/s, respectively.

B. RADAR INSTALLATION
Fig. 6 shows the experimental setup, including FMCW and
IMU sensor installation. The radar was installed at the front
side of the treadmill, and IMU sensors were placed on the
participant’s ankle. The height of the radar in the experiment

FIGURE 6. Experimental setup of the treadmill and sensor configuration.

was chosen to avoid interference from reflected signals by the
knee or other body parts. Fig. 7 describes interference from
other body parts at different radar heights with 180-cm-tall
participants. In the range-Doppler heatmap obtained at a
30-cm radar height (Fig. 7a), the incident target signals were
from each foot (Fig. 7b). At a 50-cm height (Fig. 7d), there
was an additional signal reflected by the left or right knee
(Fig. 7d). At a 70-cm height, there were additional signals
reflected by the knee and both hands (Fig. 7f). The signals
reflected by the feet were smaller than those reflected by the
hands because they are located at the center of the main beam
compared with the feet. FMCW radar could obtain LoS over
the treadmill and avoid interference coming from body parts
other than the feet at a 30-cm height.

The radar measurement accuracy according to the azimuth
angle was also observed. Considering the angle resolution
and beam pattern, the best option is for the radar to point
directly at the participant; however, there could be minor
changes during actual use, so it is important to check the
tolerance. In Fig. 8, the quality of the range and velocity mea-
surements of radar compared by the IMU sensor is described
using the root mean square error (RMSE) (19).

RMSE =

√∑N
n=1

(
sf ,n − si,n

)2
N

(19)

sf ,n represents FMCW measurements, si,n represents IMU
measurements, and N represents the sample number of each
signal. Because the sampling rate of IMU is faster than that
of FMCW, IMU measurements are downconverted and then
used to obtain RMSE. When the radar was at 90◦ (radar
pointing directly at the subject), the RMSE of both range
and velocity measurements was at the minimum, and as the
angle decreased, the RMSE value increased. The RMSE of
the range measurement hardly increased at 80◦ compared
with 90◦; however, as the angle decreased further, the RMSE
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FIGURE 7. Range-doppler heatmap measured at different radar heights.

increased considerably. For velocitymeasurement, the RMSE
increment was not noticeable until 50◦.

C. BASELINE CHARACTERISTICS AND
EXPERIMENTAL PROTOCOL
The experiment was conducted at Hanyang University,
Seoul, South Korea. The Institutional Review Board
of Hanyang University reviewed and approved the
study protocols and monitored the study processes (IRB
No. HYUIRB-202101-015). A total of 15 participants with-
out any known diseases participated in the experiment. The
participants’ baseline characteristics are listed in Table 4. The
average age of the participants was 31.1 years, and 66.6% of
them were male. The average height, weight and body mass
index (BMI) of the participants were 1.70 m, 69.60 kg and
23.78 kg/m2, respectively. The average standard deviations
of stride time, stance time, flight time, step time and cadence
of participants were calculated using an IMU sensor.

People have their own speed of walking and running.
Fig. 9 shows the range and velocity of each foot measured by

FIGURE 8. RMSE of the range and velocity radar measurements against
the IMU sensor according to the radar installation angle.

TABLE 4. Baseline characteristics.

FMCW radar when the treadmill speed increased from level 1
(0.2 m/s) to 6 (1.2 m/s) and then decreased from level 6 to 1.
From 0 to 15 seconds, the treadmill speed increased from
level 1 to 6, and the treadmill speed then decreased to level 1.
As the treadmill speed increased, the peak velocity of each
foot also increased, and the feet moved faster. To perform the
experiment, the treadmill speed was fixed to levels 3 and 6 as
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representative speeds of walking and running, respectively,
even though the proposed method could utilize a variety of
ranges and speeds.

FIGURE 9. Range and velocity measurements with a speed change from
level 1 to 6.

In the experiment, the participants were asked to walk on
the treadmill while wearing IMU sensors on their ankles.
In the experimental protocol, scenarios of walking at differ-
ent velocities and those that can simulate asymmetry were
included. The participants were asked to wear a knee orthosis
when simulating gait asymmetry. Fig. 6b shows the place-
ment of IMU sensors at the ankle (lateral malleolus) and the
orthosis attached to the knee. In the experimental protocol,
the participants were initially asked to walk on the treadmill
for 1 minute at a fixed speed (0.6 m/s). Second, they were
asked to run on the treadmill for 1 minute at a fixed speed
(1.2 m/s). Third, they were asked to walk on the treadmill for
1 minute at a fixed speed (0.6 m/s) wearing a knee orthosis
on their right leg. Finally, they were asked to walk on the
treadmill for 1 minute at a fixed speed (0.6 m/s) wearing
a knee orthosis on their left leg. The data were collected
together with a time stamp and then synchronized.

D. STATISTICAL ANALYSIS
Age, sex, height, weight, and body mass index were obtained
from each participant, and gait parameters, including stride
time, stance time, flight time, step length and step time, were
obtained using an IMU sensor as baseline characteristics.
Numerical data are presented as means ± SD, and categor-
ical data including sex are presented as the number (%).
The agreement of individual and averaged gait parameters
measured using FMCW radar with those measured using the
IMU sensor was evaluated using the intraclass correlation
coefficient (ICC). Bland-Altman (BA) plots were generated
to graphically present the amount of bias, and the levels
of biases and limits of agreement (LOAs) were evaluated
between the FMCW radar measurements and the IMU sensor
measurements. The cutoff value for the gait asymmetry indi-
cator (20) was decided using Youden’s J index in the receiver
operating characteristic (ROC) curve analysis. The diagnostic

TABLE 5. Computer specifications.

performance of radar for gait asymmetry was evaluated.
All statistical analyses were performed using MATLAB ver-
sion 2019b. A p-value of< 0.001 was considered significant.

V. RESULTS
The whole algorithm was run using a desktop computer,
and its specifications are described in Table 5. Among the
parts of the algorithm, the peak-finding part took the longest
time, at 0.028 (29.4%) seconds per frame. The second most
time-consuming part was the clutter-removing part, which
took 0.022 (23.2%) seconds. The whole algorithm took
0.095 seconds per frame.

Fig. 10 shows a scatter plot and BA plot of individual
gait parameters of each left and right leg from the FMCW
radar and IMU sensors. Except for cadence, which was
averaged over 1 minute, the maximum foot velocity interval
(ICC 0.981 [confidence interval, CI 0.980-0.982]) and stride
time (ICC 0.972 [CI 0.971-0.973]) showed the greatest level
of agreement overall, and the square of the Pearson correla-
tion coefficient r2 was 0.96 and 0.95, respectively, which was
close to 1. The mean bias between the FMCW radar and IMU
sensor was zero. The individual stance time showed a high
level of agreement (ICC 0.925 [CI 0.921-0.928]), although
this agreement was relatively smaller than the agreement met-
rics for individual stride time and the maximum foot velocity
interval. The r2 was 0.87, and the mean bias between the
FMCW radar and IMU sensor was 0.01. The individual flight
time showed a relatively low level of agreement (ICC 0.648
[CI 0.633-0.663]); however, the mean and LOA width of
bias measurements were similar to those of stride time and
stance time. The r2 was 0.44, and the mean bias between the
FMCW radar and the IMU sensor was 0.01. The individual
step time showed a good level of agreement (ICC 0.823 [CI
0.812-0.835]), r2 was 0.69, and the mean bias between the
FMCW radar and IMU sensor was 0.00. The cadence showed
an excellent level of agreement (ICC 0.999 [CI 0.999-0.999]),
r2 was 1.00, and the mean bias between the FMCW radar and
the IMU sensor was 0.08.

All the individual gait parameters showed similar LOA
widths and mean biases, and the ICC value was relatively
proportional to the amount of time spent in a single stride
cycle. The cadence showed excellent agreement, as it is
the number of steps averaged per minute. Table 6 shows
the statistical values of all the individual and averaged gait
parameters between FMCW radar and IMU sensors. Most of
the gait parameters showed a great level of agreement except
for the individual flight time, but the LOA width and mean
bias were similar. All the parameters showed a greater level
of agreement when averaged, and the LOA width decreased
dramatically.
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FIGURE 10. Scatter plot and BA plot of individual gait parameters using FMCW radar and IMU sensors.

TABLE 6. Agreement of gait parameters using FMCW and IMU sensors.

Fig.11 describes the RMSE of gait parameters of individ-
ual participants except for the cadence, for which the ICC
was 0.999 and very accurate. Among all the RMSEs, that
of the 8th participant was especially large compared with
those of the other participants because that participant was

unaccustomed to that particular treadmill speed, which made
his/her step awkward (Supplementary material). Compared
with the other participants, the 8th participant had a large
error, but it was still low compared with the gait parameter
measurements in Table 4.
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FIGURE 11. Bar graph of RMSE of each participant’s gait parameters.

FIGURE 12. Range and velocity measured by FMCW radar while wearing a
knee orthosis on the right leg.

TABLE 7. Recognition of gait asymmetry using FMCW radar.

By observing the gait of the abnormal group, differences in
maximum foot velocity and step length were captured. The
leg side with the knee orthosis showed reduced step length
and maximum foot velocity (Fig. 12). By using these factors,
we proposed a parameter called the gait asymmetry indicator
(GAI, (20)), which can detect and quantify the level of gait
asymmetry.

GAI =| MFVR/MFVL − 1 | (20)

The ratios of peak velocity and step length for the right
and left feet can indicate gait asymmetry. MFV represents
maximum foot velocity, and the subscripts R and L represent

FIGURE 13. Boxplot and ROC curve.

right and left, respectively. The greater the GAI is, the greater
the level of gait asymmetry. Two gait parameters, maximum
foot velocity and step length, were used for the GAI and
evaluated using an ROC curve (Fig. 13a). The c-statistic of
maximum foot velocity was 0.95, and that of step length was
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0.845, which showed that using maximum foot velocity for
GAI was better (Fig. 13a). The abnormal group showed a
higher GAI than the normal group, as shown in Fig. 13b
(median [interquartile range] of 0.30 [0.20-0.45] Hz vs. 0.03
[0.02-0.08] Hz, respectively; p< 0.01). Using maximum foot
velocity as a GAI parameter showed a sensitivity of 0.83,
a specificity of 1.00 and a correct classification rate of 0.91 at
the 0.178 threshold set at the maximum value of Youden’s
J-point (Table 7).

VI. CONCLUSION
In this paper, we proposed a new method of noncontact gait
analysis using MIMO FMCW that can differentiate between
the left and right foot. The received signals were preprocessed
to obtain data on velocity, range, and angle, and those data
were utilized and grouped to separate left and right feet. Then,
gait parameters were calculated and compared with those
measured by IMU sensors. To evaluate the accuracy of the
algorithm, 15 participants were recruited and participated in
the experiment. In the experimental protocol, the participants
were asked to walk, run normally and walk with a knee
orthosis on their left and right leg, respectively, on a treadmill.
The correlation of gait parameters was high between the two
sensors and was evaluated using scatter plots, BA plots, ICCs
and other statistics. Moreover, we suggested a parameter,
the GAI, that measures the ratio of gait parameters from the
left and right feet to quantify the level of asymmetry of
the left and right feet, respectively, and it could detect gait
asymmetry with high accuracy. The gait analysis devices in
use to date have been contact methods or are very expensive.
Radar is being researched for gait analysis because it is a
relatively inexpensive technology and can provide noncontact
gait analysis. There have been several studies of noncontact
gait analysis using CW and FMCW radar, but most of them
could not measure gait parameters of the left and right side
separately. This study shows that MIMO radar types can pro-
vide noncontact gait analysis in a more accurate and detailed
manner. The limitation of this work is the absence of data
from actual limping patients. However, simulated data using
orthosis devices were obtained in this work, and the feasibil-
ity of MIMO FMCW radar to separate abnormal gaits was
validated. In the next step, we plan to gather data from real
patients by cooperating with medical doctors. In conclusion,
MIMO FMCW radar offers a promising technology for gait
analysis at home or in the clinic that can complement existing
tools and aid healthcare professionals in early diagnosis and
the course of treatment.
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