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ABSTRACT We present a glasses-type wearable device to detect emotions from a human face in an
unobtrusive manner. The device is designed to gather multi-channel responses from the user’s face naturally
and continuously while he/she is wearing it. The multi-channel facial responses consist of local facial images
and biosignals including electrodermal activity (EDA) and photoplethysmogram (PPG). We had conducted
experiments to determine the optimal positions of EDA sensors on the wearable device because EDA signal
quality is very sensitive to the sensing position. In addition to the physiological data, the device can capture
the image region representing local facial expressions around the left eye via a built-in camera. In this study,
we developed and validated an algorithm to recognize emotions using multi-channel responses obtained
from the device. The results show that the emotion recognition algorithm using only local facial images
has an accuracy of 76.09% at classifying emotions. Using multi-channel data including EDA and PPG, this
accuracy was increased by 8.46% compared to using the local facial expression alone. This glasses-type
wearable system measuring multi-channel facial responses in a natural manner is very useful for monitoring
a user’s emotions in daily life, which has a huge potential for use in the healthcare industry.

INDEX TERMS Wearable device, emotion recognition, affective computing, facial expression, biosignal,
physiological responses.

I. INTRODUCTION
Emotion recognition is a technology to predict people’s emo-
tional states based on user responses such as verbal or facial
expressions [1]; this technology can be applied in various
fields, such as health care [2], [3], gaming [4], and educa-
tion [5], [6]. To aid these applications, the technology should
recognize emotions in real-time and naturally while the user
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is experiencing them. Recently, wearable devices have gar-
nered attention for emotion recognition applications [7].

Most existing wearable devices for emotion recognition
have relied on biosignals. The biosignals are electronic sig-
nals that indicate physiological responses, such as a pulse or
a sweating response. These signals originate from changes
in the autonomous nervous system (ANS), which is a con-
trol system that regulates human bodily functions. With
regard to the ANS, there is a risk of misunderstanding
a user’s emotional state if the wearable devices relies on
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the biosignals alone, because the ANS is affected not only
by emotion but also by other factors, including cognitive
stress [8], [9] or physical activities [10]. For instance, many
people in workplaces experience physical activities and cog-
nitive stress, which affect their biosignals; therefore, using
only the bio-signal may not be reliable [11]. In this case,
it would be desirable to use additional modalities to obtain
more reliable emotional information.

Facial expression can be used as an additional modality
here as it provides important cues for emotion recognition.
This modality is already used in studies on wearable
devices [12]. There are two methods for extracting facial
expressions via the wearable devices. The first is the
sensor-based method, which measures the movements of
facial muscles to reflect emotions [11], [12]. This approach
might cause discomfort due to contact with the skin on the
facial muscles.

The other method is the camera-based method, which cap-
tures facial expressions using a camera [13]. This method has
advantages over the sensor-based method because the camera
is not attached to the skin. Nevertheless, camera-based meth-
ods have been not used frequently in wearable devices
because the modules were cumbersome and heavy to
wear [14]. However, owing to advancements in technology,
the sizes of camera modules have become small enough to
wear comfortably.

Recently, camera modules have been used in commercial
wearable devices [15]. In particular, they have been primarily
used in head-mounted wearable devices to capture the user’s
perspective, and there have also been emotion recognition
studies using the captured pictures. However, these studies
used pictures to recognize the emotions of other persons and
not those of the users [16]. We assume that it is beneficial to
use camera modules for monitoring the user’s own emotions
using these glasses-type wearable devices.

In addition to situational changes, individual differences
between users could also affect the use of wearable devices.
We have considered two cases as examples. Some people
inherently have less sweat gland activity or less heart rate
variability [17], [18]. In this case, Biosignal based device
might not properly recognize emotions. On the contrary, some
people show very little difference in facial expression. In this
case, facial expression based wearable devices would not be
suitable for such users. Multi-channel facial wearable devices
could widen the customer range by increasing the robustness
of these device to personal differences.

In summary, to check the feasibility of our idea, we propose
the following two hypotheses.

1. The local, side facial image can be used to monitor a
user’s emotional state.

2. Combining local facial expressions and biosignal
yields a better outcome than using a single channel.

To validate this hypothesis, we developed a glasses-type
wearable device that can measures multi-channel facial
responses; local facial expressions and biosignals. Using
the developed device, we conducted emotion recognition

TABLE 1. Comparison with related studies. ECG: Electrocardiogram, EEG:
Electrocardiogram, and SKT: Skin temperature.

experiments with video clips to elicit emotional responses.
The experimental results demonstrated that we were able to
classify the four emotions with an accuracy of 76.09%, which
is higher than the case where a single channel is used.

Our study proposed a new wearable system to recog-
nize user’s emotions using multi-channel responses including
facial expression. The proposed system provides more accu-
rate, stable, and natural emotion recognition for healthcare
applications, for instance monitoring patients with mental
disorder [19]–[21].

A preprint of this paper is at https://arxiv.org/abs/1905.05
360 [22].

A. RELATED WORKS
Table 1 lists related studies. We mainly compared the studies
that used glasses-type wearable devices or conducted experi-
ments to recognize the induced emotional state.

Most studies using glasses-type wearable devices were
conducted mainly using forced expression-based recognition
experiments, which means that the user deliberately made
facial expressions. Such experiments lack natural expressions
from the user. The most natural way to obtain the emotional
state is to record the user’s response while performing some
task, such as watching a video. Therefore, we designed an
experiment to induce emotional states and captured natural
expression of facial expression. Although such experiments
have been used in studies on biosignal-based wearable
devices [24], [26], and [27], they have not been used
facial expression-based wearable devices. Therefore, our
study could help researchers studying facial expression-based
wearable devices for emotion recognition in situations with
high naturalness.
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FIGURE 1. Proposed hardware. (1) EDA sensors that measure the skin
conductance from the user’s nose and mastoid. (2) PPG sensor with an
ear clip that measures the pulse of the user’s earlobe. (3) Built-in camera
that measures the user’s facial expressions around the eyes.

Furthermore, our experiment was conducted with several
subjects. Because emotional response patterns are highly
dependent on individual differences [14], a large number
of subjects is important to generalize the results. In this
aspect, our study used a much larger number of subjects
than other studies on wearable devices, except for large-scale
research [24] and [27]. This number of subjects guarantees
the reliability of our results.

We published our collected data online. The dataset is
available at https://neurocomputinglab.wixsite.com/neulab/
products.

II. METHODS
A. HARDWARE IMPLEMENTATION
The multi-channel wearable device for emotion recognition
was designed to extract facial expressions and biosignal.
To easily acquire measurements, the device was designed
in the form of glasses-type wearable, similar to Google
Glass [15] or the prototype sunglasses for emotion recogni-
tion presented at CES 2017 [28]. The Internet protocol (IP)
camera module was attached to the left side of the device
to capture the local facial expressions around the left eye
(from the eyebrows to the cheeks). To measure electrodermal
activity in response to emotional state change, electrodermal
activity (EDA) sensors were attached to the surface of the skin
in contact with the nose and mastoid. To perform plethys-
mography (PPG), ear-clip-type SpO2 sensors were attached

FIGURE 2. Samples of local facial expressions obtained using the built-in
camera in the wearable device.

FIGURE 3. Candidate positions for EDA sensor placement. The orange
dots indicate the fingers used to measure the reference signal.

to the earlobes, which has been used frequently in previous
studies [29], [30].

We used wireless communication for transferring acquired
data. Two different wireless communication protocols were
used for each modality to prevent wireless interference. The
facial expression images were transferred via WIFI, and
the biosignals were transferred via Bluetooth protocol. All the
attached devices were powered using a custom rechargeable
Li-polymer battery of capacity 3000 mAh; the devices could
be continuously operated for about 2 h. The device was
designed to swap out the battery when the battery runs out.

B. DETERMINING EDA SENSOR LOCATION
ON THE GLASSES
Fig. 2 shows the facial expression samples acquired from the
built-in camera. The parts of facial expression were captured
on side of the face.

The position of the EDA sensors was determined more
carefully than those of the other sensors. The sweat glands,
which are the source of the EDA signal, are distributed with
different densities in the body [31]. Therefore, it is necessary
to find the best location to contact the EDA sensors. Two
facial parts were selected considering natural contact with the
device and little change by the facial expression by analyzing
the skin movement during the facial expression using the
3D camera [32]; nose and mastoid. Then, we prepared three
candidate positions by a combination of these two parts.
The first position is on both sides of the nose. This position
can be contacted by the nose-supporting part of the glasses.
The second is on both sides of the mastoid, which is just
behind the ears. This position can be contacted by the earpiece
of the glasses. The last position is a combination of the ear
and mastoid. The EDA signal measurement was analyzed to
compare these positions in the experiments. The experiments
were carried out with 10 subjects. The subjects sat on a chair
90 cm away from a 19-inch LCD monitor. EDA sensors were
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placed in the three candidate positions and on the left index
and middle fingers, and the subjects were asked to watch
video clips for approximately 90 minutes. The EDA signals
were measured simultaneously from all the positions while
the subject watched the movie clips. All the procedures in the
experiment were certified by the Institutional Review Board
of KIST-2015-012.

C. INDUCED EMOTION RECOGNITION

FIGURE 4. Overall flow diagram of the induced emotion recognition
experiment. We first labeled emotional video clips by online survey
(upper part) and acquired emotional biosignal and facial expression
response via the proposed wearable device while the user watched the
labeled emotional video (lower part).

FIGURE 5. Questionnaire form to evaluate the arousal score resulting
from emotional videos in the online survey.

D. VIDEO STIMULUS SELECTION BY USER TAGGING
We prepared a video-clip-based stimulus to induce emotion
in the subjects. We intended to induce the four-dimensional
emotional state [33]. The target emotional states include high
arousal with high valence (HAHV), high arousal with low
valence (HALV), low arousal with low valence (LALV), and
low arousal with high valence (LAHV), which correspond to
each quadrant of the arousal–valence plane [34].

Two-minute movie clips were used as stimuli to induce
emotions. All clips were extracted from Korean movies
because the language was important for inducing the HAHV
state in the pilot study. The movie clips were carefully
selected to induce only one emotion to avoid mixing with
other emotions. Ten movie clips were selected for each emo-
tion category. Next, we recruited sixty subjects for the online

FIGURE 6. Questionnaire form to evaluate the valence score resulting
from emotional videos in online survey.

FIGURE 7. Distribution of SAM scores on arousal–valence plane based on
survey results.

survey, and each subject ranked the degree of emotion of
the clips to determine whether the stimulus induced strong
emotions. During the survey, each clip was watched and
each subject scored arousal and valence between 1 and 9.
Figs. 5 and 6 are the questionnaires after watching each emo-
tional video. For subjects unfamiliar with the concept of
arousal and valence, the SAM (Self-Assessment Manikin)
pictures were provided. After the survey, the clips were sorted
according to the distance from the origin, and two clips were
excluded for each quadrant plane, which were close to the
origin. As a result, a total of 32 video clips were selected.

Fig. 7 indicates the distribution of the SAM (Self-
AssessmentManikin) scores obtained from the online survey.
Each circle represents the video clip. The position of the circle
indicates the average SAM score of the clip, and the width
and height of the circle represent the standard deviation of
the valence and arousal scores of the clip, respectively. The
distance from the center (5, 5) was measured. The average
distance for the HAHV videos was 2.52 and the standard
deviation was 0.48. The average distances for the HALV,
LALV, and LAHV videos were 3.56 (standard deviation:
0.51), 2.48 (standard deviation: 0.37), and 2.56 (standard
deviation: 0.42).
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FIGURE 8. Flowchart of emotion-inducing experiment.

E. EXPERIMENT TO ACQUIRE INDUCED
EMOTIONAL RESPONSE
Emotion-inducing experiments were conducted using the
selected stimuli. The experiment was organized into 32 trials.
In each trial, the stimulus clips were shown for 2 min and the
neutral clips for 30 s. Neutral clips were shown to neutralize
the emotional state between trials. The emotions induced
during the trials were counterbalanced to avoid label bias.
E-Prime 2.0 [35] was used to present the stimulus.

Experiments were conducted using stimulus clips. A total
of 24 subjects participated in the experiment. Data from the
four subjects were excluded due to technical error during
data acquisition. A 1.7 m × 1.9 m × 3.0 m shield room
was used for the experiment. The room contained a 19-inch
monitor and a two-way speaker. The distance between the
subject’s head and the monitor was 1 m. To acquire data,
the subject wore the wearable device and the physiological
signals and facial expressions were recordedwhile the subject
watched the clip. Biosignal data was recorded at 180 Hz
and transferred via Bluetooth. The facial expressions were
captured at 5 Hz and transferred over Wi-Fi. The data acqui-
sition procedure was manually programmed in MATLAB
2017a. Furthermore, to compare the performance of emotion
recognition with the reference, we attached the EDA and PPG
sensors to the subject’s left hand. A Biosemi Active Two
(Biosemi Inc.) was used to acquire the EDA and PPG signals
on the subject’s finger. The sampling rate of the reference
EDA and PPG signals was 512 Hz.

The subjects were in the age group of 21 to 35 years,
the average age was 26.7. The experimental protocol was
carefully explained to the subjects upon arrival. The exper-
iment consisted of 32 trials. In each trial, a 30-s-long neutral
video clip was shown to neutralize the former emotional
state of the subject. Then, 2-min-long emotional video clips
were shown followed by a 2-s-long black screen. Subjects
were requested to rest for 5 min after completing 16 trials
to minimize the effect of stress on the physiological signal.
The total trial was 1 h and 32 min long, but the entire
process, including preparation, took ∼2 h. All procedures
in the experiment were certified by the Institutional Review
Board of KIST-2016-013.

F. DATA PROCESSING
The acquired raw data were processed in a traditional
feature-basedmachine learningmanner. Emotion-related fea-
tures were extracted from each raw data channel. The features
were extracted from a 120-s-long biosignal per trial. The

observation length for feature extraction was 100 s, and
the features were extracted by moving the observed region
in increments of 5 s. Therefore, three feature vectors were
acquired from each trial and, in total, 160 feature vectors
were acquired for each subject. Two types of features were
extracted: statistical features and domain-related features.

The statistical features were extracted from the raw signal
regardless of the acquired channel. The commonly used sta-
tistical features extracted from the raw signal are: (1) average
value, (2) standard deviation, (3) mean of absolute value of
the first difference, (4) mean of absolute value of the second
difference, (5) ratio of mean of absolute value of the first dif-
ference and standard deviation, and (6) ratio of mean of abso-
lute value of the second difference and standard deviation.

Table 2 shows the domain-related features that were pro-
cessed differently for each channel. For the PPG signal,
the average acceleration [14] of the pulse and heart rate
variability (HRV)-related features was extracted. The HRV
features are extracted mainly from the peak-to-peak (PP)
interval and power spectral density (PSD) of the PP inter-
val. Fig. 9 shows the PPG signal with PP interval and the
corresponding PSD. In the EDA signal, most features were

FIGURE 9. Extraction of HRV-related features from PPG signal. the orange
dots indicates the detected peak of PPG signal for extract PP(Peak to
peak) interval, the orange dots presented upper figure indicate peaks in
each pulse to extract PP Interval.

FIGURE 10. Extraction of SCR-related features from EDA signal. the
orange line and dashed line indicates the mean and standard deviation of
skin conductance signal. the orange dots indicates the local maximum of
the signals to extract SCR-related features.
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related to the skin conductance response (SCR) [36]. Two
low-pass filters were used to acquire the SCRs in different
time resolutions. First, the raw signal was passed through
a low-pass filter with 0.2 Hz cut-off frequency, which was
called the skin conductance slow response (SCSR). Second,
a low-pass filter with a cut-off frequency of 0.08 Hz was
applied, and the signal was called the very slow response
of the skin conductance (SCVSR). The SCR-related features
were extracted from each preprocessed signal. we extracted
the number of the SCR in the SCSR and the SCVSR, and the
average amplitude of the SCR in the SCSR and the SCVSR.
andwe also extract the recovery time of the SCR in the SCSR.

After extracting the biosignal features, a feature-selection
method was applied to filter the features that did not vary
between emotional states. The selection algorithm used was
ReliefF [37].

TABLE 2. Types of domain-related features.

To process the response to facial expression, we used
the Fisherface method [38]. We used this method because
this method does not need facial landmarks that cannot be
acquired in our local facial expression. Labels were deter-
mined according to the clip the subject watched, regardless
of whether the subject actually expressed emotion. First,
principal component analysis (PCA) was applied to reduce
the dimensionality of the captured images. The principal
components and the eigenvalues were extracted from the
training dataset and sorted based on the magnitude of the
eigenvalues.We rejected the eigenvectors with the two largest
eigenvalues because the components that have large eigenval-
ues typically describe illumination changes [38], not expres-
sion changes. Additionally, we also rejected components with
small eigenvalues to remove noise. The smallest eigenvectors
that summation of its eigenvalues accounts for 15% of the
total summation were rejected.

After obtaining the refined eigenvectors WPCA, The pixel
values of the captured images were mapped on to the selected
components. The projected values were analyzed using linear
discriminant analysis (LDA) to extract more discriminant
features based on the emotional state of the user. A weight
matrix W was obtained from the LDA, which satisfies the
following expression [38]:

WLDA = argmaxW
|W TW T

PCASBWPCAW |

|W TW T
PCASWWPCAW |

The extracted feature vectors were used to train the emo-
tion recognition model. We used the support vector machine
with RBF kernel as the emotion recognition model. The size
of the SVM kernel was 0.5 for facial expression and 0.2 for
other modalities.

To recognize the arousal and valence states, we used the
binary RBF SVM model. To recognize quadrant emotional
states, we implemented a two-level classification model
because combining binary classifiers in multiple levels could
be a more optimal solution to recognize quadrant emotional
states that can be decomposed into arousal and valence
states [39]. Therefore, we first recognized the user’s arousal
and valence states separately and then combined each state to
estimate the user’s quadrant emotional state.

G. FEATURE FUSION AND CLASSIFICATION
Our wearable device can acquire the user’s emotional

response from biosignals and facial expressions simultane-
ously. To recognize the emotional state of these two indi-
vidual sources of information, we fused acquired biosignal
and facial expression features. The most critical challenge
in combining these features was that the sampling rate in
each channel was different. The built-in camera module can
capture 500 sequences of images while extracting a biosig-
nal feature vector within a 100-s-long biosignal. Therefore,
we attempted to extract a representative expression image
from the sequential images. However, simple averaging is
not effective because there are so few meaningful expres-
sions in the sequence of expression images as the emotional
expressions occur in a short period of time. In particular,
the initial sequences contain few emotional expressions. This
is because we designed the stimulus video clip to gradually
induce the user’s emotional state. Therefore, we designed
the algorithm to extract meaningful expression data from the
facial images sequence with respect to the biosignal features.
Algorithm 1 describes the extraction of meaningful expres-
sion data. We first divided the user eigenface scores into
two groups using the k-means clustering algorithm. Then,
we computed the group membership of the sequence in an
initial 30 seconds to find the group with emotional expres-
sions. Finally, the representative fisherface was obtained by
averaging the emotional expression group. The obtained fish-
erface score was used to match facial expression features.

Finally, we validated the feasibility of our wearable system
by comparing the performance of emotion recognition. There
are four validations to measure the performance. The first
was the accuracy using reference biosignal. These signals
include PPG, the GSR signal from the user’s left hand,
which was acquired by the Biosemi ActiveTwo. The sec-
ond was the validation using wearable biosignal and facial
expression independently, the last was the accuracy using the
feature-fused modality.

We validated each channel in a leave-one-trial-out manner.
In a preliminary study [40], we evaluated the data in 10-fold
cross-validation with random sampling. This data split has
the problem that the training data was extracted and the test
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Algorithm 1 Pseudo Code for Emotion Recognition
Input:
SFacial: sequence of facial expression images
SEDA, SPPG: sequence of facial EDA biosignal, facial PPG
biosignal
Tinitial: initial time to start emotion recognition (second)
Tfinal: final time to stop emotion recognition (second)
Output: Emotion recognition results using the wearable
system at each time
Assign theinitial variable: offset = 0, Tfinal = 120sec
While Twindow_end ≤ Tfinal:

// Set the window to extract the matched features
Twindow_end = Tinitial + offset·(5sec)
Twindow_start = Twindow_end − 100sec
PEDA, PPPG: sequence of facial EDA biosignal and PPG
biosignal within time series [Twindow_start, Twindow_end]
PFacial: sequence of facial expression images within
time series [Twindow_start, Twindow_end]
// Obtain matched biosignal features
Extracted EDA features FEDA and PPG features FPPG
from PEDA, PPPG
FBiosignal: Concatenation of FEDA and FPPG
// Extract emotional eigenface expression
N: number of the eignface within time range
[Twindow_start, Twindow_end]
P: number of data within early 30 second time range
[Twindow_start, Twindow_start+30sec]
SPCA = {s1, s2, . . . , sN}: Eigenface scores by projecting
PFacial onto WPCA
LPCA ={l1, l2, . . . , lN}, li ∈{1,2}: Label of eigenface
scores in two unsupervised groups using k-means
clustering
count_g1 =

∑i=P
i=1 (li == 1)

count_g2 =
∑i=P

i=1 (li == 2)
if count_g1 ≥ count_g2

EmotionalExp = 2
else

EmotionalExp = 1

FPCA =
∑N

1 (li==EmotionalExp)·Si∑N
1 (li==EmotionalExp)

// Obtain matched facial feature vector
FLDA: Fisherface scores by projecting FPCA onto WLDA
// Obtain matched fusion features
FFusion: Concatenation of FBiosignal and FLDA
// Obtain and display emotion recognition results
ER_Result = ClassificationModel(FFusion)
Display or Validate the ER_Result
offset + = 1
repeat

data was close in time. This temporal similarity could lead
to a high correlation between the test and training datasets.
Therefore, to prevent this temporal similarity problem, we set
the data in one trial as a test dataset and let other datasets for
training and repeat this validation for all trials.

III. RESULTS
A. THE RESULT OF EDA SENSOR LOCATION EXPERIMENT
Before the emotion recognition experiment, we experimented
with EDA correlation between facial parts and reference
locations. The results of the EDA measurement experiments
show that the highest correlation with fingers was shown
when the sensors were placed near the nose and mastoid.
The average correlation of the mastoid and nose is 0.6757,
which is higher than those in other locations, and the standard
deviation between subjects is 0.1663, which is lower than
those in other locations. This result explains why the EDA
electrodes are placed on the mastoid and nose contact parts
of the glasses.

FIGURE 11. Correlation coefficients between fingers and candidate facial
sensor placements.

B. THE RESULT OF THE INDUCED EMOTION
RECOGNITION EXPERIMENT
Table 3 presents the average accuracies for each channel and
the fusion method. Although the recognition performance
in the fusion method is not always better than that of other
methods, its average score was better than those of those other
wearable modalities.

Fig. 15 shows samples of the acquired fisherface. In the
acquired facial expression, it appears that the eyebrow and
upper cheek regions are highly activated compared to other
regions. The fisherface for the valence state shows higher
activation at the laughter line near the mouth compared to the
fisherface for the arousal state.

Table 5 shows a comparison of the average emotion recog-
nition rates between male participants (n = 10) and female
participants (n = 10). The results indicate that the female
participants show better emotion recognition rates for facial
expressions, which is consistent with the results in [41],
which implies that women use facial expressions more fre-
quently than men. It is observed that the system can recognize
emotional statesmore easily from frequent facial expressions.
On the contrary, male participants show better emotion recog-
nition rates for facial biosignal than female participants.

IV. DISCUSSION
Existing wearable devices for emotion recognition may not
yield good and stable results due to dynamic situations in
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FIGURE 12. The emotion recognition rates for estimating arousal state for
each subject. The dashed black line indicates the probability of random
chance.

FIGURE 13. The emotion recognition rates for valence state estimation
for each subject. The dashed black line indicates the probability of
random chance.

FIGURE 14. Emotion recognition rates for quadrant state estimation for
each subject. The dashed black line indicates random chance probability.

TABLE 3. Average accuracies in emotion recognition for each modality.
The number in parentheses indicates the number of target emotional
states.

real life and individual difference of emotional response.
To solve this problem, this study proposed a new wearable

TABLE 4. Confusion matrices for estimation of the quadrant state. For
improved clarity, the names of each quadrant emotion have been
replaced with similar basic emotions; Funny replaced HAHV, Disgust
replaced HALV, Depressed replaced LALV, and Calm replaced LAHV.

FIGURE 15. Samples of the acquired fisherface for the arousal state
estimation(center) and valence state estimation(right).

TABLE 5. Average accuracies for emotion recognition for each gender
group. The number in parentheses indicates the number of target
emotional states.

system to improve emotion recognition performance by using
physiological signals and facial image simultaneously.

The multi-modal wearable device has a strength that can
be applied to various situations in real life. In addition to
improving recognition accuracy, using two modalities has an
advantage, for example; when in a situation the facial expres-
sion did not reveal effectively, such as a huge illumination
change, the biosignal could compensate the facial expres-
sion. In contrast, facial expression could compensate for
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the biosignal under some condition that the biosignal could
not work effectively, such as a condition that the user has
cognitive stress. Additionally, the results in Table 5 indicate
that multi-modal approach could be robust to gender bias of
emotion recognition. Table 5 shows that the biosignal-based
emotion recognition rates were higher in male users, while
the facial expression-based emotion recognition rates were
higher in female users. The proposed wearable device could
be a reasonable approach to compensate for gender-based
bias, because it uses both modalities, which could expand the
range of selective use of advantageous features according to
gender.

We designed the glasses-typed wearable device to get the
advantage of a multi-channel wearable device. To find an
optimal facial location to measure the biosignal, we con-
ducted EDA signal acquisition experiments by comparing
the correlation of the EDA signal with fingers and facial
locations. The results indicate that it is best to place EDA
sensors on the nose and mastoid rather than on the noses
and mastoids only. The higher correlation could be obtained
if we place the EDA sensors in other locations, such as the
forehead [31]. However, other locations, except the nose and
mastoid, could result in a noisy EDA signal due to skin
movement by facial expression, which was experimented in
a preliminary study [32]. In this study, we found the best
locations for EDA sensors in reasonable locations that can
be used in facial wearable devices.

According to the results of the EDA correlation experi-
ment, the wearable device was designed to measure the sweat
response of the mastoid and nasal skin. The built-in camera
acquired local facial expression on the side of the user’s face.

The initial motivation of our study was the compensation
effect between each channel. Unfortunately, this compensa-
tion effect was not fully covered in the experiment because
we did not control the change in the user’s situation, such
as giving a stress [8], we will experiment to prove that the
multi-modal wearable device has robust emotion recogni-
tion performance in various situations. Although the exper-
iment did not cover the advantages of the fusion modality
in situational changes, it validated the benefits of the fusion
modality with respect to personal differences. We believe
that the experimental results shown in Figs. 11–13 agree
with the main hypothesis of our study. As shown in the
figures, the use of a single modality is not always suitable
for all subjects. For example, subject 19 shows poor recog-
nition performance using biosignal, but subject 24 shows
poor recognition performance using facial expression, but
the other channel compensated for these poor emotional
responses. Table 1 shows the overall accuracies. although
these compensatory effects of the fusion modality are not
shown in all subjects, these effects are clear in overall average
performance. The fusion of two modalities shows better per-
formance than any of the single modalities. The classification
performance increased by 8.46% compared to the method
using biosignal alone. Additionally, as we observed during
the experiment, the individual differences were found. Some

FIGURE 16. An example application of the proposed emotional
recognition system. Each emotional state is logged in real-time (bottom
of the figure), and current emotional state is determined by most
dominant emotional state (left side of the figure).

subjects remained mostly expressionless and some subjects
rarely presented EDA responses during the emotion-inducing
experiment.

The confusion matrix in Table 4 shows that using a com-
bination of biosignals and facial expressions reduces the
confusion of the negative emotional states (i.e., disgust and
depressed). For example, confusion cases that predict the dis-
gust state as the funny state or cases that predict the depressed
state as the calm state are clearly less in number when a fusion
of modalities is used compared to single modalities, while the
other number of confusion cases are between the number of
two singlemodalities. Thismay indicate that the fusion of two
facial modalities has a synergistic effect in detecting negative
emotional states. Therefore, the fusion of two channels could
lead to a more accurate monitoring of negative emotional
state for healthcare, such as monitoring depressed state [19].

Fig. 16 shows an example application of our emotion
recognition system for mental health care. In this application,
the ratio of quadrant emotional states is logged in order to
monitor subtle and complicated emotional change in the real
world. The user can observe daily emotional state patterns
using the logged emotional state and get more detailed assis-
tance from mental health care.

Compared with other studies on emotion recognition based
on facial expressions, the system proposed here shows a lower
performance on emotion recognition [23], [42], [43]. How-
ever, most comparative studies on wearable devices classified
data created by intentional facial expressions rather than data
created by eliciting actual emotions. Therefore, we suggest
that the lower accuracy is due to differences in the exper-
imental paradigms. Compared to other studies recognized
the induced emotional state, our study shows higher emotion
recognition rates for the classification of the valence state and
arousal state [24].

Compared with existing multi-modal emotion recognition
studies [33], [36], the existing studies measured biosignals
or facial expressions at a standard measurement location. For
example, the sweat response uses the EDA response of the
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TABLE 6. The source and description of video stimulus used in the
emotion-inducing experiment. The descriptions presented in the table are
all understandable in each clip without the prior experience watching the
source.

TABLE 6. (Continued.) The source and description of video stimulus used
in the emotion-inducing experiment. The descriptions presented in the
table are all understandable in each clip without the prior experience
watching the source.
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finger, and the facial expression uses a frontal view of the
full face, and EEG response from sensors attached precise
locations on scalp under the hair. Our study, on the other
hand, measured the user response in areas confined to the
face, because the proposed devices measured user’s facial
responses without modification the shape of glasses as much
as possible, such as facial expressions from the side of the eye
and sweat responses of the nasal skin. Therefore, the modal-
ities used in our experiment differ from those considered in
existing multi-modal emotion recognition studies. Our study
could provide support to multi-modal emotion recognition
researchers and facial wearable device developers to explore
more applicable modalities in the real world.

A limitation of our study is that there was no scale to mea-
sure the amount of emotion induced by stimulation. Although
we carefully collected the emotional state to induce exactly
one emotional state, which might increase the ambiguity of
the labeled data. We recommend that a dominance scale [34]
should be adopted the experiment, which will be helpful
to develop more accurate emotion recognition models in
future studies. The results of our study may be of value to
other researchers studying multi-modal emotion recognition
in wearable devices.

V. CONCLUSION
In this study, to increase the reliability of emotion recognition,
we propose a glasses-type wearable device that measures
local facial expressions in addition to biosignal. The facial
expressions were acquired in an unobtrusive manner using a
camera, and the location of the biosensors on the wearable
device was determined by signal measurement experiments.
Experiments with video clips were conducted to evaluate
the performance of the device. Our results show that the
glasses-type wearable device can be used to accurately esti-
mate a user’s emotional state.

The proposed method can expand the range of health-
care applications using wearable devices, such as monitoring
physical and mental health states. In the future, we hope
to develop a wearable device capable of monitoring user
emotions with respect to various tasks in daily life.

APPENDIX
See Table 6.
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