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Abstract
In this article, we discuss about a series of infinite dimensional extensions of some
theorems given in (Shumrani et al. in SER Math. Inform. 33(2):197–202, 2018), (Fisher in
Math. Mag. 48(4):223–225, 1975), and (Fogh, Behnamian and Pashaie in Int. J. Maps in
Mathematics 2(41):1–13, 2019). We also prove a similar Geraghty type construction for
Fisher (Math. Mag. 48(4):223–225, 1975) in an infinite dimension using similar
techniques as in (Shumrani et al. in SER Math. Inform. 33(2):197–202, 2018) and (Fogh,
Behnamian and Pashaie in Int. J. Maps in Mathematics 2(41):1–13, 2019). As an
application, we ensure the existence of solutions for infinite dimensional Fredholm
integral equation and Uryshon type integral equation.
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1 Introduction and preliminaries
The fixed point theory is an essential tool not only in the field of nonlinear analysis, but
also in almost all branches of mathematics. After the Banach contraction principle [4],
there were multiple generalizations that have been made. For instance, see [5–23]. Among
these generalizations, we have Geraghty’s theorem [24]. Moreover, in [1] a k-dimensional
extension of Geraghty’s result is also provided. Also, Kannan and Fisher gave two inde-
pendent types of contraction operators (see [2, 25]) which are completely independent of
Banach’s contraction. Also, in the recent paper [3], Fogh et al. introduced the concept of
Kannan–Geraghty contractions.

In this paper, we extend the k-dimensional extension of Geraghty’s theorem stated in [1]
to an infinite dimension. We also introduce and develop a new notion of Hk contractions
for Geraghty–Kannan type operators from [3] to provide both k dimensional extension
and infinite dimensional extension. We also provide the same family of k-dimensional ex-
tensions for Fisher type contractions and also develop similar infinite dimensional exten-
sion in this case. As application, we define the notion of two independent types of infinite
integral equations, namely infinite dimensional Fredholm equation and Uryshon type in-
tegral equation, and ensure the existence of solutions.
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Next, we discuss some of the preliminaries which will be needed later for proving our
main theorems. The following result is due to Geraghty [24].

Theorem 1.1 ([24]) Let (X, d) be a complete metric space and T : X → X be a mapping
such that

d(Tx, Ty) ≤ β
(
d(x, y)

)
d(x, y),

where β : [0,∞) → [0, 1) is a function satisfying the condition

lim
n→∞β(tn) = 1 implies lim

n→∞ tn = 0.

Then T admits a unique fixed point u ∈ X and {Tnx} converges to u for each x ∈ X.

We denote by G the set of all functions β given in Theorem 1.1. We denote by N (resp.
N0) the set of positive (nonnegative) integers.

Over the years, the study of a Geraghty type contraction has been the interest of many
works in literature. This contraction was extended and generalized in many directions as
Kannan–Geraghty type contractions, Fisher–Geraghty type contractions, etc. For more
details, we refer the readers to [26–38].

Further, let us recall some results and definitions useful in our main results.

Theorem 1.2 ([25]) Let (X, d) be a complete metric space and T : X → X be a mapping. If
T verifies

d(Tx, Ty) ≤ c
(
d(Tx, x) + (Ty, y)

)

for all x, y ∈ X, where c ∈ (0, 1/2), then T has a unique fixed point u ∈ X.

Theorem 1.3 [2] Let (X, d) be a complete metric space and T : X → X be a mapping. If T
verifies

d(Tx, Ty) ≤ c
(
d(Tx, y) + d(Ty, x)

)

for all x, y ∈ X, where c ∈ (0, 1/2), then T possesses a unique fixed point u ∈ X.

Definition 1.1 (Kannan–Geraghty map, see [3]) Let T be a self-map on a metric space
(X, d). Such T is said to be a Kannan–Geraghty contraction if and only if it satisfies the
following:

d(Tx, Ty) ≤ β(d(x, y))
2

(
d(Tx, x) + d(Ty, y)

)

for all x, y ∈ X, where β ∈G.

Theorem 1.4 (see [3]) Let (X, d) be a complete metric space and T : X → X be a mapping.
If T is a Kannan–Geraghty contraction on (X, d), then T possesses a unique fixed point
u ∈ X, and for any x0 ∈ X, {Tnx0} converges to u.



Bardhan et al. Advances in Difference Equations        (2021) 2021:456 Page 3 of 19

Theorem 1.5 ([1]) Let (X, d) be a complete metric space and k ∈ N. Let T : Xk → X be
such that

d
(
T(x1, . . . , xk), T(x2, . . . , xk+1)

)

≤ M
(
(x1, . . . , xk), (x2, . . . , xk+1)

)
)M

(
(x1, . . . , xk), (x2, . . . , xk+1)

)
,

for all x1, x2, . . . , xk+1 ∈ X, where β ∈G and M : Xk × Xk → [0,∞) is given as

M
(
(x1, . . . , xk), (x2, . . . , xk+1)

)

= max
{

d(xk , xk+1),
(
xk , T(x1, . . . , xk)

)
, d

(
xk+1, T(x2, . . . , xk+1)

)}
.

Then there exists a point u ∈ X such that T(u, u, . . . , u) = u.

The aim of the next section is to generalize and extend Theorem 1.1, Theorem 1.4, and
Theorem 1.5 as well as the k-dimensional extension of the result given in [24] to an infinite
dimension. We denote the infinite tuples of points (x1, x2, . . .) by (xk)∞i=1 and the infinite
tuples (x1, x2, . . . , xk–1, xk , xk , . . .) with the kth point repeated by (xj,k̂)∞j=1.

2 Main results
From now on, let us consider that (X, d) is a complete metric space and k ∈N.

Definition 2.1 (Extended Mk function) For any (ui)∞i=1, (vi)∞i=1 ∈ ∏∞
i=1 X and T :

∏∞
i=1 X →

X, we define the extended function Mk :
∏∞

l=1 X × ∏∞
l=1 X → X as follows:

Mk
(
(ui)∞i=1, (vi)∞i=1

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max{supl≥k d(ul, vl), supl≥k d(ul, T(ui,l̂)
∞
i=1), supl≥k d(vl, T(vi,l̂)

∞
i=1)},

if all supremum exists

max{d(uk , vk), d(uk , T(ui,k̂)∞i=1), d(vk , T(vi,k̂)∞i=1)},
if one fails to exist

Example 2.1 Consider X = [0, 1]. For k = 1, take the operator T :
∏∞

i=1 X → X defined by
T((ui)∞i=1) = uk = u1 and Mk((ui)∞i=1, (vi)∞i=1) = |uk – vk| = |u1 – v1|.

Definition 2.2 (Hk contraction) An operator T :
∏∞

l=1 X → X is called an Hk contraction
if and only if it satisfies the following inequality:

d
(
T

(
(ui,̂k)∞i=1

)
, T

(
(vi,̂k)∞i=1

)) ≤ β
(
Mk

(
(ui,̂k)∞i=1, (vi,̂k)∞i=1

))
Mk

(
(ui,̂k)∞i=1, (vi,̂k)∞i=1

)
(1)

for all u1, u2, . . . , uk , v1, v2, . . . , vk ∈ X, where β ∈G.

Example 2.2 Consider X = [0, 1]. The operator T :
∏∞

i=1 X → X defined by T((xi)∞i=1) := cxk

is an Hk contraction, where k ∈N is any fixed number and c ∈ (0, 1).

Definition 2.3 (Kannan–Geraghty Hk contraction) An operator T :
∏k

l=1 X → X is called
a Kannan–Geraghty contraction of dimension k if and only if it satisfies the following
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inequality:

d
(
T

(
(ui)k

i=1
)
, T

(
(vi)k

i=1
)) ≤ β(d(uk , vk))

2
(
d
(
T

(
(ui)k

i=1
)
, uk

)
+ d

(
T

(
(vi)k

i=1
)
, vk

))

for all u1, u2, . . . , uk , v1, v2, . . . , vk ∈ X, where β ∈G.

Definition 2.4 (Extended Kannan–Geraghty Hk contraction) An operator T :
∏∞

l=1 X →
X is called an extended Kannan–Geraghty Hk contraction if and only if it satisfies the
following:

d
(
T

(
(ui,̂k)∞i=1

)
, T

(
(vi,̂k)∞i=1

)) ≤ β(d(uk , vk))
2

(
d
(
T

(
(ui,̂k)∞i=1

)
, uk

)
+ d

(
T

(
(vi,̂k)∞i=1

)
, vk

))

for all u1, u2, . . . , uk , v1, v2, . . . , vk ∈ X, where β ∈G.

Definition 2.5 (Fisher–Geraghty Hk contraction) An operator T :
∏k

l=1 X → X is called a
Fisher–Geraghty Hk contraction of dimension k if and only if it satisfies the following:

d
(
T

(
(ui)k

i=1
)
, T

(
(vi)k

i=1
)) ≤ β(d(uk , vk))

2
(
d
(
T

(
(ui)k

i=1
)
, vk

)
+ d

(
T

(
(vi)k

i=1
)
, uk

))

for all u1, u2, . . . , uk , v1, v2, . . . , vk ∈ X, where β ∈G.

Definition 2.6 (Extended Fisher–Geraghty Hk contraction) An operator T :
∏∞

l=1 X →
X is called an extended Kannan–Geraghty Hk contraction if and only if it satisfies the
following:

d
(
T

(
(ui,̂k)∞i=1

)
, T

(
(vi,̂k)∞i=1

)) ≤ β(d(uk , vk))
2

(
d
(
T

(
(ui,̂k)∞i=1

)
, vk

)
+ d

(
T

(
(vi,̂k)∞i=1

)
, uk

))

for all u1, u2, . . . , uk , v1, v2, . . . , vk ∈ X, where β ∈G.

Example 2.3 As an example for Definition 2.3 and Definition 2.5, we can consider, for
X = [0, 1], the operator T :

∏k
i=1 X → X defined by T((xi)k

i=1) = cxk for some c ∈ (0, 1
2 ).

Example 2.4 As an example for Definition 2.4 and Definition 2.6, for X = [0, 1], take the
operator T :

∏∞
i=1 X → X defined by T((xi)∞i=1) = cxk for some c ∈ (0, 1

2 ).

The theory of Picard operators was developed by Rus and is used a lot in proving the ex-
istence and uniqueness of a solution of different types of integral or differential equations.
For more details, see [39, 40].

Definition 2.7 (Picard operator) Let (X, d) be a metric space. An operator T : X → X is a
Picard operator if there exists x∗ ∈ X such that FixT = {x∗} and the sequence (Tn(x0))n∈N
converges to x∗ for all x0 ∈ X.

Inspired by the Picard operator definition, we extend this notion for the k-dimensional
and infinite dimensional cases as follows.
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Definition 2.8 (k-Picard sequence with respect to the operator T ) Let T :
∏k

i=1 X → X be
any operator, and let us choose x1, x2, . . . , xk ∈ X. The k-Picard sequence with respect to
the operator T based on the base point set {x1, x2, . . . , xk} is defined as xn+k := T((xn+i–1)k

i=1)
for all n ≥ k.

Example 2.5 If we fix k = 1, then the base point set is singleton and the 1-Picard sequence
with respect to T based on {x0} is basically the Picard sequence of T based on the base
point {x0} defined by xn := T(xn–1) for all n ≥ 1 and some x0 ∈ X.

Now, we define the following notions.

Definition 2.9 (Infinite k-Picard sequence with respect to the operator T ) Let T :
∏∞

i=1 X → X be any operator, and let us choose x1, x2, . . . , xk , . . . ∈ X. The k-Picard sequence
with respect to the operator T based on the base point set {x1, x2, . . . , xk , . . .} is defined as
xn+k := T((xn+i–1,n̂+k–1)∞i=1) for all n ≥ k.

Example 2.6 If we fix k = 1, then the base point set is singleton and the infinite 1- Picard
sequence with respect to T based on the base point {x0} is basically the sequence defined
by xn := T((xn–1)∞n=1) ∀n ≥ 1 for some x0 ∈ X.

Let us give our first main fixed point result, which is a generalization of the Banach
contraction principle with respect to the infinite-dimensional notion introduced in our
paper.

Theorem 2.1 Let (X, d) be a complete metric space. T :
∏∞

l=1 X → X is an Hk contraction
for some k ∈ N. Then there exists u ∈ X such that T((u)∞i=1) = u and the infinite k-Picard
sequence for T converges to u.

Proof Let x1, x2 . . . , xk ∈ X. Then an infinite k-Picard sequence is defined as follows:
∀n ∈N we define

xn+k := T
(
(xn+i–1,n̂+k–1)∞i=1

)
. (2)

We claim that {d(xn+k , xn+k+1)}n∈N is convergent. From Definition 2.2, one writes

d(xn+k+1, xn+k+2) = d
(
T

(
(xn+i,̂n+k)∞i=1

)
, T

(
(xn+i+1,n̂+1+k)∞i=1

))

≤ β
(
Mk

(
(xn+i,̂n+k)∞i=1, (xn+1+i,n̂+1+k)∞i=1

))
Mk

(
(xn+i,̂n+k)∞i=1, (xn+1+i,n̂+1+k)∞i=1

)
.

Let

Mk
(
(xn+i,̂n+k)∞i=1, (xn+i+1,n̂+1+k)∞i=1

)

= max
{

sup
l≥k

d(ul, vl), sup
l≥k

d
(
ul, T(ui,̂l)

∞
i=1

)
, sup

l≥k
d
(
vl, T(vi,̂l)

∞
i=1

)}
,

where

ul := xn+l, ∀1 ≤ l ≤ k, (3)
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ul := xn+k , ∀l > k, (4)

vl := xn+l+1, ∀1 ≤ l ≤ k, (5)

ul := xn+k+1, ∀l > k. (6)

But

sup
l≥k

d
(
(ul, vl) = d

(
(xn+k , xn+k+1),

sup
l≥k

d
((

ul, T
(
(ui,̂l)

∞
i=1

))
= d(

(
xn+k , T

(
(xn+i,̂n+k)∞i=1

))
,

sup
l≥k

d
((

vl, T
(
(vi,̂l)

∞
i=1

))
= d

((
xn+k+1, T

(
(xn+i+1,n̂+k+1)∞i=1

))
.

We have

Mk
(
(xn+i,̂n+k)∞i=1, (xn+i+1,n̂+k+1)∞i=1

)

= max
{

d
(
(xn+k , xn+k+1), d

(
(xn+k , T

(
(xn+i,̂n+k)∞i=1

))
, d

(
(xn+k+1, T

(
(xn+1+i,n̂+k+1)∞i=1

))}
.

That is,

Mk
(
(xn+i,̂n+k)∞i=1, (xn+1+i,n̂+k+1)∞i=1

)

= max
{

d((xn+k , xn+k+1), d((xn+k , xn+k+1), d((xn+k+1, xn+k+2)
}

= max
{

d((dn+k , dn+k+1), d((xn+k+1, xn+k+2)
}

.

Without loss of generality, assume that d((xn+k+1, xn+k+2) > 0 for each k.
If, for some k, we have Mk((xn+i,̂n+k)∞i=1, (xn+i+1,n̂+k+1)∞i=1) = d((xn+k+1, xn+k+2), then, from

Definition 2.2, we get

0 < d((xn+k+1, xn+k+2) = d(
(
T

(
(xn+i,̂n+k)∞i=1

)
, T

(
(xn+i+1,n̂+k+1)∞i=1

))

≤ β
(
Mk

(
(xn+i,̂n+k)∞i=1, (xn+i+1,n̂+k+1)∞i=1

))
Mk

(
(xn+i,̂n+k)∞i=1, (xn+i+1,n̂+k+1)∞i=1

)

= β(d
(
(xn+k+1, xn+k+2)

)
d((xn+k+1, xn+k+2)

< d((xn+k+1, xn+k+2).

Then we get a contradiction. Hence, for each k, Mk((xn+i,̂n+k)∞i=1, (xn+i+1,n̂+k+1)∞i=1) =
d((xn+k , xn+k+1). One writes

d((xn+k+1, xn+k+2) ≤ β(d
(
(xn+k , xn+k+1)

)
d((xn+k , xn+k+1) < d((xn+k , xn+k+1).

We deduce that {xn+k}n∈N is a strictly decreasing sequence. So there is (r ≥ 0) ∈R so that

lim
n→∞ d(xn+k , xn+k+1) = r.

We claim limn→∞ d(xn+k , xn+k+1) = 0. Suppose on the contrary that r > 0. We have

d((xn+k+1, xn+k+2) ≤ β(d
(
(xn+k , xn+k+1)

)
d((xn+k , xn+k+1).
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That is,

d((xn+k+1, xn+k+2)
d((xn+k , xn+k+1)

≤ β(d
(
(xn+k , xn+k+1)

)
.

This implies that limn→∞ β(d((xn+k , xn+k+1)) ≥ 1.
Since β ∈G, necessarily limn→∞ β(d((xn+k , xn+k+1)) = 1, and so

lim
n→∞ d((xn+k , xn+k+1) = 0. (7)

We now claim that {xn+k}n∈N is Cauchy, and we prove it by contradiction. Suppose on
the contrary that there is ε > 0 such that we can find some subsequences {xm(q)+k}p∈N,
{xn(q)+k}p∈N with m(q) > n(q) > q such that, for every q, we have

d((xm(q)+k , xn(q)+k) ≥ ε. (8)

Moreover, corresponding to each n(q), we can choose least of such m(q) satisfying (8).
Then

d((xm(q)+k–1, xn(q)+k) < ε. (9)

From (7),(9) and using the triangle inequality, we get

d((xm(q)+k–1, xn(q)+k–1) ≤ d((xm(q)+k–1, xn(q)+k) + d((xn(q)+k–1, xn(q)+k)

< ε + d((xn(q)+k–1, xn(q)+k) (10)

and

ε ≤ d((xn(q)+k , xm(q)+k)

≤ d((xn(q)+k , xn(q)+k–1) + d((xn(q)+k–1, xm(q)+k–1) + d((xm(q)+k–1, xm(q)+k). (11)

Letting q → ∞ in (10) and using (11), we get

lim
q→∞ d((xm(q)+k–1, xn(q)+k–1) = ε. (12)

On the other hand, if

Mk
(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

)

= max
{

sup
l≥k–1

d((ul, vl), sup
l≥k–1

d(
(
ul, T

(
(ui,̂l)

∞
i=1

))
, sup

l≥k–1
d(

(
vl, T

(
(vi,̂l)

∞
i=1

))}
,

where

ul := xn(q)+l–1, ∀1 ≤ l ≤ k, (13)

ul := xn(q)+k–1, ∀l > k, (14)
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vl := xm(q)+l–1, ∀1 ≤ l ≤ k, (15)

ul := xm(q)+k–1, ∀l > k (16)

then

Mk
(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

)

= max
{
ξ ((xn(q)+k–1, xm(q)+k–1), d(

(
xn(q)+k–1, T

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1

))
,

d
((

xm(q)+k–1, T
(
(xm(q)+i–1, ̂m(q)+k–1)∞i=1

)))}

= max
{

d((xn(q)+k–1, xm(q)+k–1), d(xn(q)+k–1, xn(q)+k), d(xm(q)+k–1, xm(q)+k)
}

.

Using (7) and (12) we get

lim
q→∞ Mk

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

)
= ε. (17)

By (1) and (17) we get

ε ≤ d((xn(q)+k , xm(q)+k) = d
((

T(xn(q)+i–1, ̂n(q)+k–1)∞i=1, T(xm(q)+i–1, ̂m(q)+k–1)∞i=1
))

≤ β
(
Mk

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

))

× Mk
(
(xn(q)+i–1, ̂n(q)+k–1)∞i=0, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

)

< Mk
(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

)
. (18)

If we suppose

sup
l≥k

d((ul, vl) = d((xn(q)+k–1, xm(q)+k–1),

sup
l≥k

d(
(
ul, T(ui,̂l)

∞
i=1

)
= d(

(
xn(q)+k–1, T

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1

))
,

sup
l≥k

d(
(
vl, T(vi,̂l)

∞
i=1

)
= d(

(
xm(q)+k–1, T

(
(xm(q)+i–1, ̂m(q)+k–1)∞i=1

))
,

then

Mk
(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

)

= max
{

d((xn(q)+k , xm(q)+k), d(
(
xn(q)+k–1, T

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1

))
,

d
((

xm(q)+k–1, T
(
(xm(q)+i–1, ̂m(q)+k–1)∞i=1

)))}

= max
{

d((xn(q)+k , xm(q)+k), d(xn(q)+k–1, xn(q)+k), d(xm(q)+k–1, xm(q)+k)
}

.

Letting q → ∞ and using (1), (7), (17), and (18), we get

lim
q→∞β

(
Mk

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

))
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and

lim
q→∞ Mk

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

) ≥ ε.

From (17)

β
(
Mk

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

)) ≥ 1.

Since β ∈G, we get

lim
q→∞β

(
Mk

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

))
= 1.

Then

lim
q→∞ Mk

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1, (xm(q)+i–1, ̂m(q)+k–1)∞i=1

)
= 0.

We get a contradiction to (17). Hence, {xn+k}n∈N is a Cauchy sequence.
Since (X, d) is complete, there exists u ∈ X such that

lim
n→∞ xn+k = u. (19)

We claim that d((T((u)∞i=1), u) = 0. If we suppose on the contrary that d((u, T((u)∞i=1)) > 0,
then we have

M
(
(xn+i–1,n̂+k–1)∞i=1,

(
(u)∞i=1

))

= max
{

d(xn+k–1, u), d(
(
xn+k–1, T(xn+i–1,n̂+k–1)∞i=1

)
, d(

(
u, T

(
(u)∞i=1

))}

= max
{

d((xn+k–1, u), d((xn+k , xn+k–1), d(
(
u, T

(
(u)∞i=1

))}
.

Letting n → ∞ and using (7), (19), we get

lim
n→∞ M

(
(xn+i–1,n̂+k–1)∞i=1, (u)∞i=1

)
= d(

(
u, T

(
(u)∞i=1

)) 	= 0.

Then we have

d(
(
u, T

(
(u)∞i=1

))

≤ d((xn+k , u) + d(
(
xn+k , T

(
(u)∞i=1

))

= d((xn+k , u) + d(
(
T

(
(xn+i–1,n̂+k–1)∞i=1

)
, T

(
(u)∞i=1

))

≤ d((xn+k , u) + β
(
M

(
(xn+i–1,n̂+k–1)∞i=1, (u)∞i=1

))
M

(
(xn+i–1,n̂+k–1)∞i=1, (u)∞i=1

)

≤ d((xn+k , u) + β(d
((

u, T
(
(u)∞i=1

)))
d(

(
u, T

(
(u)∞i=1

))
.

Letting n → ∞ and using (19), we get limn→∞ β(d((u, T((u)∞i=1))) ≥ 1.
Since β ∈ G, one writes limn→∞ β(d((u, T((u)∞i=1))) = 1. Then we have limn→∞ d((u,

T((u)∞i=1)) = 0, which implies d((u, T((u)∞i=1)) = 0. So we get a contradiction. Hence,
d((u, T((u)∞i=1)) = 0, that is, T((u)∞i=1)) = u. �
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Remark 2.1 Theorem 2.1 is a proper generalization of Theorem 1.5 since in the case of
the simplest operator on

∏∞
i=1 X → X the contraction condition of Theorem 1.5 is not

applicable; on the other hand, the Hk contraction (see Definition 2.2) is easily applicable
for the infinite case. Also, if we restrict the operator to any finite k dimension through an
easy calculation, it is obvious that it is an equivalent statement of Theorem 1.5.

Theorem 2.2 . Let (X, d) be a complete metric space and T :
∏∞

l=1 X → X be an extended
Kannan–Geraghty Hk contraction for some k ∈N. Then there is u ∈ X such that T((u)∞i=1) =
u, and for any x1, . . . , xk ∈ X, the infinite k-Picard sequence converges to u.

Proof Let x1, . . . , xk ∈ X. For all n ∈N, we define the infinite k-Picard sequence as follows:

xn+k := T
(
(xn+i–1,n̂+k–1)∞i=1

)
. (20)

We claim that limn→∞ d(xn+k , xn+k+1) = 0. Then we have

d((xn+k+1, xn+k+2)

= d(
(
T

(
(xn+i,̂n+k)∞i=1

)
, T

(
(xn+i+1,n̂+1+k)∞i=1

))

≤ β(d(xn+k , xn+k+1))
2

(
d
(
T

(
(xn+i,̂n+k)∞i=1

)
, xn+k

)
+ d

(
T

(
(xn+i+1,n̂+k+1)∞i=1

)
, xn+k+1

))

<
1
2
(
d(xn+k , xn+k+1) + d(xn+k+1, xn+k+2)

)
.

Thus, d(xn+k+1, xn+k+2) < d(xn+k , xn+k+1). This sequence is decreasing, so there is r ≥ 0 so
that

lim
n→0

d(xn+k , xn+k+1) = r. (21)

We claim that r = 0. If we consider on the contrary and suppose r > 0, we have

lim
n→∞ d(xn+k+1, xn+k+2) ≤ limn→∞ β(d(xn+k , xn+k+1))

2

(
lim

n→∞ d(xn+k , xn+k+1)

+ lim
n→∞ d(xn+k+1, xn+k+2)

)
.

Therefore,

2 limn→∞ d(xn+k+1, xn+k+2)
limn→∞ d(xn+k , xn+k+1) + limn→∞ d(xn+k+1, xn+k+2)

≤ lim
n→∞β

(
d(xn+k , xn+k+1)

)
.

From (21) we get 2r
2r ≤ β(d(xn+k , xn+k+1)), and so limn→∞ β(d(xn+k , xn+k+1)) ≥ 1. Since β ∈

G, we have limn→∞ β(d(xn+k , xn+k+1)) ≤ 1. Using the well-known “sandwich theorem”, we
obtain

lim
n→∞β

(
d(xn+k , xn+k+1)

)
= 1 
⇒ lim

n→∞ d(xn+k , xn+k+1) = 0. (22)

Further, we have

d(xn+k , xm+k) = d
(
T

(
(xn+i–1,n̂+k–1)∞i=1

)
, T

(
(xm+i–1,m̂+k–1)∞i=1

))
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≤ β(d(xn+k–1, xm+k–1))
2

(
d
(
T

(
(xn+i–1,n̂+k–1)∞i=1

)
, xn+k–1

))

+ d
(
T

(
(xm+i–1,m̂+k–1)∞i=1

)
, xm+k–1

)
)

<
1
2
(
d(xn+k–1, xn+k) + d(xm+k–1, xm+k)

)
.

For large enough n, m ∈ N, one has

d(xn+k , xm+k) < ε

for fixed ε > 0. Then {xn+k}n∈N is a Cauchy sequence. Since (X, d) is a complete metric
space, there exists u ∈ X such that

lim
n→∞ xn+k = u. (23)

We claim that T((u)∞i=1) = u. If we suppose on the contrary that d(u, T((u)∞i=1)) > 0. Then,
by (21) and (23), for arbitrary ε > 0 and sufficiently large n, we get

d(
(
u, T

(
(u)∞i=1

)) ≤ d((xn+k , u) + d
(
xn+k , T

(
(u)∞i=1

))

= d((xn+k , u) + d(
(
T

(
(xn+i–1,n̂+k–1)∞i=1

)
, T

(
(u)∞i=1

))

≤ d((xn+k , u) +
β(d(u, xn+k–1))

2
(
d
(
T

(
(xn+i–1,n̂+k–1)∞i=1

)
, xn+k–1

)

+ d
(
T

(
(u)∞i=1

)
, u

))

≤ 1
2

d(
(
u, T

(
(u)∞i=1

))
+

ε

2
+

ε

2
≤ 1

2
d(u, T

(
(u)∞i=1

)
+ ε


⇒ 1
2

d(
(
u, T

(
(u)∞i=1

)) ≤ ε. This is a contradiction.

Hence, d(T((u)∞i=1), u) = 0, that is, T((u)∞i=1) = u. �

Next, we will provide a new result for a multivalued proper extension of Theorem 1.4,
which is also a generalization of Kannan (Theorem 1.3) as a result of Theorem 2.2.

Corollary 2.1 Let (X, d) be a complete metric space and T be a Kannan–Geraghty Hk

contraction. Then T has a fixed point and every k-Picard sequence for T converges to u.

Proof Let us choose x0, . . . , xk ∈ X. We define a k-Picard sequence by

xn+k := T(xn, . . . , xn+k–1). (24)

If we follow the same steps as in the proof of Theorem 2.2, we get the required re-
sult. �

Remark 2.2 For k = 1, we get Theorem 1.4 in [3] which proves that Corollary 2.1 is a proper
generalization of Theorem 1.4.
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Theorem 2.3 Let (X, d) be a complete metric space and T :
∏∞

l=1 X → X be an ex-
tended Fisher–Geraghty Hk contraction for some k ∈ N. Then there exists u ∈ X such that
T((u)∞i=1) = u, and for any x1, x2, . . . xk , the infinite k-Picard sequence converges to u.

Proof Let x1, . . . , xk ∈ X. For all n ∈ N, we define an infinite k- Picard sequence by

xn+k := T
(
(xn+i–1,n̂+k–1)∞i=1

)
. (25)

We claim limn→∞ d(xn+k , dn+k+1) = 0.
Then we have

d((xn+k+1, xn+k+2) = d(
(
T

(
(xn+i,̂n+k)∞i=1

)
, T

(
(xn+i+1,n̂+1+k)∞i=1

))

≤ β(d(xn+k , xn+k+1))
2

(
d
(
T

(
(xn+i,̂n+k)∞i=1

)
, xn+k+1

)

+ d
(
T

(
(xn+i,n̂+k+1)∞i=1

)
, xn+k

))

<
1
2
(
d(xn+k+1, xn+k+1) + d(xn+k , xn+k+2)

)

<
1
2
(
d(xn+k , xn+k+1) + d(xn+k+1, xn+k+2)

)
.

We have d(xn+k+1, xn+k+2) < d(xn+k , xn+k+1). This sequence is decreasing, so there is r ≥ 0
such that

lim
n→0

d(xn+k , xn+k+1) = r. (26)

We claim that r = 0. If we suppose on the contrary that r > 0. One has

lim
n→∞ d(xn+k+1, xn+k+2)

≤ limn→∞ β(d(xn+k , xn+k+1))
2

(
lim

n→∞ d(xn+k , xn+k+1) + lim
n→∞ d(xn+k+1, xn+k+2)

)
.

Thus,

2 limn→∞ d(xn+k+1, xn+k+2)
limn→∞ d(xn+k , xn+k+1) + limn→∞ d(xn+k+1, xn+k+2)

≤ lim
n→∞β

(
d(xn+k , xn+k+1)

)
.

Using (26), we obtain 2r
2r ≤ limn→∞ β(d(xn+k , xn+k+1)). Hence,

lim
n→∞β

(
d(xn+k , xn+k+1)

) ≥ 1.

Since β ∈G, we have limn→∞ β(d(xn+k , xn+k+1)) ≤ 1.
At the limit, we have

lim
n→∞β

(
d(xn+k , xn+k+1)

)
= 1. (27)

Then limn→∞ d(xn+k , xn+k+1) = 0. We claim that {xn+k}n∈N is Cauchy, and we want to prove
this by contradiction. Then, using the contrary, there exists ε > 0 such that we can find
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subsequences {xm(q)+k}p∈N, {xn(q)+k}p∈N with m(q) > n(q) > q such that, for every q, we have

d((xm(q)+k , xn(q)+k) ≥ ε. (28)

Moreover, corresponding to each n(q) we can choose m(q) satisfying (28) so that

d((xm(q)+k–1, xn(q)+k) < ε. (29)

Using (28), (29) and the triangle inequality, we get

d((xm(q)+k–1, xn(q)+k–1) ≤ d((xm(q)+k–1, xn(q)+k) + d((xn(q)+k–1, xn(q)+k)

< ε + ξ ((xn(q)+k–1, xn(q)+k) (30)

and

ε ≤ d((xn(q)+k , xm(q)+k)

≤ d((xn(q)+k , xn(q)+k–1) + d((xn(q)+k–1, xm(q)+k–1) + d((xm(q)+k–1, xm(q)+k).

Letting q → ∞ in (30) and (27), we get

lim
q→∞ d((xm(q)+k–1, xn(q)+k–1) = ε, (31)

d(xn(q)+k , xm(q)+k)

= d
(
T

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1

)
, T

(
(xm(q)+i–1, ̂m(q)+k–1)∞i=1

))

≤ β(d(xn(q)+k–1, xm(q)+k–1))
2

(
d
(
T

(
(xn(q)+i–1, ̂n(q)+k–1)∞i=1

)
, xm(q)+k–1

)

+ d
(
T

(
(xm(q)+i–1, ̂m(q)+k–1)∞i=1

)
, xn(q)+k–1

))

<
1
2
(
d(xn(q)+k , xm(q)+k–1) + d(xm(q)+k , xn(q)+k–1)

)

≤ 1
2
(
ε + d(xm(q)+k , xm(q)+k–1) + d(xm(q)+k–1, xn(q)+k) + d(xn(q)+k , xn(q)+k–1)

)

≤ 1
2
(
2ε + d(xm(q)+k , xm(q)+k–1) + d(xn(q)+k , xn(q)+k–1)

)
.

Then from (31) and (27) we get a contradiction. Then

{xn+k}n∈N is a Cauchy sequence. (32)

Since (X, d) is complete, there exists u ∈ X such that

lim
n→∞ xn+k = u. (33)

We claim that T((u)∞i=1) = u. If we suppose on the contrary that d(u, T((u)∞i=1)) > 0, then,
by (26) and (33), for arbitrary ε > 0 and sufficiently large n, we get

d(
(
u, T

(
(u)∞i=1

))
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≤ d((xn+k , u) + d
(
xn+k , T

(
(u)∞i=1

))

= d((xn+k , u) + d(
(
T

(
(xn+i–1,n̂+k–1)∞i=1

)
, T

(
(u)∞i=1

))

≤ d
(

(xn+k , u) +
β(ξ (u, xn+k–1))

2
(
d
(
T

(
(xn+i–1,n̂+k–1)i=1

)∞)
, u

)
+ d

(
T

(
(u)∞i=1

)
, xn+k–1

)
)

≤ d
(

(xn+k , u) +
β(d(u, xn+k–1))

2
(
d
(
T

(
(xn+i–1,n̂+k–1)i=1

)∞)
, u

)

+ d
(
T

(
(u)∞i=1

)
, u

)
+ d(u, xn+k–1)

)

≤ 1
2

d(
(
u, T

(
(u)∞i=1

))
+

ε

3
+

ε

6

≤ 1
2

d(u, T
(
(u)∞i=1

)
+

1
2
ε.

That is, d((u, T((u)∞i=1)) ≤ ε for any arbitrary ε > 0. Hence, d(T((u)∞i=1), u) = 0, which implies
T((u)∞i=1) = u. �

Corollary 2.2 Let (X, d) be a complete metric space and T be a Fisher–Geraghty Hk con-
traction. Then T has a fixed point.

Proof Choose any x0, . . . , xk ∈ X. Define

xn+k := T(xn, . . . , xn+k–1). (34)

Using the same steps as in the proof of Theorem 2.3, we get the conclusion. �

Remark 2.3 For k = 1, we get a new type of extension of Theorem 1.3 proved in [2], and
for any k, Corollary 2.2 also gives the multidimensional extension of the same theorem
stated in [2].

Remark 2.4 The Banach fixed point theorem [4], Theorem 1.1, Theorem 1.2, Theorem 1.3,
Theorem 1.4, and Theorem 1.5 are all applicable only in complete metric spaces as well
as the theorems described in [1], but Theorem 2.1, Theorem 2.2, Theorem 2.3, which we
have proved, are talking about the space∞

i=1X (where X is a complete metric space) which
is indeed metrizable, but might not be complete.

3 Applications to integral equations
In [41], Singh et al. introduced the notion of multi-dimensional Fredholm integral equa-
tions by taking into account n ∈ N as the dimension of the equation

u(x1, . . . , xn) = f (x1, . . . , xn)

+
∫ 1

0

∫ 1

0
. . .

∫ 1

0︸ ︷︷ ︸
n-times

K(x1, . . . , xn, y1, . . . , yn)u(y1, . . . , yn) dy1 . . . dyn,

where (x1, . . . , xn) ∈ D = ([0, 1] × [0, 1] × · · · × [0, 1])︸ ︷︷ ︸
n-times

and f (x1, . . . , xn), K(x1, . . . , xn, y1,

. . . , yn) are known continuous functions defined on D and D2, respectively, where u(x1,

. . . , xn) is an unknown function.
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The Fredholm integral equations play an important role in modeling of physics phe-
nomena described by two or three dimensions. In the same way, they have applications in
astrophysics models thinking of the four dimensions of a neutron star or a black hole.

Thinking of these aspects, if we extend to infinity the dimension “n” of the previous
multi-dimensional integral equation, we introduce a new notion, the infinite dimensional
Fredholm integral equation, as follows:

u
(
(ti,̂k)∞i=1

)
= f

(
(ti,̂k)∞i=1

)

+
∫ 1

0
. . .

∫ 1

0
. . . K

(
(ti,̂k)∞i=1, (si,̂k)∞i=1

)
u
(
(si,̂k)∞i=1

)
ds1 · · ·dsn · · · , (35)

where f ((ti,̂k)∞i=1) : [0, 1] → R and K : [0, 1] ×R → R are two known continuous functions
and u((ti,̂k)∞i=1) is an unknown function.

Further, let us give our first application of the main results of this paper by proving the
existence of a solution of infinite dimensional Fredholm integral equation (35).

Theorem 3.1 Let X = C([0, 1],R) be the set of real continuous functions on [0, 1], and let
d : X × X →R+ be given by

d(
(
(ui,̂k)∞i=1, T(ui,̂k)∞i=1

)
= sup

t∈[0,1]
| (ui,̂k)∞i=1 – T(ui,̂k)∞i=1 | . (36)

Define T :
∏∞

i=1 X → X by

Tu
(
(ti,̂k)∞i=1

)
= f

(
(ti,̂k)∞i=1

)

+
∫ 1

0
. . .

∫ 1

0
. . . K

(
(ti,̂k)∞i=1, (si,̂k)∞i=1

)
u
(
(si,̂k)∞i=1

)
ds1 · · ·dsn · · · . (37)

Assume that the following hold:
(i) |u((ti,̂k)∞i=1) – Tu((ti,̂k)∞i=1)| ≤ 1

2 (|T((ui,̂k)∞i=1) – uk| + |T((ui+1,k̂+1)∞i=1) – uk+1|);
(ii) There exists a constant δ ∈ (0, 1) so that K((ti,̂k)∞i=1, (si,̂k)∞i=1) < δ;

(iii) Let β : [0,∞) → [0, 1) be a lower bounded function and γ > 1 be large enough such
that 1

γ
< β(z) for every z ∈ X .

Then the infinite dimensional Fredholm integral equation (35) has a solution.

Proof We can prove the existence of a solution of infinite dimensional Fredholm integral
equation if we show that the operator T defined by (37) has a fixed point.

We can easy remark that the space X = (C[0, 1],R) endowed with the metric d defined
by relation (36) forms a complete metric space. Then we shall show that all the hypotheses
of Theorem 2.2 are verified.

We have the following estimation:

∣∣Tu
(
(ti,̂k)∞i=1

)
– T2u

(
(ti,̂k)∞i=1

)∣∣

=
∣
∣∣∣

∫ 1

0
. . .

∫ 1

0
. . . K

(
(ti,̂k)∞i=1, (si,̂k)∞i=1

)
u
(
(si,̂k)∞i=1

)
ds1 . . . dsn . . .

–
∫ 1

0
. . .

∫ 1

0
. . . K

(
(ti,̂k)∞i=1, (si,̂k)∞i=1

)
Tu

(
(si,̂k)∞i=1

)
ds1 . . . dsn . . .

∣∣
∣∣
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≤
∫ 1

0
. . .

∫ 1

0
. . . K

(
(ti,̂k)∞i=1, (si,̂k)∞i=1

)∣∣u
(
(si,̂k)∞i=1

)
– Tu

(
(si,̂k)∞i=1

)∣∣ds1 . . . dsn . . .

≤ δ

2γ

(∣∣T
(
(ui,̂k)∞i=1

)
– uk

∣∣ +
∣∣T

(
(ui+1,k̂+1)∞i=1

)
– uk+1

∣∣)
∫ 1

0
. . .

∫ 1

0
. . . ds1 . . . dsn . . .

=
δ

2γ

(∣∣T
(
(ui,̂k)∞i=1

)
– uk

∣∣ +
∣∣T

(
(ui+1,k̂+1)∞i=1

)
– uk+1

∣∣).

Taking supremum on both sides, we get

sup
t∈[0,1]

∣∣Tu
(
(ti,̂k)∞i=1

)
– T2u

(
(ti,̂k)∞i=1

)∣∣

≤ δ

2γ
sup

t∈[0,1]

(∣∣T
(
(ui,̂k)∞i=1

)
– uk

∣∣ +
∣∣T

(
(ui+1,k̂+1)∞i=1

)
– uk+1

∣∣).

Further, since 1
γ

< β(z), for z = d(uk , uk+1) and δ ∈ (0, 1), we obtain

d(
(
Tu

(
(ti,̂k)∞i=1

)
, T2u

(
(ti,̂k)∞i=1

))

≤ δβ(d(uk , uk+1))
2

(d(
(
T

(
(ui,̂k)∞i=1

)
, uk

)
+ d

((
T

(
(ui+1,k̂+1)∞i=1

)
, uk+1

))

≤ β(d(uk , uk+1))
2

(d(
(
T

(
(ui,̂k)∞i=1

)
, uk

)
+ d

((
T

(
(ui+1,k̂+1)∞i=1

)
, uk+1

))
.

In conclusion, all the hypotheses of Theorem 2.2 are accomplished. Then the operator
T has a fixed point, which means the infinite dimensional Fredholm integral equation (35)
has a solution. �

The following application involves another type of integral equations: Urysohn type in-
tegral equations. We extend the known cases of this type of integral equations to infinite
dimensional Urysohn integral equations:

u
(
(ti,̂k)∞i=1

)
= f

(
(ti,̂k)∞i=1

)

+
∫ b

a
. . .

∫ b

a
. . . P

(
(ti,̂k)∞i=1, (si,̂k)∞i=1, u

(
(si,̂k)∞i=1

))
ds1 · · ·dsn · · · , (38)

where f ((ti,̂k)∞i=1) : [a, b] → R and P : [a, b] × [a, b] × R → R are two known continuous
functions and u((ti,̂k)∞i=1) is an unknown function.

For this new type of Urysohn integral equation, let us give the following result.

Theorem 3.2 Let X = C([a, b],R) be the set of real continuous functions on [a, b] endowed
with the Bielecki norm d : X × X →R+ given by

d(
(
(ui,̂k)∞i=1, T(ui,̂k)∞i=1

)
=

∥
∥(ui,̂k)∞i=1

∥
∥

B = sup
t∈[a,b]

| u(ti,̂k)∞i=1 | ·e–τ t , with τ > 1. (39)

Define T :
∏∞

i=1 X → X by

Tu
(
(ti,̂k)∞i=1

)
= f

(
(ti,̂k)∞i=1

)

+
∫ b

a
. . .

∫ b

a
. . . P

(
(ti,̂k)∞i=1, (si,̂k)∞i=1, u

(
(si,̂k)∞i=1

))
ds1 · · ·dsn · · · . (40)
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Assume that there is � > 0 so that

∣∣P
(
(ti,̂k)∞i=1, (si,̂k)∞i=1, u

(
(si,̂k)∞i=1

))
– P

(
(ti,̂k)∞i=1, (si,̂k)∞i=1, Tu

(
(si,̂k)∞i=1

))∣∣

≤ 1
�

∣∣(ui,̂k)∞i=1 – T(ui,̂k)∞i=1
∣∣.

Let β(z) : [0,∞) → [0, 1) be a lower bounded function such that, for � > 1 large enough,
1
�

< β(z) for z ∈ X.
Then the infinite dimensional Urysohn integral equation (38) has a solution.

Proof It is easy to check that the space X = (C[0, 1],R) endowed with the metric d defined
by relation (39) is a complete metric space.

To prove the existence of a solution of infinite dimensional Urysohn integral equation,
we shall show that the operator T defined by (40) has a fixed point.

We have the following estimation:

∣∣Tu
(
(ti,̂k)∞i=1

)
– T2u

(
(ti,̂k)∞i=1

)∣∣

=
∣∣
∣∣

∫ b

a
. . .

∫ b

a
. . . P

(
(ti,̂k)∞i=1, (si,̂k)∞i=1, u

(
(si,̂k)∞i=1

))
ds1 . . . dsn . . .

–
∫ b

a
. . .

∫ b

a
. . . P

(
(ti,̂k)∞i=1, (si,̂k)∞i=1, Tu

(
(si,̂k)∞i=1

))
ds1 . . . dsn . . .

∣∣
∣∣

≤
∫ b

a
. . .

∫ b

a
. . .

∣
∣P

(
(ti,̂k)∞i=1, (si,̂k)∞i=1, u

(
(si,̂k)∞i=1

))

– P
(
(ti,̂k)∞i=1, (si,̂k)∞i=1, Tu

(
(si,̂k)∞i=1

))∣∣ds1 . . . dsn . . .

≤ 1
�

∫ b

a
. . .

∫ b

a
. . .

∣∣(ui,̂k)∞i=1 – T(ui,̂k)∞i=1
∣∣ds1 . . . dsn . . .

≤ eτ t

�

∣
∣(ui,̂k)∞i=1 – T(ui,̂k)∞i=1

∣
∣e–τ t

∫ b

a
. . .

∫ b

a
· · ·ds1 · · ·dsn · · ·

≤ eτ t

�

∣∣(ui,̂k)∞i=1 – T(ui,̂k)∞i=1
∣∣e–τ t .

Applying maximum on both sides, we get

max
t∈[a,b]

∣∣Tu
(
(ti,̂k)∞i=1

)
– T2u

(
(ti,̂k)∞i=1

)∣∣e–τ t ≤ 1
�

max
t∈[a,b]

∣∣(ui,̂k)∞i=1 – T(ui,̂k)∞i=1
∣∣e–τ t .

Then we have

d
((

Tu
(
(ti,̂k)∞i=1

)
, T2u

(
(ti,̂k)∞i=1

))) ≤ 1
�

d(
(
(ui,̂k)∞i=1, T(ui,̂k)∞i=1

)
.

Since 1
�

< β(z) and for z = Mk((ui,̂k)∞i=1, (ui+1,k̂+1)∞i=1), we obtain

d(
(
Tu

(
(ti,̂k)∞i=1

)
, T2u

(
(ti,̂k)∞i=1

))

≤ β
(
Mk

(
(ui,̂k)∞i=1, (ui+1,k̂+1)∞i=1

))
d(

(
(ui,̂k)∞i=1, T(ui,̂k)∞i=1

)

≤ β
(
Mk

(
(ui,̂k)∞i=1, (ui+1,k̂+1)∞i=1

))
Mk

(
(ui,̂k)∞i=1, (ui+1,k̂+1)∞i=1

)
.
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Then all the conditions of Theorem 2.1 are satisfied, so the operator T has a fixed point.
Then the infinite dimensional Urysohn type integral equation (38) has a solution. �

4 Conclusion
Here, in this article we have shown some metric combinatorial arguments that can be prof-
itably applied to extend Geraghty’s theorem, Kannan–Geraghty theorem, and Fisher’s the-
orem as well as a particular extension for the infinite cases. This idea could also motivate
to find a similar infinite extension of the other contractions and their related operators, to
find fixed points or coincidence points. We also defined two new types of infinite integral
equations which would encourage the study of the infinite integral equations and their
solutions. From the discussion we have some interesting problems as follows:

1. Can a similar concept be extended to the notion of coincidence points?
2. We have discussed the fixed point theorem for the contraction from countable

products of the complete metric space X (with respect to uniform metric topology)
to the space X . Can it further be extended to an uncountable product of a complete
metric space which is not necessarily a metric space?
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