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Abstract: Ratcheting failure of materials and structures subjected to low cycle fatigue in the presence
of significant mean stress is of great interest to researchers. In this experimental and numerical study,
the response of 316L stainless steel samples was observed in symmetric strain control uniaxial test
followed by post-stabilized monotonic test, uniaxial and biaxial ratcheting tests, in order to determine
the Chaboche model parameters and to evaluate ratcheting prediction using finite element analysis.
The critical elastic limit was initially obtained from incremental uniaxial cyclic tests. The Chaboche
parameters were subsequently extracted from experimental hysteresis and post-stabilized monotonic
stress plastic-strain curves using two optimization technics, namely, the Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA). The two optimization methods were compared for efficiency, in
terms of time and accuracy. The PSO method presented higher efficient results and was subsequently
used to derive the parameters from hysteresis and post-stabilized monotonic curves. Different values
(by definition) of elastic limit were also used. The Finite Element commercial software ANSYS was
utilized with the Chaboche model to predict the uniaxial and biaxial ratcheting behavior of 316L
stainless steel pipe. The comparison between experimental and the numerical simulation demonstrates
that adopting post-stabilized monotonic curve rather than hysteresis curve and with accurate elastic
limit obtained from incremental loading test improves ratcheting prediction significantly.

Keywords: 316L stainless steel; ratcheting; calibration; Chaboche model; elastic limit; hysteresis
curve; monotonic curve

1. Introduction

Load-bearing engineering components are frequently exposed to random loading and the risk
of occurrence of ratcheting is increased significantly [1–5]. Offshore structures, pressure vessels and
piping system, structures operating in earthquake zones, airplane landing gears and nuclear reactors
are typical examples of such components and structures [6–8]. Structures subjected to stress cycles
beyond the elastic limit oblige a trustworthy design, especially in the presence of a significant mean
stress from loads such as dead weight or internal pressure [1,6,9,10].

In researches on ratcheting behaviour, bilinear kinematic hardening (BKH), multilinear kinematic
hardening (MKIN) [11] and the nonlinear kinematic hardening (NLK) model developed by
Chaboche [12] are commonly used, and are currently incorporated in commercial finite element
programs such as ANSYS and ABAQUS [13]. Among the available models in commercial software, the
Chaboche model is the most powerful [14]. However, this model overpredicts ratcheting strain under
either uniaxial or multiaxial loading when compared with experimental results [13,15–17].
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A solution to the above problem is found by identifying new material parameters [18] or using a
more multifaceted material model [19,20]. However, implementation of more robust complex models
can be time-consuming and complicated [15,21]. Kalnins reiterated the parameter identification for the
material under consideration as an essential prerequisite for using an NLK model [22]. Accordingly,
the dedicated method to figure out the best set of ratcheting parameters can extremely affect the result
of ratcheting prediction.

Bari et al. proposed a methodical step-by-step concept for specifying the Chaboche model’s
parameters. In their concept, the parameters were specified via numerical simulation of a hysteresis
lower or upper curve [11,23,24]. The manual method to determine parameter values might be lengthy
and time consuming, requiring numerous trial-and-error iterations for determining a set of parameters
values. Rahman et al. evaluated the use of heuristic search techniques, such as the genetic algorithm,
in automating the parameter value determination of developed models, and thus overcoming the
limitations involved in manual calibration [25,26]. Two approaches to determine Chaboche model
parameters are used by Kalnins et al. [22], namely the manual method and the numerical method,
which make use of ABAQUS. They presented practicable applications of the Chaboche model in
elastic-plastic ratcheting analysis.

Cyclic hardening can have a strong influence on the rate of ratcheting in unsymmetrical stress
cycling [25,26]. In an effort to reduce the hardening-ratcheting coupling, they stabilized the hardening
of the test specimens by axial symmetric strain cycling in the range of stress-strain similar to the
following ratcheting tests. The positive or negative segment of the last saturated cycle of hysteresis
curve was adopted in calculating the ratcheting parameters. However, Kalnins et al. adopted the
monotonic stress-strain curve, instead of a hysteresis curve, obtained from a specimen subjected to
unidirectional tension loading, to calibrate the ratcheting parameters [22]. The authors suggested
that adopting the monotonic curve data for determining is predictable to present stuffy assessment of
ratcheting that could be assumed suitable for design targets. They argued that for the case of stainless
steel, the stress flow increases with additional cycles, more than that of the initial monotonic curve
(initial half-cycle).

The ratcheting parameters are significantly sensitive to the elastic limit stress at which yielding
instigates [22,27]. Precise application of elastic theory that causes a slight amount of nonlinear recovery
was addressed [28]. From Table Y-2 of Section II, Part D, in ASME B&PV Code [29] and the Nuclear
Safety Standards Commission document, KTA 3201.2, Table 7.7-8 13 [22], the elastic limit for stainless
steels is assumed to be 0.55 times the elastic limit coefficient, which is either the Yield Strength Sy or the
0.2% strain offset. Zhou et al. proposed the elastic limit to be 0.54 times the 0.2% strain offset for 316L
stainless steel [30]. The methods mentioned by Zhou considered the elastic limit for non-stabilized
materials only, whereas other researchers found that the elastic limit coefficient is enlarged following
stabilization hardening.

In this study, elastic limit and ratcheting behaviour of straight 316L austenitic stainless steel pipes
subject to uniaxial and biaxial quasi-static cyclic loading are investigated experimentally. The elastic
limit is obtained from incremental uniaxial cyclic tests but other elastic limits are evaluated (due
to different definition of elastic limit) for ratcheting evaluation. Intelligent optimization techniques
namely, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) methods are employed and
compared with the objective to identify and calibrate the ratcheting parameters from monotonic and
hysteresis curves.

2. Determination of Chaboche Material Parameters

2.1. Material and Specification

The pipe material 316L austenitic stainless steel is commonly used in the oil and gas industry. Its
specification and chemical composition obtained by the Glow Discharge Spectrometry (GDS) test are
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listed in Table 1, and the basic mechanical properties are listed in Table 2, in which σy denotes 0.2%
proof stress, σU the ultimate stress and E the elastic modulus.

Table 1. Chemical composition (%).

C Mn P Co Si Cr Ni Mo Ti Al V Zr N Nb

0.0314 1.53 0.0378 0.373 0.365 16.4 11.4 2.14 0.007 0.004 0.074 0.018 0.104 0.01

Table 2. Basic mechanical properties.

σy (MPa) (Offset 0.2%) σU (MPa) E (GPa)

264 601 172

2.2. Specimen Preparation

The 316L austenitic stainless steel seamless pipes that were procured for ratcheting analysis
measures an outer diameter of 60.3 mm and wall thickness of 3.9 mm. From these pipes, pipe test
specimens were prepared by turning the test area to a smaller diameter, welding of end caps for both
uniaxial and biaxial test specimens and drilling of pressurizing oil ports for biaxial specimens. The pipe
test specimens were to be used for monotonic, uniaxial and biaxial tests and have geometry similar to
those used in cyclic tests carried out by Jiao and Paquette et al. [31–33]. The gaged area was tapered
to a smaller diameter to minimize the effect of thickness discontinuity on stresses. A finite element
analysis of an exact model was run to confirm that the taper has an insignificant effect on the uniaxial
loading stress of the tube at its mid length.

Figure 1 shows the dimension of the pipe specimen. The dimensions of the specimens were kept
the same for both the uniaxial and biaxial test specimens. The overall specimen length was 260 mm and
290 mm for uniaxial and biaxial specimens, respectively, with the following variations in dimensions:
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The diameter of the ends of the specimens was maintained as-received. For uniaxial test samples,
the length of the ends is 40 mm. For biaxial test samples, the ends are 80 mm long in order to cater
to pressurizing oil ports. The diameter of the middle gaged test section was machined down, using
Computer Numerical Control (CNC) machine, to 1.44 mm wall thickness. The test section is 32 mm
long. The linear tapers are 55 mm long. Special care was taken in the machining process to reduce
changes in the physical surface and material properties of the specimens.

Steel caps were designed and fabricated to fit onto the ends of the pipe specimens. The end caps
were screwed and then welded, using gas tungsten arc welding (GTAW), onto the ends of the pipe
specimens in order to eliminate axial free play from the thread fastening system. The other sides of the
end caps have thread connections designed to fit to the actuator of the universal testing machine. A
nut tightening system was used to eliminate thread clearance, which might otherwise cause impact
loading to the specimen when alternating between tension and compression loadings. For the biaxial
test samples, a socket was welded onto an end cap for the supply of pressurizing oil. The quality of
welding was assured by performing Dye Penetrant Inspection (DPI) test on test specimens. Finally,
the specimens were heat treated, which involved heating at 900 ◦C for 1 h in a furnace and allowed
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to cool in air. The heat treatment reduces the effect of mechanical work from the manufacturing and
machining processes and relaxes residual stresses due to welding of the caps. Figures 2 and 3 show the
geometry of the specimens.
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2.3. Experimental Setup

The experiments were conducted on INSTRON 5982 universal testing machine. The machine
provides the capability of testing under load or displacement control. The load readout from the
Instron was monitored by another calibrated load cell, which was synced with a digital high speed data
logger. The strains were measured using high elongation single element strain gauges for monotonic
and uniaxial test samples and 90◦ 2-element strain rosettes for the biaxial test. The gauges were
bonded to opposite sides of the test specimens to eliminate bending effects. The strains and loads were
monitored and stored continuously by the data logger. The rate of loading was set at 0.75 mm/min
and the stress-strain data stored at time intervals of 0.5 s. The data combination of force from the
designed load cell and extension reading from the Instron machine was employed to monitor the



Appl. Sci. 2019, 9, 2578 5 of 23

force-displacement response of test specimens and not for numerical analysis because these data lack
accuracy. The setup of the test system is shown in Figures 4 and 5.
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Advanced ratcheting analysis began with Rahman et al. who concluded that cyclic hardening
could have a significant effect on ratcheting rate in unsymmetrical stress cycling [25]. Hence, in the
present study, all monotonic, uniaxial and biaxial test specimens were cyclically stabilized through
uniaxial symmetric strain cycling in an attempt to reduce the coupling of the two phenomena. The
strain controlled tests imparted the specimen with symmetric tension compression cycles within the
strain range of ±0.75%. Following the strain hardening stabilization process, post-stabilized monotonic,
uniaxial and biaxial tests were conducted.
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The post-stabilized monotonic tension tests were continued up to 1.8% strain. In uniaxial testing,
there are two concepts of conducting tests under stress control. The first concept of uniaxial testing is
performing incremental loading and unloading to zero load in order to establish an elastic limit, by
reading the total strain, which is recorded at every unloaded zero load. In this test, the stress increment
for every subsequent loading is set at 4 MPa. The second concept of uniaxial testing is to establish the
uniaxial ratcheting rate. Here, the applied stress range is set to 255 MPa under a constant mean stress
of 65 MPa.

In the biaxial tests, the pipes were pressurized using a hydraulic pump. The axial load provided
by the Instron machine and internal pressure were coupled through a feedback monitoring system so
that the internal pressure would only give rise to pure circumferential stress. Under any magnitude of
internal pressure, the system would adjust to maintain zero axial pressure stress. Cyclic axial stress
would then be provided by the testing machine to study ratcheting. The uniaxial strain of the test
specimen was cycled in a symmetric mode. The axial stress and strain are known as (σx, εx), and the
circumferential stress and strain are recognized as (σθ, εθ). The internal pressure is denoted by IP and
the strain amplitude of the cycles is identified by εxc. In the biaxial tests, the strain was controlled and
cycled and the stress response was logged. The strain limit is εxc = ±0.4%. The internal pressure was
set at IP = 5 MPa. It is worth mentioning that as with other researches, the loading rate-dependent
behavior of the material and pipes was not studied [30,34,35].

2.4. Experiment Results and Discussion

The result from the stabilized uniaxial strain control test is illustrated in Figure 6a,b. Figure 6a
demonstrates the cyclic hardening in the strain-symmetric cyclic history. The hysteresis loop tends to
limit itself to a closed stable loop after a number of cycles. The hysteresis loop is stabilized after eleven
cycles in which the pipe exhibits significant hardening before stabilization. In the subsequent strain
symmetric cycling, the specimens are unloaded to zero magnitude of axial stress and strain. Figure 6b
shows the final stabilized hysteresis loop of the test.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 23 
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Figure 6. (a) Cyclic hardening behaviour of 316L stainless steel (b) stabilized hysteresis curve.

The results of the monotonic tensile test and post-stabilized monotonic test are shown in Figure 7.
The test was conducted for a strain range of 0 to +1.8% where the stress-strain plot exhibits strain
hardening after the elastic limit. The yield points at 0.2% strain offset are calculated to be 264 MPa and 305
MPa for monotonic and post-stabilized monotonic test, respectively. Most of the ratcheting parameters
are obtained from the monotonic, post-stabilized monotonic, and stabilized hysteresis curves.
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Figure 7. Monotonic and post-stabilized monotonic curves of AISI 316L SS.

Figure 8 depicts the stress-strain responses from the monotonic and post-stabilized monotonic
test superimposed on the upper hysteresis curve result from cyclic test with symmetric strain control
in the plastic region. The figure shows the effect of material hardening on the stabilization of
stress-strain behaviour after several loading cycles. It can be observed that strain hardening causes
a significant increase of the linear section of the post-stabilized monotonic test and the hardening is
caused by cyclically stabilized axial strain symmetric cycling, rather than first half tension of strain
control monotonic test. In the figure, the transient Bauschinger effect can be observed, which gives
rise to a smaller plastic modulus in the stabilized hysteresis loop compared to the post-stabilized
monotonic loading. This happens if the applied peak strain is relatively small in prior strain control
hardening [36–39]. The “shifted curve” in Figure 8 refers to the stress and strain data obtained in the
upper or lower stabilized hysteresis loading. The shifted curve (σshift, εshift)) obtained from upper
curve is regularized by the following equations:

σshift =
1
2
(σUpper curve − σMax at maximum strain control), (1)

and εshift =
1
2
(εUpper curve − εMax at maximum strain control). (2)
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Figure 8. Monotonic, post-stabilized monotonic curves, upper hysteresis curve and shifted curve of
AISI 316L SS.
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From Figure 8, the knee section of the calculated shifted curve is positioned below the knee
sections of monotonic and post-stabilized monotonic curves because the quasi linear segment of shifted
curve is shorter in comparison to the monotonic and post-stabilized monotonic curves. Hence, the
shifted curve, obtained from hysteresis curve, does not present the true mode of monotonic behaviour
of the material.

Figure 9 illustrates the stress-strain response of the uniaxial tests in which the subsequent
maximum load is incremented by 4 MPa after every complete unloading. The loading-unloading
process is continued when a large permanent axial deformation occurs. From the figure, for the cycle
with maximum stress σMax of 244 MPa, the strain starts from 0 µε at zero load and remains 0 µε upon
unloading. For the cycle with maximum stress of 248 MPa, the strain starts from 0 µε at zero load and
retains 7.5 µε upon unloading. For the cycle with maximum stress σMax of 252 MPa, the strain starts
from7.5 µε at zero load and reads 20 µε upon unloading. The loading cycle before the one that initiates
the plastic strain is considered in the calculation for the elastic limit. Many loading cycles were carried
out, but since the curves are quite close to one another, only three cycles before and after the elastic
limit cycle are depicted. From Figure 9, the elastic limit is found to be 244 MPa, which is 0.8 times of
yield stress (305 MPa) at 0.2% strain offset.
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Figure 9. Incremental cyclic uniaxial test to distinguish the elastic limit of 316L stainless steel.

Figure 10a shows the stress-strain response obtained from uniaxial stress controlled ratcheting
test. The stress was cycled from −190 MPa to 320 MPa, thus giving a mean stress of 65 MPa. The figure
shows that at the start of the test, the rate of ratcheting is about 100 µε per cycle, which then ceases in
25 cycles. This means that the plastic strain in the axial direction increases by 100 µε for every cycle for
25 cycles. In this test, the pipe did not fail due to ratcheting, but had the test been continued, it would
have failed by other modes. The maximum strain recorded in each cycle is plotted as a function of the
number of cycles and the result is presented in Figure 10b.
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Figure 10. Experimental test data of (a) the uniaxial cyclic stress-strain response of AISI 316L SS under
a stress-controlled condition (b) The plastic strain corresponding to the peak stress showing the rate of
ratcheting of AISI 316L SS.

The biaxial ratcheting test result of the axial strain εx and hoop strain εθ response is shown
in Figure 11a. In this strain controlled test, the axial strain was cycled from −4000 µε to +4000 µε.
Ratcheting in εθ can be observed. For the first 14 cycles, the ratcheting rate is higher, but after this
the rate becomes lower and constant. Figure 11b shows the plot of the circumferential plastic strain
recorded in each cycle as a function of the number of cycles applied. The figure shows that ratcheting
in the hoop direction does not cease, but continues at a constant rate of 500 µε per cycle. Theoretically,
in this case, ratcheting will be the mode of failure, but the test was interrupted after 25 cycles.
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Figure 11. Experimental test data of (a) the biaxial cyclic stress-strain response of an AISI 316L SS
under a strain-controlled condition; (b) the corresponding plastic strain to the peak stress showing the
rate of ratcheting of an AISI 316L SS.

3. Automated Calibration of Chaboche Parameter

The aim of the calibration procedure is to define the optimized input Chaboche model parameters
for elastic-plastic analysis by means of the Chaboche model. The Chaboche parameters can be identified
and calibrated based on a stress-plastic strain monotonic curve, as shown in Figure 7. The parameters
can also be calibrated by using the stabilized stress-plastic strain hysteresis curve from a uniaxial strain
control test, as illustrated in Figure 6b. The experimental uniaxial ratcheting is shown in Figure 10b.
After identifying and employing the parameters, they would be adopted for any cyclic loading and
geometry, on condition that the same stress range is nominated as shown in Figures 6 and 7.

3.1. Chaboche Model of Ratcheting

The rate-independent form of the non-linear kinematic hardening model (NKH) recommended by
Chaboche [11,40] is employed here. The model primarily consists of superposition of several (3, 4 or
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5) Armstrong Frederick (A–F) kinematic hardening (KH) rules. The kinematic hardening (KH) rule
encompasses a ‘recall term’, which embeds the fading memory effect of the strain path. The constitutive
equation is established on a von-Mises yield criterion, linear isotropic elasticity and the associated
flow rule. The proposed equation for the backstress, dα, proposed by Armstrong—Frederick is given
by [11]:

dα =
2
3

Cdεp
− γαdp, (3)

where dp =
∣∣∣dεp

∣∣∣ = [2
3

dεp
·dεp

]1/2
(4)

Chaboche et al. [40] proposed a ‘decomposed’ nonlinear kinematic hardening rule in the form:

dα =
M∑

i=1

dαi, dαi =
2
3

Ci dεp
− γi αi dp,

where dp =
∣∣∣dεp

∣∣∣.
Both Ci and γi are constants in the Chaboche kinematic hardening model, which can be generated

from the monotonic and uniaxial strain controlled stable hysteresis loop. As shown in Equation (5),
the Chaboche model is an incorporation of several (A–F) hardening rules. Particular objectives are
represented by each of these decomposed rules. For example, if M = 4, the first kinematic hardening
rule α1 predominantly signifies the first loop section by initiating with a quite large slope and following
by quick stabilization. The fourth loop section is nearly linear along with a slight slope and is denoted
by the third rule α3. The transition knee part of the hysteresis curve is partitioned into two sections.
The second section is represented principally by the fourth hardening rule α4 and third section by the
second hardening rule α2. Hence, the initial slope of the first segment is a good estimation for C1, the
third segment for C2, the fourth segment for C3, and the second segment for C4. The details on the
physical description and calculation procedure of the Chaboche parameters are discussed in [11,26].

The von-Mises yield criterion is represented as:

f (σ− α) =
[2
3
(s− a)·(s− a)

]1/2
= b0, (6)

and the supplementary flow rule can be described by the following expression:

dεp =
1
H

{
∂ f
∂σ
·dσ

}
∂ f
∂σ

, (7)

where, σ is the stress tensor, s is the deviatoric stress tensor, α is the current center of the yield surface,
a s the current centre of the yield surface in deviatoric space, b0 is the size of the yield surface and is
constant for a cyclically stable material, which defines the initial yield strength at the defined elastic
limit of the material in an uniaxial tension test. H is the plastic modulus and in the above formulation,
{0} indicates the MacCauley bracket and the inner product is expressed by a · b = aijbij.

Therefore, for a one-dimensional representation of an NLK model, the α backstress is achieved
from Equation (8).

α = σ1
− σ1

0, (8)

where, σ1 is the uniaxial stress of a tension specimen and σ1
0 is the elastic limit stress. Referring to

Chaboche model with M components, the αNLK backstress is described by Equation (9).

αNLK =
M∑

i=1

αi , (9)
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where, αi can be calculated from the monotonic test and upper hysteresis curves by Equations (10)
and (11), respectively.

αi =

(
Ci
γi

)[
1− exp

(
−γi εp

)]
, (10)

αi =

(
Ci
γi

)[
1− 2 exp

(
−γi (εp + εp0)

)]
. (11)

In the positive half cycle of the hysteresis curve, εp0 is called the starting point, where plastic
strain is zero and εp is the plastic strain from stress-plastic strain experiment data. The plastic strain
range for the segments is determined through extensive trial-and-error runs of the modified Chaboche
model program [22,25].

The validity of the M numbers of parameters depends on the requisite that the αNLK backstress
curve accurately overlaps α backstress curve. The selection of the appropriate number of components,
M, might be an iterative process and is based on the eye of the analyst and error function of intelligent
optimization technics. For example, if M = 2 does not meet the required match of the backstress curves,
then M = 3 and 4 etc. must be tried. Furthermore, the value at the saturation point of each component,
addressed by αSi, at which the ith component has zero slope is assumed by Equation (12).

αsi =

(
Ci
γi

)
, (12)

at the point where the αNLK backstress curve is saturated to zero slope, the ratcheting parameters, Ci
and γi , give the value αS of Equation (13):

αS =
M∑

i=1

Ci
γi

(13)

3.2. Extraction of Stress-Plastic Strain Data

The extracted stress-plastic strain curve provides the main result that is used to calibrate the
ratcheting parameters. The elastic limit in Figures 6b and 7, must initially be defined and determined.
Since ratcheting is a measure of accumulated strain, the stress at the elastic limit of the material becomes
the starting point of analysis. The method of using offset strain to define elastic limit in monotonic
test is done by finding the intersection on the stress-strain curve with a line parallel to the initial
stress-strain slope running through the offset strain. Using the elastic limit, the stress-plastic strain
curve for monotonic and upper stabilized hysteresis curves are calculated by Equations (14) and (15),
respectively:

εP = εT −

((
σ
E

)
+ εo f f

)
, (14)

where εo f f = εTEl −
σEl
E

εP = εT +
((
ε0 + 2 ∗ σEl − σ

E

))
, (15)

where, εP is plastic strain, εT is total strain, σ is stress, E is Young’s modulus, εo f f is elastic strain offset,
εTEl is total strain at elastic limit, σEl is elastic limit stress and ε0 is the start of half cycle strain.

The elastic limit for stainless steel was assumed by Kalnins et al. [22] as 0.55 times the yield stress
which was determined using a plastic strain offset εo f f of 0.2%, as depicted in Figure 7. The basis of the
factor of 0.55 comes from its use in the calibration of the Chaboche material models by AREVA GmbH
Erlangen [22] as mentioned before. Multiplying the 0.2% proof stress of 305 MPa (in Figure 7) by the
factor 0.55 gives the elastic limit of 167.2 MPa for post-stabilized monotonic and upper hysteresis curve
shown in Figure 12.
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Figure 12. Stress-plastic strain and Backstress for elastic limit = 167.2 MPa obtained from
(a) post-stabilized monotonic curve, (b) hysteresis curve.

The factor of 0.55 is quite conservative, as discussed in Section 1. From Figure 9, using the
proposed incremental uniaxial method on post-stabilized monotonic curve, the elastic limit for 316L
stainless steel was measured as 244 MPa. This value of elastic limit is 0.80 times the yield stress as
discussed in Section 2.4. Using the elastic limit of 244 MPa (from incremental method proposed by
current study) and 167.2 MPa (from Kalnin’s [22] method), the stress-plastic strain data is obtained and
presented in Figures 12 and 13, respectively. Hence, the plastic strain range of the hysteresis curve has
been enlarged to 2% and the slope of the upper hysteresis stress-strain curve extends the monotonic
curve beyond 0.75% strain. This is because the plastic strain range of the hysteresis curve is supposed
to be as large as all kinematic hardening rules curves saturated within the dedicated plastic strain
range [25]. The backstress α is calculated using Equation (8) and included in Figures 12 and 13.
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Figure 13. Stress-plastic strain and Backstress for elastic limit = 244 MPa obtained from (a) post-stabilized
monotonic curve (b) hysteresis curve.

3.3. Parameter Generation Based on Physical Meaning

In this subsection, a curve fitting process is adopted. The number of components that are needed
for evaluation of the accuracy of the αNLK backstress curve are set as M = 4 [25]. The stress-plastic
strain data obtained from Section 3.2, together with their corresponding Backstress α obtained from
Equation (8), are presented in Figures 12 and 13. Through trial and error, Rahman [25] first, roughly
estimate the contribution of a set of three ratcheting parameters, C1

γ1
, C2

γ2
and C4

γ4
, to be used as hysteresis

curve of several stainless steels and carbon steels by the following equation:

2 ∗
(

C1

γ1

)
+ 2 ∗

(
C2

γ2

)
+ 2 ∗

(
C4

γ4

)
= σ+x − σ

−
x − 2 ∗ σ0 − 2 ∗C3ε

p
L (16)
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where, σ+x is the positive peak, σ−x is the negative peak of the hysteresis curve and εp
L is plastic strain

range. Therefore, the right hand side of Equation 16 can be determined. The first rough contribution
can be estimated then for 2 ∗

( C1
γ1

)
, 2 ∗

( C2
γ2

)
and 2 ∗

( C4
γ4

)
. In the current study, this method is adopted for

the post-stabilized monotonic curve by dividing both sides of Equation (16) by two. Hence in the first
step, the initial estimates of Cs and γs are allowed to evolve or adapt with generation, which is found
to improve the convergence speed. In the second step, Equation (17) is adopted for all plastic strain
data proportional to Backstress αNLK, but γ3 is considered zero.

αNLK = α1 + α2 + α4 +
(
C3 ∗ εp

)
. (17)

The range used for each parameter for random generation of population, using PSO and GA
intelligent methods, are as follows: ±5% for C1 and C3 because these parameters can be estimated more
accurately than others. The parameters C2, C4, γ1, γ2, and γ4 are varied ±10% of the initial estimate.
Therefore, the Chaboche stress σNLK is acquired by Equation (18):

σNLK = αNLK + σ1
0. (18)

Finally the value of γ3 is calibrated when other parameters are kept constant. Calibration is
carried out within the range of 0–10 in uniaxial simulation, as described in Section 4.

3.4. Determination of Ratcheting Parameters Using Intelligent Optimization Methods

Intelligent optimization is used to determine the ratcheting parameters to ensure the least deviation
between simulation results and ratcheting tests. Two intelligent methods, namely Genetic Algorithm
(GA) and Swarm Particle Optimization (PSO) are discussed in this study. The Chaboche parameters
are the independent parameters in the cost function equations, which are calculated by intelligent
algorithms assigned in GA and PSO structures. In this study the GA is programmed for one main
function, while algebraic calculations for selection, double crossover and mutation are considered as
separate functions during the running of program. On the other hand, PSO possesses less programming
than GA by utilizing one main function in which all algebraic calculation for velocity and position
of members (Chaboche parameters) are programmed. The accuracy of both methods depends on
similarity matching between α and αNLK backstress curves as described in Section 3.1. The procedures
for both GA and PSO methods are presented.

3.4.1. Genetic Algorithm

Genetic Algorithm is a versatile optimization method in which the best solution is found by
assigning a big population of individuals to satisfy cost functions such as minimizing cost function
or maximizing fitness function. Artificial GA mimics the evolution of living in nature encompassing
selection, cross over, and mutation.

The Genetic Algorithm is commonly adopted as a method to identify parameters of physical
models to satisfy the cost function [25,26,41]. Herein, the cost function is the Chaboche stress σNLK

which is the function of backstress mentioned in Section 3, and expressed as Equation (19):

σNLK = f (αNLK), (19)

where αNLK = f
(
C1, C2, C3, C4,γ1,γ2,γ4, σ1

0

)
.
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Therefore σNLK is a dependant variable and xGA =
{
C1, C2, C3, C4,γ1,γ2,γ4

}
is an independent

variable, known as chromosome. The parameter optimization and model can be evaluated by
calculating the mean square error (MSE) as presented in Equation (20):

MSE =
1
N

N∑
i=1

(σ1
− σNLK)

2
, (20)

where, N is the number of proportional strain data points from the experiment. To perform the GA,
the three main steps, namely, selection, crossover and mutation are to be implemented.

Selection Activity

Selection is the repetitive action of forming an initial population, which adapts into a new superior
population. In this study the initial population is made randomly by choosing a real number. To
proceed selecting a new population, the roulette wheel method is used to select chromosomes. Each
chromosome possesses its own probability (Pi), defined as:

Pi =
Ćmax − Ći∑npop

j=1 (Ćmax − Ć j)
(21)

where, npop is the number of chromosome in population, Ćmax is maximum cost function, Ći is current
chromosome cost function and Ć j is cost function of remaining chromosomes. After characterizing
the eligibility of each chromosome, the roulette wheel tries to select members according to the high
probability criterion. The cumulative vector is the sum of probabilities:

v = [p1 , p1+ p2 ,p1+ p2+p3 ,...,p1+...+pn] (22)

or in the new form:

v(i) =
i∑

j=1

p j , (23)

where i = min
{
j
∣∣∣r ≤ v j

}
0 < r < 1,

where i is an index of iteration to promote chromosomes of old population to build the new eligible
population. Selection is a fundamental task that should be done before and after crossover and
mutation activities.

Crossover Activity

The main purpose of crossover is to produce a new population member (chromosome) that shares
the partial characteristics of parents. The manifestation of two new offsprings is a result of combining
two mature parent chromosomes. If x1 and x2 are considered as parents, then x̂1 and x̂2 may be
introduced as offsprings. As mentioned before, each chromosome contains Chaboche parameters; thus,
the crossover can be presented as:

x1 = (C11 , γ11 , C12 , γ12 , C13 , C14 ,γ14), (24)

x2 = (C21 , γ21 , C22 , γ22 , C23 , C24 ,γ24), (25)

And
x̂1i =

.
αix1i +

(
1−

.
αi

)
x2i, (26)

x̂2i =
.
αix2i +

(
1−

.
αi

)
x1i, (27)
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where,
.
αiε{0, 1} is the result of the crossover and can be indicated below, considering

.
αi =

1
2 and i = 1;

x̂11 =
1
2

c11 +
(
1−

1
2

)
c21, (28)

x̂21 =
1
2

c21 +
(
1−

1
2

)
c11, (29)

the new chromosomes x̂1 and x̂2 are created to minimize MSE in Equation (20).

Mutation Activity

The occurrence of mutation phenomenon in nature is to create new population members with best
adaptivity towards the surrounding environment. However, in an artificial environment, mutation is
designed to satisfy the cost function without any crossover activity. In other words, one parent mutates
into superior version. In our artificial programming, the mutation is implemented to change one part
of the chromosome x̂ in the form of:

x̂(i) = x(i) + γ ∗ β, (30)

where, γ is weighted value that is produced by:

γ = 0.1 ∗ (varmax− varmin). (31)

In Equation (31), varmax and varmin are the maximum and minimum values of the variable that
each chromosome can possess, respectively. β is a nominal value selected randomly to allot to size
(length) of each chromosome. In Equation (30), the ith element of chromosome is replaced by a new
value. Finally, the capable population is chosen after crossover and mutation to build a new population
in which the best chromosomes are selected that minimize MSE in Equation (20).

3.4.2. Particle Swarm Optimization

To extract the optimum Chaboche parameters, GA was first introduced in which the MSE of α
and αNLK reach minimum values. The PSO method is implemented in a comparative way to GA in
minimizing MSE. In PSO, the population members interact directly among themselves.

PSO Formulation

Particle Swarm Optimization (PSO) is another artificial intelligent method employed to mimic
the social natural movement of some animal species such as fishes and birds. In contrast to GA, the
optimization process in PSO is done by direct intelligent interaction among the population members. In
each iteration, the current cost function (MSE) of members (particles) are evaluated and compared with
its previous (local) and global values to create a new eligible population. In this method, the position
and speed of each particle in each iteration are evaluated for a new particle position that minimizes
the cost function. The members are selected or ranked based on best fitness value as indicated by
minimized MSE [42]. This team working activity is mathematically explained in an equation, which
presents the new position of the member as:

xnew
i = xold

i + vnew
i , (32)

where, xnew
i is the optimum solution for a member in the population, in our case the xnew

i is the latest
Chaboche parameter that is minimized in MSE. xold

i is the previous position and vnew
i is the velocity

(direction) of member that can be described as:

vnew
i = t1r1

(
xlocal

i − xold
i

)
+ t2r2

(
xglobal

− xold
i

)
(33)
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where, vi is the velocity of the particle, w is the inertial coefficient and r1 is a random number between
0 and 1. It is set t1 + t2 = 4.

Equation (33) is schematically presented in Figure 14 in which the new position is the best position
of the member satisfying the cost function (MSE). The best member has the optimum Chaboche
parameters in Equation (33).
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Figure 14. Movement of a member.

The overall GA and PSO optimization process flowcharts are illustrated in Figure 15a,b, respectively,
with their elements (cost function, constraints, etc.) described in detail in the following.
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3.5. Results and Discussions—Automated Parameter Calibration of Chaboche Model

The stress-plastic strain parameters determined using the PSO and GA schemes are calculated
after setting 244 MPa as the elastic limit, which was obtained from incremental uniaxial test result
in Figure 9 and listed in Table 3. The α and αNLK curves are obtained from Equations (3) and (5) and
presented in Figure 16. γ3 is considered to be zero.

Table 3. PSO and GA calibration for post-stabilized monotonic curve with elastic limit 244 MPa.

Type PSO Method GA Method

C1−4 296870, 17958, 2118, 20508 300871, 25155, 2118, 14182
γ1−4 21179, 335, 0, 1196 21803, 402, 0, 1903

Optimization Time (s) 617 721
MSE 0.325 0.691
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Figure 16. Comparison of α and αNLK curves using four Chaboche components for post-stabilized
monotonic curve with elastic limit 244 MPa (a) PSO calibration method (b) GA calibration method.

In contrast to GA, the particles in the PSO method have less mathematical operations. Thus,
only a few parameters are left to be adjusted and this saves time compared to GA. After evaluation
in every iteration, the cost function of each particle is compared with past, local and global values to
select the most eligible particle as upcoming member. Each member iteratively gets its new position
and velocity to be evaluated in order to minimize the cost function. In this study, both methods are
compared for accuracy in satisfying the cost function. Since the PSO method had resulted in more
accurate parameters (in terms of MSE) and less optimization time, the PSO scheme was adopted in
generating the ratcheting parameters for the stress–plastic strain results in Figures 12 and 13.

The ratcheting parameters for post-stabilized monotonic and hysteresis loadings, with different
elastic limit adoptions, 167.2 MPa and 244 MPa, calculated using the PSO method are presented in
Table 4. For simplicity, the set of parameters obtained from post-stabilized monotonic stress-plastic
strain curve with adopted elastic limits 167.2 MPa and 244 MPa are named Set A and Set B, respectively.
Parameters obtained from hysteresis stress-plastic strain with adopted elastic limits of 167.2 MPa and
244 MPa are named Set C and Set D, respectively, and shown in Table 4.

Table 4. PSO method—Calibration for Set A, Set B, Set C and Set D.

Type Set A Set B Set C Set D

C1−4
2446600, 12207,

2118, 24246
296870, 17958, 2118,

20508
140520, 29589, 2118,

31040
140220, 16725, 2118,

15818
γ1−4 27439, 291, 0, 796 21179, 335, 0, 1196 4471, 899, 0, 325 47864, 282, 0, 732
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4. Finite Element Model

The finite element (FE) pipe models with boundary conditions are shown in Figures 17 and 18,
in which 1

4 of the structure is modeled and meshed with ANSYS Solid186 elements, as shown in
Figures 17 and 18. The models are symmetric about the pipe mid-span (X -Y plane) and about the
plane of bending (Y -Z plane). The stress and strain data are extracted from elements at the pipe
mid-span; hence, the elements in this section were sized smaller than those in the remainder of the
pipe. A mesh convergence test was performed and analyses of 10 FE meshes of the pipe model
were carried out for 20 cycles of the biaxial loading, as carried out in the experiment. The Chaboche
plasticity model for both mesh convergence and simulation studies are readily available in ANSYS.
This model is then used with ratcheting parameters obtained in Section 3.5. An elastic-plastic uniaxial
FEA simulation was performed to calibrate the γ3 while the other parameters that were determined
in Section 3.5 were kept constant. After calibrating γ3, biaxial ratcheting was performed using the
calibrated ratcheting parameters.Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 22 
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Figure 18. Finite element model of biaxial specimen: (a) Inside surface symmetric about X-Y plane,
(b) through thickness symmetric about Y-Z plane, (c) boundary condition.

5. Finite Element Results and Discussion

Figure 19 shows the Chaboche model simulation results for the uniaxial and biaxial loadings,
using ratcheting parameters presented in Table 4. The value of γ3(= 3) had been calibrated using
uniaxial loading simulation. For different ratcheting parameter sets, the results are evaluated in terms
of two main concepts. The first evaluation concept involves simulation results obtained from Sets A
and B. The second concept involves simulation results obtained from Sets C and D.
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6. Conclusions 

In this paper, Chaboche ratcheting model parameters for 316L stainless steel pipes were 
determined from experimental uniaxial and hysteresis loading. The parameters were optimized 
using two different multi objective intelligent optimization technics, namely, Particle Swarm 
Optimization (PSO) and Genetic Algorithm (GA) methods. Experiments were conducted in which 
all test specimens were cyclically stabilized in a symmetric ±0.75% strain control loading prior to the 
following tests-monotonic uniaxial test, incremental uniaxial test, uniaxial and biaxial ratcheting 
tests. 

The elastic limit, obtained from incremental uniaxial test, plays an important role in the 
accuracy of prediction of ratcheting rate. Two methods were adopted from which the elastic limit 
was extracted; the first from experimental stress-plastic strain hysteresis curve and the second from 
post-stabilized monotonic curve. The stress-plastic strain curve is also employed to find ratcheting 
parameters. Parameter γ  is obtained using PSO and GA methods. A uniaxial ratcheting test was 
conducted to calibrate γ  with uniaxial ratcheting rate simulation. The uniaxial and biaxial 
ratcheting simulations were validated with experiments. Based on the analysed data, the main 
results can be summarized as follows: 

1. Tests on 316L austenitic steels show the presence of transient Bauschinger effect in upper 
hysteresis curve with of ±0.75% symmetric strain hardening range in comparison with 
post-stabilized monotonic curve. 

2. The efficiency of generating ratcheting parameters, in terms of MSE and optimization time, is 
better in the PSO method compared to GA. 

3. The elastic limit obtained from the incremental uniaxial test after pre-hardening offers an 
improved uniaxial ratcheting prediction. 

4. Compared to the hysteresis curve, the ratcheting parameters obtained from post-stabilized 
monotonic curve present more accurate ratcheting prediction. 

Most of the material parameters for ratcheting prediction models implemented in FEM 
software such as ANSYS and ABAQUS, are determined from the uniaxial hysteresis test curve. The 
current study presents parameter determination and calibration for subsequent implementation of 
Chaboche ratcheting model in ABAQUS and ANSYS. The current material parameters can be 
adopted for other ratcheting models such as Modified Chaboche, Ohno-Wang, 
Armstrong-Frederick-Ohno-Wang and Chen-Jiao-Kim (CJK). Since most of these models parameters 
are supposed to be obtained from hysteresis test curves, the present results can be compared with 
other ratcheting models predictions. 
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Figure 19. Chaboche model of ratcheting simulation results using ratcheting parameters presented in
Table 4. (a) Uniaxial ratcheting rate, (b) biaxial ratcheting rate.

When the parameters in the model are determined using uniaxial loading tests, the numerical
simulation results show closer correlation to the uniaxial test rather than the biaxial test, but all
simulation results overpredict test results. The uniaxial and biaxial ratcheting simulation results using
Sets A and B are closer to test results in comparison to those obtained from Sets C and D. The good
correlation is due to reduction in transient Bauschinger effect, because the yield point of the shifted
curve is positioned lower than the monotonic and post-stabilized monotonic curves, as shown in
Figure 8 and discussed in Section 2.4. The ratcheting parameters obtained from the hysteresis curve
present the same trend with the shifted curve in FE simulation for monotonic section. The curve
accordance or matching between (σ, ε) from the post-stabilized monotonic test with (σshi f t, εshi f t) from
shifted curve depends on material and strain amplitude of pre-hardening strain control test and this
match occurs only for one value of strain range for every different material. Finding this matching
requires many trial-and-error tests. Even so, this match is suitable only for limited ratcheting tests
that are within the same strain range of the matched hysteresis curve. Hence, the hysteresis curve is
not suitable to be used in generating Chaboche ratcheting parameters compared to post-stabilized
monotonic curve.

Adopting an accurate elastic limit in Sets B and D gives a more precise yield stress surface,
compared to Sets A and C, respectively. The ratcheting rate predicted in uniaxial loading is quite
close to experimental results with parameters obtained from Set B, with slight overestimation but with
similar trend of the curve.

6. Conclusions

In this paper, Chaboche ratcheting model parameters for 316L stainless steel pipes were determined
from experimental uniaxial and hysteresis loading. The parameters were optimized using two different
multi objective intelligent optimization technics, namely, Particle Swarm Optimization (PSO) and
Genetic Algorithm (GA) methods. Experiments were conducted in which all test specimens were
cyclically stabilized in a symmetric ±0.75% strain control loading prior to the following tests-monotonic
uniaxial test, incremental uniaxial test, uniaxial and biaxial ratcheting tests.

The elastic limit, obtained from incremental uniaxial test, plays an important role in the accuracy
of prediction of ratcheting rate. Two methods were adopted from which the elastic limit was extracted;
the first from experimental stress-plastic strain hysteresis curve and the second from post-stabilized
monotonic curve. The stress-plastic strain curve is also employed to find ratcheting parameters.
Parameter γ3 is obtained using PSO and GA methods. A uniaxial ratcheting test was conducted to
calibrate γ3 with uniaxial ratcheting rate simulation. The uniaxial and biaxial ratcheting simulations
were validated with experiments. Based on the analysed data, the main results can be summarized as
follows:
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1. Tests on 316L austenitic steels show the presence of transient Bauschinger effect in upper hysteresis
curve with of ±0.75% symmetric strain hardening range in comparison with post-stabilized
monotonic curve.

2. The efficiency of generating ratcheting parameters, in terms of MSE and optimization time, is
better in the PSO method compared to GA.

3. The elastic limit obtained from the incremental uniaxial test after pre-hardening offers an improved
uniaxial ratcheting prediction.

4. Compared to the hysteresis curve, the ratcheting parameters obtained from post-stabilized
monotonic curve present more accurate ratcheting prediction.

Most of the material parameters for ratcheting prediction models implemented in FEM software
such as ANSYS and ABAQUS, are determined from the uniaxial hysteresis test curve. The current
study presents parameter determination and calibration for subsequent implementation of Chaboche
ratcheting model in ABAQUS and ANSYS. The current material parameters can be adopted for other
ratcheting models such as Modified Chaboche, Ohno-Wang, Armstrong-Frederick-Ohno-Wang and
Chen-Jiao-Kim (CJK). Since most of these models parameters are supposed to be obtained from
hysteresis test curves, the present results can be compared with other ratcheting models predictions.
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