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Abstract
Quantum computation requires large classical datasets to be embedded into quan-
tum states in order to exploit quantum parallelism. However, this embedding requires
considerable resources in general. It would therefore be desirable to avoid it, if possi-
ble, for noisy intermediate-scale quantum (NISQ) implementation. Accordingly, we
consider a classical-quantum hybrid architecture, which allows large classical input
data, with a relatively small-scale quantum system. This hybrid architecture is used to
implement a sampling oracle. It is shown that in the presence of noise in the hybrid
oracle, the effects of internal noise can cancel each other out and thereby improve the
query success rate. It is also shown that such an immunity of the hybrid oracle to noise
directly and tangibly reduces the sample complexity in the framework of computa-
tional learning theory. This NISQ-compatible learning advantage is attributed to the
oracle’s ability to handle large input features.

Keywords Quantum machine learning · Probably Approximately Correct (PAC)
learning · Classical-quantum hybrid query · Sample complexity

1 Introduction

Many celebrated quantum algorithms have shown promise for the quantum compu-
tational speedup [1–3]. However, apart from requiring considerable computational
resources needed for the main calculation, many of them involve high costs for
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introducing “big” classical data into quantum states, for example, by accessing a
useful quantum gadget, called quantum random-access memory (QRAM). An effi-
cient QRAM algorithm, named bucket brigade algorithm, has been developed [4,5].
Nevertheless, despite its promise for usefulness, it has some caveats related to physical
resources and its ability to correct errors. This has been argued by S. Aaronson in Ref.
[6]. Thus, it is still unclear whether the bucket-brigade QRAMcan be a prototype. This
issue is well known in quantum computation and quantum machine learning (QML)
(see Ref. [7] and Chap. 5 of Ref. [8] for additional details on this issue). Therefore,
researchers in the field of quantum computation and/or QML are unlikely to deci-
sively state that tangible quantum (learning) speedups can be achieved with noisy
intermediate-scale quantum (NISQ) technologies [9,10], when a large superposition
of data is required. In this context, it is now highly desirable to show the possibility of
achieving NISQ technology-based speedups, namely without using excessively large
data superposition or, equivalently, without accessing the bucket-brigade QRAM.

Toward this end, one promising approach is to consider a classical-quantum hybrid
architecture and identify the optimal interplay between classical and quantum strate-
gies. Such approaches have received increasing attention, an example being the
consideration of variational formulations [11–15]. Here, we devise an intriguing
type of hybrid architecture, in which the input data remain classical but a small-
scale quantum system is employed. Such an architecture differs from those of other
classical-quantum hybridization; however, it will render the task suitable for the NISQ
implementation without requiring an excessively large superposition of the inputs, or
equivalently, the bucket-brigade QRAM [16–18]. The motivation and background of
this study are similar to those of the recent works in Refs. [19,20].

We apply our hybridization to a classification task, a fundamental problem in com-
putation and machine learning. For this, we employ a classical-quantum hybrid oracle
designed on the basis of our main idea and assume that the oracle generates noisy
samples due to errors resulting from the use of erroneous (internal) quantum gates. A
model with such erroneous gates is often referred to as a noisy query model and is
integrated in realistic models [21,22]. We demonstrate both analytically and numer-
ically that our hybrid oracle can exhibit a high probability of success for queries.
This advantage is attributed to the high capability of the oracle to explore a wider
space of solutions, and it naturally leads to a quantum learning advantage, namely, a
reduction in the sample complexity, in a computational learning framework [23,24].
Our hybridization architecture is applicable in the relevant context of NISQ machine
learning [15].

2 Classification with noisy samples

Classification is a fundamental computational problem that is defined as follows [25–
27]. Consider a Boolean function h� that maps x = x1x2 . . . xn (x j ∈ {0, 1} ∀ j
= 1, . . . , n) to h�(x) ∈ {0, 1}.1 Here, an algorithm (or a learner) can invoke an
oracle to prepare a (finite) set of samples; given the inputs x, the oracle returns the

1 Here, we consider a binary classification, i.e., mapping {0, 1}n → {0, 1}.
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corresponding outputs h�(x) and generates a set of samples T = {(x, h�(x))}. The
task is to identify a hypothesis h close to h� from among a set, say H , of candidates
while minimizing the number of invocations of the oracle, or equivalently, the size of
samples |T |. The oracle can be implemented by using the general form of the Boolean
function [28]

h�(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x1x2 ⊕ · · · ⊕ a2n−1x1x2 . . . xn, (1)

where ak ∈ {0, 1} (k = 0, 1, . . . , 2n − 1) are known as the Reed-Muller coefficients.
In other words, given x = x1x2 · · · xn , the oracle outputs, which could be either ideal
or noisy. In this study, we are interested in noisy outputs, namely, the case where
the oracle provides invalid outputs, resulting in a noisy sample set T̃ . Note that the
classification problem for noisy samples has widely been studied in computational
learning theory since real-world data are not clean, which makes the computation
much harder [29,30].

Here, we can introduce a corresponding error model of the generation of T̃ . For
this, each coefficient ak is changed such that ak → ak ⊕ 1 with a certain probability
ηk ≤ 1

2 , and from the changed coefficients, noisy samples (x, h�(x)⊕e), where e is to
be 0 (or 1) with probability (say) P(x) (or 1 − P(x)), can be obtained. This situation
is often referred to as classification error in a noisy query model of computation [31].
Such a model is useful since Eq. (1) is a general form and each ak can be realized
by a Toffoli gate conditioned by x channels in a circuit [32,33] (this is shown later).
In this case, the oracle’s invalid outputs are provided by flipping (i.e., 0 � 1) the bit
signal with probability ηk before or after applying the kth Toffoli gate, namely ak .
This error model can indicate a situation where the probability P(x) of a successful
query decreases as the problem size n increases, and it is well suited for determining
the effect of noise in complexity-theoretic studies [16].

3 Classical-quantum hybrid oracle

In classical studies, the oracle handles classical inputs and outputs. By contrast,
(fully) quantum approaches begin by changing classical inputs into the corresponding
quantum states, such as x → |x〉, and the oracle performs the mapping

∑

x

|x, α〉 →
∑

x

∣∣x, h�(x) ⊕ e
〉
, (2)

in which the quantum parallelism resulting from the superposition of the samples is
utilized.2 This oracle enables us to enjoy a quantum computational advantage in a
specific situation [27]. However, such a process involves considerable cost and can
even offset the advantages gained, as described at the beginning of this paper.

2 Here we should clarify that such an oracle is employed for data-sampling, which it differs from those
employed, for example, in the context of so-called amplitude amplification, where the oracle marks the
relative phase on a single data state among superposed ones. In amplitude amplification studies, the primary
objective is to reduce the number of iterations of the phase-marking oracle by using other incorporating
modules [34].
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Fig. 1 a Schematic of our hybrid
oracle. The oracle consists of
two different input/output (I/O)
channel types, one for input
classical data x = x1x2 · · · xn
(x j ∈ {0, 1} ∀ j = 1, . . . , n),
where n can be very large, and
the other for a single qubit,
which produces the query-output
states

∣∣h�(x)
〉 ∈ {0, 1}. b Circuit

realization of the oracle. This
oracle applies 2n unitary gates
âk ∈ {σ̂z , i σ̂y} (k = 0, 1, . . . ,
2n − 1) onto the qubit system,
conditioned on the values of the
classical bits x j in x. In a fully
classical case, these gates are
either identity or logical-not.
Here, we set α = 0 for
convenience

(a)

(b)

In line with our motivation and goal, we thus consider a classical-quantum hybrid
oracle that allows classical inputs x and a small (a single qubit in our case) quantum
system for the output (see Fig. 1a).More specifically, the oracle performs themapping

(x, |α〉) → (x, |ψout(x)〉) , (3)

where |α〉 is an arbitrary fiducial state and the output state |ψout(x)〉 has the form
[18,22]

|ψout(x)〉 = √
P(x)

∣∣h�(x)
〉 + √

Q(x)
∣∣h�(x) ⊕ 1

〉
, (4)

where Q(x) = 1− P(x). Then, we can obtain a valid (or invalid) sample with proba-
bility P(x) (or Q(x)), which is consistent with the error model described above. Note
that x remains unaltered during and after the mapping.

This hybrid oracle can be realized by using the circuit shown in Fig. 1b. The circuit
contains 2n gates acting on the ancilla qubit, namely the single-qubit gate â0 and 2n−1
of gates âk (k = 1, 2, . . . , 2n−1) conditioned on the classical bit values x1, x2, . . . , xn
in x. The gates âk are

âk ∈ {
σ̂z, i σ̂y

}
, for all k = 0, 1, . . . , 2n − 1, (5)

where σ̂x , σ̂y , and σ̂z are the Pauli operators. Such a circuit realization is consistent
with that described in the previous section and Eq. (1). Actually, each coefficient ak
has a corresponding gate operation âk . More specifically, ak = 0 means that âk leaves
the bit signal unchanged (identity) and ak = 1 indicates that âk flips the bit signal
(logical-not). The oracle is thus characterized by a fixed set of âk’s. The gates âk and
their operation are not opened, and the task is to identify all of them.
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We can consider an error model consistently where the incorrect oracle answer
h�(x) ⊕ 1 arises from the systematic errors in the gates âk . More specifically, the
error can be described by |ψk(x)〉 → ∣∣ψ ′

k(x)
〉 = ε̂k |ψk(x)〉, where |ψk(x)〉 is the

state passing through the gate âk . Here, ε̂k is a bit-flip operator defined as ε̂k =√
1 − ηk 1̂1± i

√
ηk σ̂x . In addition, we should consider another type of quantum error,

the phase-flip error. This is a challenge for our hybrid oracle because in general, the
phase-flip does not occur in classical gates. Thus, the prospect of quantum advantage
(to be proved) can be claimed more confidently. The aforementioned error model is
realistic, for example, for ion-trap or superconducting qubits, where the systematic
errors are caused by imperfect control pulses [35].

4 Analysis

We now analyze the query success probability PC,Q in Eq. (4). Here, the subscripts
Q and C refer to when the ancilla system in our hybrid oracle is quantum or classical,
respectively. First, let us define a set Ωx = {0, l1, l2, . . . , lκ−1} whose elements are
the indices of the gates âk that are “activated” (i.e., when the corresponding classical
control bit xk = 1). The number of activated gates is given by κ = 2ω(x), where ω(x)
denotes the Hamming weight of x = x1x2 · · · xn , namely, the number of x j ’s with a
value of 1 for j ∈ [1, n]. Then, PC,Q can be written in terms of ω. In the classical
case, PC (ω) can be estimated as

PC (ω) 

κ/2∑

j

(
κ

2 j

)
(1 − η)2 j ηκ−2 j 
 1

2

(
1 + e− 2ω

c

)
, (6)

where η is the average error probability given by η = 1
|Ωx|

∑
k∈Ωx

ηk . The variance

of the error probability, given by Δ2
η = 1

|Ωx|
∑

k∈Ωx
η2k − η2, is assumed to be small.

The factor c is defined as

c = − 1

ln (1 − 2η)

 (2η)−1, (7)

and is termed characteristic constant. Here, it is assumed that O(η2) → 0. From
Eq. (6), c can be interpreted as the characteristic number, say κ , of steps in the gate
operations allowed before the oracle begins to give completely random outputs which
cannot be used for learning.

In the case of our hybrid architecture, the success probability PQ(ω) is expressed as

PQ(ω) = ∣∣〈h�(x)
∣∣ ε̂lκ−1 âlκ−1 · · · ε̂l1 âl1 ε̂0â0 |α〉∣∣2 . (8)

Here, using

{σ̂x , âk}+ = σ̂x âk + âk σ̂x = 0, (9)

we can show that PQ(ω) becomes unity in the limit Δη → 0. Thus, as long as the
gate errors are regular, namely, ηk = η (∀k ∈ Ωx) [22], our hybrid oracle makes no

123



275 Page 6 of 18 W. Song et al.

mistakes. Evidently, our gates âk in Eq. (5) satisfy the anticommutation relation in
Eq. (9), resulting in the amplitudes associated with gate errors canceling out through
destructive interference.

However, it is impractical to realize such a perfect oracle that makes no mistakes,
since in a realistic situation, it is difficult to meet the condition Δη = 0. Furthermore,
we should consider the phase-flip; this is crucial to generate a successful query output
since the amplitudes changed by the gate errors would interfere in a disorderly manner
because of the phase-flip. In fact, such a feature is often encountered in many physics
models, for example, when dealing with localization problems [36]. Consequently,
PQ(ω) has a form analogous to that of Eq. (6). The characteristic constant c is replaced
with an “effective” one ceff 
 (2ηeff)

−1, where again, O(η2) → 0.Here, ηeff is defined
in terms of the effective average error of the âk’s. Notably, it is considerably smaller
than η, since ηeff originates from the errors remaining after destructive interference.
Surprisingly, this feature, namely,

ηeff ≤ η or equivalently ceff ≥ c, (10)

does not depend on η but rather onΔη. For amore detailed analysis, see “Appendix A”.
On the basis of this feature, we show a quantum advantage. We begin with the aver-

ageHammingweightω = n
2 for a given numbern of input bit strings. Then, on average,

our hybrid oracle is useful up to the input bit-string length n = 2 log2 ceff, while
n = 2 log2 c is the upper limit in the purely classical case. Hence, if ceff ≥ c, our hybrid
oracle can be useful for larger bit-string inputs; this condition also implies the expan-
sion of the space of legitimate samples that can be explored by the erroneous gates,
which ranges from O(e(2η)−2 ln 2) to O(eγ 2(2η)−2 ln 2), where γ = ceff

c is larger than 1.
In addition to our theoretical analysis, we present numerical simulations in which

PC,Q(ω) are evaluated by counting a large number (
 105) of queries for each given
number of ω(x). Here, the identified data of PC,Q(ω) are averaged over the trials
(
 103) again. To simulate a more realistic scenario, it is assumed that ηk’s are drawn
from a normal distributionN (η,Δη). We also assume that the ancilla qubit undergoes
the phase-flip errors on the gates âk with probability χk ≤ 1

2 , drawn fromN (χ,Δχ).
The simulation results confirm our theoretical analysis, allowing us to determine ceff
and γ for a given noise level. For example, when η = 10−3 with Δη = 5% of η,
our hybrid oracle would be applicable up to n 
 27.23 even in the presence of a
phase-flip of χ = 10−2, whereas n 
 17.93 would be the limit in the purely classical
case. Equivalently, the hybrid oracle can cover a space up to about O(e1.09×108) scale,
which is considerably larger than the space, about O(e1.73×105) scale, allowed in the
classical case. The determined ceff and γ values are listed in Table 1. For details on
the methods and results of the numerical analysis, see “Appendix B”.

5 Reduction in sample complexity

The quantum advantage described above can be applied to a computational model
of learning, the so-called PAC learning model. In this model, a finite set of h�, say
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Table 1 Values of ceff and γ are
listed for several cases: χ = 0,
10−4, 10−3, and 10−2

χ ceff (cf., c = 0.5 × 103) γ = ceff
c

No phase-flip 0.5 × 106.23 103.23

10−4 0.5 × 106.01 103.01

10−3 0.5 × 105.34 102.34

10−2 0.5 × 104.40 101.40

Here, η is assumed to be 10−3 and Δη = 0.05η

H �, is said to be (ε, δ)-PAC learnable and we call the learner (or learning algorithm
employed) (ε, δ)-PAC learner, if P[E(h, h�) ≤ ε] ≥ 1 − δ is satisfied for h� ∈ H �.
Here, E(h, h�) denotes an arbitrary error function that indicates how h and h� are
different. Borrowing terms from sampling theory in statistics, ε and 1− δ are defined
in terms of the accuracy and confidence, respectively. One beauty of PAC learning
is that for any h� ∈ H �, if a learner is allowed to use a finite size, say Mb(ε, δ), of
samples, then the learner can be a (ε, δ)-PAC learner; in other words, we can know
whether H � is learnable in terms of the required samples, independent of the learning
algorithm used. Usually, Mb(ε, δ) is referred to as sample complexity. For a given set
of noisy samples T̃ = {(x,m)} where m is either h�(x) or h�(x) ⊕ 1, it is known that
Mb(ε, δ) is at most3

2

ε2(1 − 2ξ)2
ln

(
2 |H |

δ

)
, (11)

where ξ is the imperfection of the oracle, that is, the probability ξ that the oracle
provides an incorrect output. For more details about PAC learning, see Refs. [23,30].

Our previous analysis on the improvement of the query success rate can be extended
to the reduction in sample complexity by letting ξ = 1− PQ(n), where PQ(n) is the
average query success probability given by PQ(n) = 1

2n
∑n

ω=0

(n
ω

)
PQ(ω). Note that

PQ(n) would decrease as the number of gates (i.e., 2n) increases, indicating that the
oracle’s reliability rapidly worsens as the problem size n increases. This is reasonable
and shows that the error model is well suited for realistic situations. Here, we introduce
the quantity

AQ = 1
(
2PQ(n) − 1

)2 =
⎡

⎣
∞∑

j=0

(−1) j

j !
(

1

γ c

) j (2 j + 1

2

)n
⎤

⎦
−2

, (12)

which is consistently proportional to the sample complexity consistently but does not
depend on ε, δ, and |H |. Subsequently, for the sake of comparison, we also consider the
case where a purely classical oracle is employed; in this case, the classical counterpart
to AQ is AC , which is defined using PC (n) = 1

2n
∑n

ω=0

(n
ω

)
PC (ω) instead of PQ(n).

3 The determination of its optimal (i.e., necessary and sufficient) condition is central and long-standing
interest in computational learning theory, but this aspect is outside the scope of our study [37].
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Fig. 2 Numerical plots of P̄C,Q (left) and AC,Q (right) with respect to n. Here, we have used η = 10−3

with Δη = 0.05η and χ = 10−2. Theoretical values are also presented for comparison. Refer to the main
text for a detailed description

Then, we can show the reduction in the sample complexity from Eq. (10) and Eq. (26)
for AQ ≤ AC .

This result tells us that for a large n, our hybrid oracle allows us to define a (ε,
δ)-PAC learner, whereas a fully-classical oracle cannot. What is remarkable is that
the sample complexity reduction is achieved with classical samples without the need
to embed them into quantum states, unlike other classical-quantum hybrid schemes.
Nevertheless, we note that if n is too large (roughly, when n  2 log2 γ c), it is
also impractical to define a legitimate PAC learner, even with the quantum learning
advantage gained.

To confirm this feature, we perform numerical simulations. PC,Q(n) are evaluated
by repeating trials for randomly sampled inputs, with each bit x j ( j = 1, 2, . . . , n) in
x being either 0 or 1 with probability 1

2 , and we examine the range n = 8 to n = 35.
In these simulations, we assume η = 10−3 with Δη = 0.05η and χ = 10−2 with
Δχ = 0.1χ . In Fig. 2, we plot the dependence of PC,Q and AC,Q on n. These results
agree well with our theoretical predictions. Detailed descriptions of the method and
analysis are provided in “Appendix C”.

6 Summary and remarks

We have studied how a tangible quantum advantage can be achieved on the basis of a
classical-quantum hybrid architecture distinct from other existing ones. Our approach
is appealing, since the proposed hybridization architecture allows classical input data,
without requiring (big) classical data to be embedded into a largely superposed quan-
tum state, for example, by implementing QRAM. Instead, the quantum advantage is
achieved with a small-sized quantum system (only a single-qubit is required in our
case). We applied this approach to a binary classification problem and found that
the oracle designed based on our main idea of classical-quantum hybridization, can
improve the query success rate. This advantageous feature was attributed to the cance-
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lation of the quantum amplitudes associated with the oracle’s internal gate errors. Such
(say) immunity could lead to a reduction in sample complexity in the PAC learning,
facilitating the exploration of a large candidate space with noisy classical samples.

Of the two recent research directions in quantum machine learning—those seeking
very strong complexity-theoretic evidence of quantum superiority to be realized in a
full-scale quantum computer versus providing prospects for tangible quantum advan-
tages which can be realized with NISQ technologies—our work pertains to the latter.
We believe that the presented results are realizable and have potential to facilitate the
development of an innovative classical-quantum hybrid technologies.
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Appendix A: Detailed calculations of PQ(!)

Here, we present the procedure to calculate PQ(ω) in Eq. (6) of the main manuscript.
We start by analyzing the simple case, i.e., of ω = 1. In particular, we consider an
input x = x1x2 · · · xn satisfying xl1 = 1 for arbitrary l1 ∈ [1, n] and x j = 0 for all
j �= l1. Subsequently, only two gates â0 and âl1 are activated with Ωx = {0, l1}. In a
purely classical query, PC (ω = 1) is given as

PC (ω = 1) = (
1 − ηl1

)
(1 − η0) + ηl1η0, (13)

where ηk is the probability that a bit-flip error will occur at âk (k ∈ {0, l1}).Meanwhile,
PQ(ω = 1) is calculated as below:
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Fig. 3 3D graphs of PC (left) and PQ (right) with respect to η0 and ηl1 for ω = 1. The advantage defined
in Eq. (16) is observed; PQ is always larger than PC . Here, the most remarkable feature is that our hybrid
oracle always yields correct results when PQ = 1 provided that η0 = ηl1

PQ(ω = 1) = ∣∣〈h�(x)
∣∣ ε̂l1 âl1 ε̂0â0 |α〉∣∣2 ,

=
∣∣∣
〈
h�(x)

∣∣
(√

1 − ηl1 1̂1 ± i
√

ηl1 σ̂x

)
âl1

(√
1 − η01̂1 ± i

√
η0σ̂x

)
â0 |α〉

∣∣∣
2
,

=
∣∣∣
√
1 − ηl1

√
1 − η0

〈
h�(x)

∣∣ âl1 â0 |α〉 ± i
√
1 − ηl1

√
η0

〈
h�(x)

∣∣ âl1 σ̂x â0 |α〉

±i
√

ηl1

√
1 − η0

〈
h�(x)

∣∣ σ̂x âl1 â0 |α〉 − √
ηl1

√
η0

〈
h�(x)

∣∣ σ̂x âl1 σ̂x â0 |α〉
∣∣∣
2
,

(14)

where ε̂k = √
1 − ηk 1̂1±i

√
ηk σ̂x is the error operation, defined in themainmanuscript.

Using the properties in Eq. (7) of the main manuscript, i.e., σ̂x âk = −âk σ̂x and
〈h�(x)| âl1 â0 |α〉 = 1, we can evaluate the following:

⎧
⎨

⎩

〈h�(x)| âl1 σ̂x â0 |α〉 = − 〈h�(x)| âl1 â0σ̂x |α〉 = 0,
〈h�(x)| σ̂x âl1 â0 |α〉 = 〈h�(x)| âl1 â0σ̂x |α〉 = 0,
〈h�(x)| σ̂x âl1 σ̂x â0 |α〉 = − 〈h�(x)| âl1 â0 |α〉 = −1.

(15)

Subsequently, using Eq. (15), we can obtain

PQ(ω = 1) − PC (ω = 1) = Γ0,l1, (16)

where

Γ0,l1 = 2
√
1 − ηl1

√
1 − η0

√
ηl1

√
η0 ≥ 0. (17)

This factor Γ0,l1 is from quantum superposition and clearly indicates the enhancement
of the success probability with the condition Γ0,l1 ≥ 0. In Fig. 3, we depict the graphs
of PC,Q with respect to η0 and ηl1 . It is noteworthy that our hybrid oracle always yields
correct results, i.e., PQ = 1, provided that ηl1 = η0, even though ηl1 and η0 are large.
This is the most remarkable feature in our classical–quantum hybrid query.

Subsequently, we consider the case of ω = 2, where a set of four gates, â0, âl1 ,
âl2 , and âl3 , are to be activated with Ωx = {0, l1, l2, l3}. We subsequently calculate
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PQ(ω = 2) as follows:

PQ(ω = 2) = ∣∣〈h�(x)
∣∣ ε̂l3 âl3 ε̂l2 âl2 ε̂l1 âl1 ε̂0â0 |α〉∣∣2 . (18)

To proceed with the calculation, we introduce an identity 1̂1β,β⊥ =|β〉 〈β|+ ∣∣β⊥〉 〈
β⊥∣∣,

where the state |β〉 (β ∈ {0, 1}) is defined with the following properties:

∣∣〈h�(x)
∣∣ âl3 âl2 |β〉∣∣2 = 1 and

∣∣〈β| âl1 â0 |α〉∣∣2 = 1. (19)

Using a mathematical method of substituting the identity 1̂1β,β⊥ between ε̂l3 âl3 ε̂l2 âl2
and ε̂l1 âl1 ε̂0â0 in Eq. (18), we can obtain

PQ(ω = 2) =
∣∣∣
(√

1 − ηl3

√
1 − ηl2 + √

ηl3
√

ηl2

) (√
1 − ηl1

√
1 − η0 + √

ηl1
√

η0

)

−
(√

1 − ηl3
√

ηl2 − √
ηl3

√
1 − ηl2

) (√
1 − ηl1

√
η0 − √

ηl1

√
1 − η0

)∣∣∣
2

(20)

Furthermore, after some algebraic simplifications, we can arrive at

PQ(ω = 2) − PC (ω = 2) = Γl1,0
(
1 − 2ηl2

) (
1 − 2ηl3

) + Γl2,l1

(
1 − 2ηl3

)
(1 − 2η0)

+Γl3,l2

(
1 − 2ηl1

)
(1 − 2η0) + Γ0,l3

(
1 − 2ηl2

) (
1 − 2ηl1

)

−Γl2,0
(
1 − 2ηl3

) (
1 − 2ηl1

) − Γl3,l1

(
1 − 2ηl2

)
(1 − 2η0)

+2Γl3,l2Γl1,0, (21)

where

PC (ω = 2) = (
1 − ηl3

) (
1 − ηl2

) (
1 − ηl1

)
(1 − η0)

+ (
1 − ηl3

) (
1 − ηl2

)
ηl1η0 + (

1 − ηl3
)
ηl2

(
1 − ηl1

)
η0

+ηl3
(
1 − ηl2

) (
1 − ηl1

)
η0 + (

1 − ηl3
)
ηl2ηl1 (1 − η0)

+ηl3
(
1 − ηl2

)
ηl1 (1 − η0) + ηl3ηl2

(
1 − ηl1

)
(1 − η0)

+ηl3ηl2ηl1η0. (22)

Here, Γa,b is defined as Γa,b = 2
√
1 − ηa

√
1 − ηb

√
ηa

√
ηb for a �= b ∈ Ωx =

{0, l1, l2, l3}, similarly to Eq. (17). Subsequently, using Eq. (20) and Eq. (21), we
demonstrate that the quantum advantage can be achieved with the positive factors
Γa,b. Note that Eq. (21) could be negative thus exhibiting the disadvantage, e.g., when
ηl3 = ηl1 = 0 or ηl2 = ηl1 = 0 for all input x. However, the aforementioned situation
is not likely to occur in real physical systems. Consistent with the case of ω = 1, we
observed that PQ(ω = 2) becomes unity when ηl3 = ηl2 = ηl1 = η0.

By observing the two cases above, we can infer that the same method, i.e.,
of introducing the identities, can be used to calculate PQ(ω) for arbitrary higher
Hamming-weight inputs. The most remarkable construction, i.e., having unity query-
success probability with equal error probabilities, can be generalized as well.
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Table 2 Detailed values of ηeff and ceff for each Δη

Δη ηeff (c.f., η = 10−3) ceff (c.f., c = 0.5 × 103)

1% of η 
 10−7.63 
 0.5 × 107.63

5% of η 
 10−6.23 
 0.5 × 106.23

10% of η 
 10−5.60 
 0.5 × 105.60

Therefore, it can be sufficiently concluded that the enhancement in the query-success
probability can be achieved for an arbitrary Hamming-weight in our hybrid query.

Appendix B: Numerical analyses with realistic conditions

As mentioned in the main manuscript, in a more realistic situation, the amplitudes
related to the errors are not completely canceled out owing to a nonzero Δη, and
PQ(ω) exhibits an analogous form to PC (ω) in Eq. (4) of the main manuscript, with
an “effective” characteristic constant ceff 
 (2ηeff)

−1. Here, the effective average
error ηeff is expected to be much smaller than c. This feature results in the quantum
advantage that does not depend on the degree of η but only on Δη, i.e., how “varying”
they are.

To corroborate and extend our theoretical predictions, we perform a numerical
analysis. It starts with an input x of ω(x). We subsequently evaluate PC,Q(x) by
counting the number of “h�(x)” (e.g.„ “success”) and “h�(x) ⊕ 1” (e.g.„ “failure”),
such that PC,Q(x) = NS/ (NS + NF ), where NS and NF denote the numbers of
success and failure, respectively, and NS + NF = 105. Here, we use the Monte-Carlo
approach to mimic quantum measurement statistics. This simulation is repeated for
different values of ηk (for k ∈ Ωx) satisfying c = (2η)−1. This condition enables
us to analyze the data statistically (i.e., by averaging over the trials) without losing
generality, even though in each simulation ηk is changed with different h�. First, as an
extreme but illustrative example, we consider the case of Δη = 0, i.e., by assuming
ηk = η for all possible k = 1, 2, . . . , 2n . As results, we present the graphs of PC,Q

versus ω as dots in Fig. 4a for η = 10−4, 10−3, and 10−2, where each data point of
PC,Q is obtained by averaging over 
 103 trials. Here, it is observed that PC decays
fast to 1

2 , indicating good agreement with Eq. (6) of the main manuscript. The data
of PQ are, meanwhile, shown to be unity without depending on the degree of η, as
predicted. Next, we consider a realistic situation, assuming that ηk is drawn from a
normal distribution N (η,Δη) for all k = 1, 2, . . . , 2n (and hence for k ∈ Ωx). Here,
we set η = 10−3 with Δη = 1%, 5%, and 10% of η. The simulation results are
shown in Fig. 4b. For all cases of Δη, both PC and PQ decay to 1

2 ; however, PQ is
much slower. It is also observed that the data of PQ matched well with Eq. (6) of the
main manuscript, thus allowing us to identify the effective characteristic constant ceff.
The identified values of ceff and ηeff are listed in Table 2; they manifest the predicted
condition in Eq. (8) of the main manuscript.
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(a)

(b)

Fig. 4 We plot the graphs of PC,Q versus ω. The simulation is performed for randomly chosen inputs x
and h�. In each simulation, PC,Q is evaluated by counting success and failure events over 105 queries. One

single data point of PC,Q is obtained by averaging 
 103 trials of the simulation. a First, we present the

simulation data of PC,Q evaluated for η = 10−4, 10−3, and 10−2 with Δη = 0. The results show that PC
rapidly approaches 1

2 with increasing ω, indicating good agreement with Eq. (6) of our main manuscript
(see red, blue, and green solid lines). Meanwhile, PQ remains unity for all the cases of η, as predicted. b
Next, we consider the realistic situation, assuming a normal distributionN (η, Δη). Here, we set η = 10−3

with Δη = 1%, 5%, and 10% of η. The data of PC,Q are shown to decay, but PQ is much slower. In such
cases, the data PQ are well fitted by Eq. (6) of the main manuscript with ceff, indicating that the data agrees
well with our theoretical predictions (Color figure online)

Table 3 Detailed values of ηeff and ceff for each χ

χ ηeff (c.f., η = 10−3) ceff (c.f., c = 0.5 × 103)

No phase-flip 
 10−6.23 
 0.5 × 106.23

10−4 
 10−6.01 
 0.5 × 106.01

10−3 
 10−5.34 
 0.5 × 105.34

10−2 
 10−4.40 
 0.5 × 104.40
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χ = 10−2

χ = 10−3

χ = 10−4

Δχ = 1% of χ

χ = 10−2

χ = 10−3

χ = 10−4

Δχ = 10% of χ

η = 10−3

Δη = 5% of η

ω

P
Q

Fig. 5 Graphs of PQ with respect to ω for χ = 10−4, 10−3, and 10−2. Each data point is obtained by

averaging over 103 simulations. The data fitted well to Eq. (6) in the main manuscript, together with the
parameter ceff. The result shows that the quantum advantage becomes less pronounced as χ is increased;
however, it is still highly durable. It is noteworthy that the data obtained for Δχ = 1% of χ (filled square,
circle, and triangle points) and Δχ = 10% of χ (empty square, circle, and triangle points) are almost
identical (up to the order of 10−2); namely, PQ is not affected significantly by Δχ . The identified ηeff and
ceff are listed in Table 2 (Color figure online)

For a more realistic condition, we consider another type of error, i.e., phase-flip
in the assistant qubit that would be crucial for maintaining a higher success rate of
the query. In particular, we assume that the phase-flip errors primarily occur when
the qubit travels between âk and âk+1 with a certain probability χk ≤ 1

2 . First, when
Δη = 0 (or equivalently, ηk = η) for all k, the phase-flip errors do not affect the query
process and PQ becomes unity. In the realistic case, namely of Δη �= 0, however, it is
predicted that the amplitudes of the bit-flip errors would interfere disorderly owing to
the phase-flip, and eventually the quantum advantage becomes smaller, as described in
our main manuscript. Thus, we perform the simulations and present the data of PQ in
Fig. 5. Here, χk is assumed to be drawn fromN (χ,Δχ) for all k = 1, 2, . . . , 2n . The
simulation data are generated for χ = 10−4, 10−3 and 10−2. Here, we set η = 10−3

with Δη = 5% of η. The data are well fitted by Eq. (6) of our main manuscript,
and ceff are well estimated from the data (see Table 3). As expected, the quantum
advantage becomes less pronounced as χ is increased; however, it can still exhibit
a higher success rate of the query. It is noteworthy that the data obtained for both
Δχ = 1% and 10% of χ are almost identical (up to the second digit of a decimal).

Appendix C: Reduction in learning sample complexity in the
framework of probably-approximately-correct (PAC) learning

In a probably-approximately-correct (PAC) learning model, a learner (or equiv-
alently, a learning algorithm) samples a finite set of training data {(xi , h�(xi ))}
(i = 1, 2, . . . , M) by accessing an oracle, aiming at obtaining the best hypothesis
h close to h� for a given set, e.g., H , of the hypothesis h. Here, xi is typically assumed
to be drawn uniformly. Subsequently, a learning algorithm is a (ε, δ)-PAC learner
(under uniform distribution), if the algorithm obtains an ε-approximated correct h
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with probability 1 − δ; more specifically, satisfying

P[E(h, h�) ≤ ε] ≥ 1 − δ, (23)

where E(h, h�) denotes the error. Here, if h identified by the algorithm agrees with

M ≥ 1

ε
ln

|H |
δ

(24)

of samples constructed from the oracle, then Eq. (23) holds. Here, |H | ≤ 22
n
denotes

the cardinality of H . Equation (24) is knownas the boundof the sample complexity [23,
24], i.e., it yields theminimumnumber of training samples to successfully learn h ∈ H
satisfying Eq. (23). Such a sample complexity bound derived from the previous studies
can directly be carried over to our scenario; in our classical–quantum hybrid query
scheme, the same sample complexity bound exists, because xi and h�(xi ) identified
by the measurement on |ψout(xi )〉 are classical.

However, in the case where the oracle is not perfect, the bound of sample com-
plexity in Eq. (24) is modified as follows: First, we draw a sequence of the training
data {(x1,m1), (x2,m2), . . . , (xM ,mM )} sampled from our classical–quantum hybrid
oracle, wheremi ∈ {h�(xi ), h�(xi )⊕1} denotes the outcome of the measurement per-
formed on |ψout(xi )〉. Subsequently, if the sampling is performed with

M ≥ 2AQ ln

(
2 |H |

δ

) 1
ε2

, (25)

we can verify that Eq. (23) holds for the algorithm that obtains h maximizing PQ . In
fact, it has been proven that the additional factor AQ is given as [30]

AQ = 1
(
2PQ(n) − 1

)2 . (26)

It is noteworthy that in the purely classical case, the corresponding factor, e.g., AC ,
is given with PC instead of PQ . Thus, we can derive the reduction in the sample
complexity with the condition AQ ≤ AC from PQ ≥ PC . To view this explicitly, we
rewrite AQ in Eq. (26) to a more useful form:

AQ =
[
1

2n

n∑

ω=0

(
n

ω

)
e− 2ω

γ c

]−2

=
⎡

⎣
∞∑

j=0

(−1) j

j !
(

1

γ c

) j (2 j + 1

2

)n
⎤

⎦
−2

(27)

This implies that a small increment in the sample complexity bound when n is small
increases abruptly from near n 
 2 log2 γ c. As AC is characterized by c without γ ,
we can interpret γ as a quantum learning advantage in the PAC learning framework;
i.e., for any large n, we can define a (ε, δ)-PAC learner with our hybrid oracle, unlike
with a fully classical one. It is noteworthy that if n is excessively large, i.e., when
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n  2 log2 γ c, it is impractical to define a legitimate PAC learner even with our
hybrid oracle. This result is consistent with the recent theoretical study in Ref. [22];
however, in our case, such a quantum learning advantage is achieved with classical
data.

To corroborate and extend our analysis, numerical simulations are performed: For
a given n, we prepare a set of inputs {x1, x2, . . . , xM } that is sampled randomly. For
the given ω(xi ) (i = 1, 2, . . . , M), we evaluate PC,Q(ω) by counting 105 queries

and identify their average value, i.e., 1
105

∑105
i=1 PC,Q(ω(xi )). This process is repeated


 103 times for different input sets to analyze PC,Q(n) statistically. The data are
generated from n = 8 to n = 35, assuming that ηk and χk (∀k) are drawn from
N (η,Δη) andN (χ,Δχ), respectively. Here, we consider η = 10−3 withΔη = 0.05η
and χ = 10−2 with Δχ = 0.1χ . In each simulation, M is fixed to 100. The obtained
data agree well with our theoretical predictions (see Fig. 2a, b in the main manuscript).
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15. Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.:

Supervised learning with quantum-enhanced feature spaces. Nature 567, 209 (2019)
16. Yoo, S., Bang, J., Lee, C., Lee, J.: A quantum speedup in machine learning: finding a N-bit Boolean

function for a classification. New J. Phys. 16, 103014 (2014)
17. Lee, J.S., Bang, J., Hong, S., Lee, C., Seol, K.H., Lee, J., Lee, K.G.: Experimental demonstration of

quantum learning speedup with classical input data. Phys. Rev. A 99, 012313 (2019)
18. Bang, J., Dutta, A., Lee, S.W., Kim, J.: Optimal usage of quantum random access memory in quantum

machine learning. Phys. Rev. A 99, 012326 (2019)
19. Dunjko, V., Ge, Y., Cirac, J.I.: Computational speedups using small quantum devices. Phys. Rev. Lett.

121, 250501 (2018)

123



Tangible reduction in learning sample complexity with large… Page 17 of 18 275

20. Harrow, A.W.: Small quantum computers and large classical data sets. Preprint arXiv:2004.00026
(2020)

21. Buhrman, H., Newman, I., Rohrig, H., de Wolf, R.: Robust polynomials and quantum algorithms.
Theory Comput. Syst. 40, 379 (2007)

22. Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Phys. Rev. A 92, 012327
(2015)

23. Valiant, L.G.: A theory of the learnable. Commun. ACM 27, 1134 (1984)
24. Langley, P.: Elements of Machine Learning. Morgan Kaufmann (1995)
25. Ambainis, A., Iwama, K., Kawachi, A.,Masuda, H., Putra, R.H., Yamashita, S.: Quantum identification

of Boolean oracles. In: Annual Symposium on Theoretical Aspects of Computer Science, Springer,
pp. 105–116 (2004)

26. Childs, A.M., Kothari, R., Ozols, M., Roetteler, M.: Easy and hard functions for the Boolean hid-
den shift problem. In: 8th Conference on the Theory of Quantum Computation, Communication and
Cryptography (TQC 2013) (Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik)
vol. 22 of Leibniz International Proceedings in Informatics (LIPIcs) pp. 50–79 (2013)

27. Arunachalam, S., de Wolf, R.: Guest column: a survey of quantum learning theory. ACM SIGACT
News 48, 41 (2017)

28. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 25, 2317 (2006)

29. Angluin, D., Laird, P.: Queries and concept learning. Mach. Learn. 2(4), 319 (1988)
30. Angluin, D., Slonim, D.K.: Randomly fallible teachers: learning monotone DNF with an incomplete

membership oracle. Mach. Learn. 14(1), 7 (1994)
31. Bshouty, N.H., Jackson, J.C.: Learning DNF over the uniform distribution using a quantum example

oracle. SIAM J. Comput. 28, 1136 (1998)
32. Toffoli, T.: Reversible computing. International Colloquium on Automata, Languages, and Program-

ming. Springer, pp. 632–644 (1980)
33. Younes, A., Miller, J.F.: Representation of Boolean quantum circuits as Reed-Muller expansions. Int.

J. Electron. 91, 431 (2004)
34. Van Dam, W.: Quantum oracle interrogation: Getting all information for almost half the price. In:

Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280)
IEEE pp. 362–367 (1998)

35. Debnath, S., Linke, N.M., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Demonstration of a
small programmable quantum computer with atomic qubits. Nature 536, 63 (2016)

36. Eleuch, H., Hilke, M., MacKenzie, R.: Probing Anderson localization using the dynamics of a qubit.
Phys. Rev. A 95, 062114 (2017)

37. Hanneke, S.: The optimal sample complexity of PAC learning. J. Mach. Learn. Res. 17, 1319 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Wooyeong Song1,7 ·Marcin Wieśniak2,3 · Nana Liu4,8,9 ·
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