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Abstract: This study addresses a cancer eradication model involving effector cells in the presence of
gene therapy, immunotherapy, and chemotherapy. The main objective of this study is to understand
the optimal effect of immuno-chemotherpay in the presence of gene therapy. The boundedness and
positiveness of the solutions in the respective feasible domains of the proposed model are verified.
Conditions for which the equilibrium points of the system exist and are stable have been derived. An
optimal control problem for the system has been constructed and solved to minimize the immuno-
chemotherapy drug-induced toxicity to the patient. Amounts of immunotherapy to be injected into a
patient for eradication of cancerous tumor cells have been found. Numerical and graphical results have
been presented. From the results, it is seen that tumor cells can be eliminated in a specific time interval
with the control of immuno-chemotherapeutic drug concentration.
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1. Introduction

Cancer, the disease that triggers the unregulated development of irregular cells in the human body,
is one of the leading mortality factors among humankind. As the disorder causes the disease to go to
the tissue level, precise detection at an early stage becomes challenging. Another obstacle faced at the
treatment level is to decide the therapeutic effectiveness of the drugs to be administered. Therefore,
many researchers worldwide are carrying out their research work to find out the cause of the origin of
the disease and impart a patient-friendly, effective, and successful treatment method.
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In cancer treatment, immunotherapies are used to enhance the host anti-tumour immune response by
perturbing the tumor microenvironment. Over the past few years, different types of immunotherapies
have been developed, spanning from Immune-Checkpoint Blockade (ICB) to strategies that boost the
T cell activity [1, 2]. But, a high dose of immunotherapy to a patient can induce negative responses
such as fever, chills, weakness, nausea, etc. [3, 4].

Chemotherapy is an effective method to fight against cancer [5]. However, it has a substantial
adverse effect as induction of chemotherapeutic drugs depletes the immune system and makes the
patients vulnerable to harmful infections. Thus, after the immune-depleting phase of chemotherapy,
it becomes an absolute necessity to improve the patient’s immune system. Therefore, it is a difficult
challenge during the chemotherapy process to preserve a stable immune system and combat cancer
successfully [6]. Cancer chemotherapy is usually administered on a cyclic basis. When an anti-cancer
medicine is injected into the body, all harmless cells also get destroyed along with malignant cells.
As a result, white blood cell counts decline to low rates, and life-threatening fever may occur [5].
Thus, control of the chemotherapy dosage becomes a very critical aspect in cancer chemotherapy
design [7, 8].

At the molecular level, cancer can be characterized as a genetic defect in the cell cycle. Gene
therapy is a common form of immunotherapy that strengthens the body’s immunity and aims to cure
genetic conditions. By inserting a well-designed gene into the cells of the patients, correction can be
carried out in the inborn inaccuracy of metabolism, inherited hereditary abnormality, etc. [9].

Ongoing research of clinical studies is now developing in cancer eradication policies by
incorporating two or more drugs [10]. The application of chemotherapy and gene therapy is now in
operation, which has demonstrated that this type of treatment reduces the primary tumor, avoids intra-
peritoneal metastases, and restricts harmful side effects [11]. The application of TRAIL gene therapy
and chemotherapy is also successful in the diagnosis of metastatic diseases [12]. Anti-cancer gene
therapy under review is generally conducted in a two-phase cycle. The first step is a successful search
for chemo-resistant cells during chemotherapy which results in an increased proportion of transfected
cells. The population of the transfected cells must surpass that of the mutant cells to maintain the
optimum relationship between the species necessary for the bystander effect. The second step consists
of a negative selection step accomplished by ganciclovir injection. Such cells that are vulnerable to
antiviral drug treatment through transfection or bystander effect will undergo activated apoptosis [13].

Mathematical modeling since a long time back has been used as a tool for finding out some solutions
to the problems related to cancer and other dreaded diseases faced by the human population [14, 15].
Kuznetsov et al. [16] proposed a model showing the reaction of the cytotoxic T lymphocyte to the
development of the immunogenic tumor. Kirschner and Panetta [17] proposed a model to explore the
effects of IL-2 therapy and ACI therapy on tumor-immune dynamics. Kolev et al. [18] presented a
model that identified the early phases of a solid tumor or all phases of leukemia. A variety of clinical
trials have been performed to investigate the impact of the immune system on the destruction of tumor
cells in the body by inducing the host’s immune response to destroy cancer cells [19,20]. As the tumor
grows in the human body, the immune system seeks to recognize and destroy the tumor cells as soon
as possible. In [21], Rihan et al. examined the interactions among tumor cells, immune-induced cells,
and interleukin-2 (IL-2) cytokines. Very recently, in COVID-19 pandemic situation, Musa et al. [22]
examined the dynamical feature of a deterministic COVID-19 model based on the data of Nigeria and
also investigated the imapcts of awarness program and different hospitalization strategies in the society
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to effectively mitigate the epidemic. In the work [23], the authors formulated a model based on the
data of Pakistan to investigate the role of quarantine and isolation in controlling the COVID-19 disease.
Optimal control strategies have been proposed for a model in [24] to minimize the population number
of infected and asymptotically infected people.

In the present day, researchers are interested in a combination of two or more therapies in the
chemotherapeutic treatment protocols. Until now, several significant works have been carried out in
the field of cancer chemotherapeutic modeling. De Pillis et al. [25] updated their previously proposed
model [6] with the inclusion of NK cells, CD8+T cells, and IL-2 therapy. Their results revealed that
while eliminating cancerous tissue in the presence of chemotherapy, immunotherapy is helpful for low
immune efficacy patients. The effect of anti-angiogenic agents in controlling cancer with chemotherapy
has been demonstrated in [26]. An appropriate optimal combination treatment of vaccine therapy
and chemotherapy for controlling cancer dynamics has been presented in [27]. In consideration of
radiotherapy as a treatment of cancer followed by chemotherapy, a periodic mathematical model has
been proposed by Liu and Yang [28]. Guiraldello et al. [29] presented a mathematical model involving
partial differential equations to show the behavior of tumor development in the presence of two
chemotherapy protocols; Maximum Tolerated Dose (MTD) and metronomic, as well as two methods of
drug delivery. They have also evaluated the effectiveness of both protocols. Pang et al. [30] explored the
effect of a combination of immunotherapy and chemotherapy, single chemo, and single immunotherapy
in their work. Rodrigues et al. [31] explored a model by considering chemo-immunotherapy as a
treatment to reduce unwanted cytotoxic effects on immune cells of a cancer patient. In [32], the authors
presented a model for the growth of the immune system during chemotherapy. Alqudah [33] introduced
a new mathematical model for the treatment of cancer as a combination of chemotherapy and stem cell
therapy. In 2013, Tsygvinsev et al. [34] proposed a mathematical model of gene therapy for cancer
treatment by modifying an already investigated model [17]. We have considered a modified version of
the model proposed by Tsygvintsev et al. [34] in which the authors studied the effects of gene therapy
and immunotherapy. In contrast, in this paper we have introduced chemotherapy together with gene
and immunotherapy as the treatment protocol.

Controlling drugs in the treatment of cancer patients is a big problem for researchers. Many
researchers are working on optimal drug control for cancer treatment. Khajanchi and Ghosh [7]
designed a model based on Kuznetsov et al. model [16] with two types of external treatments, one
is ACI therapy for anti-tumor activity and another is IL-2 therapy for boosting the immune system
to fight against tumor. Moreover, they have found the optimal combination treatment for tumor
reduction. Sharma and Samanta [8] have carried out another optimal chemotherapeutic strategy for
a tumor growth model and addressed that the administration of chemotherapy drug as control reduces
the spread of the disease. Rihan et al. [35] established from their model that the performance of
the combination therapy protocol of immuno-chemotherapy is better than the standard protocol of
chemotherapy alone. d’Onofrio et al. [36] formulated a model for the optimal scheduling of angiogenic
inhibitors in combination with a chemotherapeutic agent. In the work [37], the author explored the
dynamical behavior of the glioma-immune interaction in conjunction with an optimally controlled
immunotherapeutic drug ACI. By considering an abstract mathematical model of cancer chemotherapy,
Leszczynski et al. [38] investigated an optimal control problem for a single drug remove and when
various pharmacodynamic (PD) and pharmacokinetic (PK) models are included in the modeling.
Recently, the authors of [39] designed an optimal model for chemotherapy treatment to find the best

AIMS Mathematics Volume 6, Issue 10, 11530–11549.



11533

rate of drug injection during treatment. Najafi et al. [40] introduced an optimal control homotopy
perturbation method to find better outcomes in drug controlling for therapeutic cancer model. Rihan et
al. [41] studied an extended work of [17] to a delayed model of tumor-immune interactions and then
find the optimal protocol of immuno-chemotherapy, which reduces the tumor load in a few months
of therapy. In the work [42], the author performed a detailed analysis to find the optimal regimens
of combined chemo-immunotherapy for a PKPD cancer evolution model. Das et al. [43] analyzed
an optimal control problem of immuno-chemotherapeutic drugs for a delayed tumor-immune model.
In this article, we propose a modified cancer gene therapy model following [34] in the presence of
immunotherapy and chemotherapy. To control the immuno-chemo-drug toxicity effect on the patient,
we also construct an optimal control problem for the proposed model which was not discussed in [34].

In section 2, we have described the model about which we have investigated in the subsequent
sections.

2. Model description

We already mentioned several research works to understand the effectiveness and side effects of
chemotherapy and immunotherapy in cancer treatment. In work [34], the authors showed that high
levels of immunotherapy and ‘cancer clearance term’ of gene therapy would be able to clear cancer
optimally from patients’ body. Lestari et al. [44] studied the local stability analysis of the proposed
model in [34]. In [45], the authors estimated the external parameters of the model in [34] for which
the growth of tumor cells remains under control. For further study on the applications of gene therapy
in cancer treatment models, the authors would like to refer to the works [34, 44] to the reader. In
this work, we reconstruct the earlier proposed model [34] in combination with immuno-chemo-gene-
therapy. The model is built based on interactions among tumor cells, effector immune cells, gene
therapy, immunotherapy, and chemotherapeutic drugs. The assumptions imposed on the model are:

A1: Gene therapy detects how tumor cells are different from normal cells, and this can be described
by the term qM with a fixed antigenicity q.

A2: Effector immune cells can proliferate themselves with proliferation rate p. However, effector
immune cells also have a natural death rate µ.

A3: External source of immunotherapy s(t) (TIL-therapy) boosts the immune system, which is time-
dependent.

A4: Cancer cells can grow logistically in the absence of immune cells and treatments.
A5: The interaction of effector cells and cancer cells during gene therapy is considered according

to the Michaelis-Menten form − aIM
g+M which is usually used for describing anti-tumor immune

responses [17]. The term a represents the constant rate of cancer clearance during gene therapy.
A6: Chemotherapy can kill both the cell populations viz. cancer and effector immune cells with

different constant rates.

The flowchart of the model is depicted in Figure 1.
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Figure 1. Flowchart for the system (2.1).

Considering above mentioned assumptions and the flowchart, the model [34] can be reformulated
as:

dI
dt

= qM +
pI

I + f
− µI + s(t) − d1IC,

dM
dt

= rM(1 − bM) −
aIM

g + M
− d2MC,

dC
dt

= u(t) − γC,

(2.1)

with initial conditions
I(0) ≥ 0, M(0) ≥ 0, C(0) ≥ 0. (2.2)

The first equation represents the dynamics of the effector immune cells I(t). qM represents the
cancer antigenicity during gene therapy, giving strong immunity to cancer. As the effector cells
proliferate themselves, so it can be represented by the term pI

I+ f . −µ represents the half-life of effector
cells. The term s(t) is used for describing the dose of immunotherapy drug given, which boosts the
immune system. −d1IC is the degradation of effector cells that get killed during chemotherapy.

The second equation describes the variability of the cancerous tumor cells M(t). The term rM(1 −
bM) represents the logistic growth of cancer cells. − aIM

g+M describes the interaction between effector
cells and cancer cells during gene therapy. The term −d2MC indicates the degradation of cancerous
cells by chemotherapy.

The last equation is the continuous drug administration of chemotherapy, where u(t) represents the
dose of the chemotherapeutic drug given, and γ is the per capita decay rate of the chemotherapeutic
drug.

Due to bilogical meaning, all values of three state variables must be non-negative. In the following
section, we will discuss the positiveness and boundedness of the solutions of the system (2.1).
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3. Basic characteristics of the solutions

In order to check the behavior of the solutions of the system (2.1), we have considered the dose of
chemotherapeutic drug given u(t) as a constant with value u(t) = u0 and s(t) = s.

Theorem 3.1. Every solution of the system (2.1) with the non-neagtive initial conditions (2.2) are
exists in IR3

+, and are non-negative for all t ≥ 0.

Proof. It is clear that the uniform continuity and locally Lipschitzian conditions hold for R.H.S of the
system (2.1) on its domain. Hence, there exists an unique solution (I(t),M(t),C(t)) of (2.1) with initial
conditions I(0) ≥ 0, M(0) ≥ 0, and C(0) ≥ 0 on IR3

+. Also, this unique solution is non-neagtive and it
will be proved as follows:

We can write the system (2.1) as

dI
dt

= qM +
pI

I + f
− µI + s − d1IC ≥

pI
I + f

− µI − d1IC,

dM
dt

= rM(1 − bM) −
aIM

g + M
− d2MC,

dC
dt

= u0 − γC ≥ −γC.

(3.1)

Solving (3.1), we get

I(t) ≥ I(0)e
∫ t

0

{
p

I(t)+ f −µ−d1C(t)
}
dt
≥ 0,

M(t) = M(0)e
∫ t

0

{
r(1−bM(t))− aI(t)

g+M(t)−d2C(t)
}
dt
≥ 0,

C(t) ≥ e−γC ≥ 0.

(3.2)

Therefore, the solution (I(t), M(t), C(t)) will be non-negative in IR3
+ for all t ≥ 0. This completes

the proof. �

Theorem 3.2. There exists bounded solutions for the model (2.1) subject to initial conditions I(0) ≥ 0,
M(0) ≥ 0, and C(0) ≥ 0.

Proof. From the second equation of system (2.1) and using the standard Kamke comparison theory [8]
to it, we have

dM
dt
≤ rM(1 − bM),

=⇒ lim
t→∞

sup M(t) ≤
1
b
.

(3.3)

The third equation implies that

C(t) =
u0

γ
+

[
C(0) −

u0

γ

]
e−γt,

=⇒ lim
t→∞

sup C(t) ≤
u0

γ
.

(3.4)
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Now, using the bounds of M(t) (suppose sup M(t) = Ms), the first equation implies that

dI
dt
≤ qMs +

pI
I + f

− µI + s,

=⇒
dI
dt
≤ κ +

pI
I + f

, where qMs + s = κ (by assumption this is constant)

=⇒ I(t) ≤ I(0) +

∫ t

0

(
κ +

pI(s)
I(s) + f

)
ds,

=⇒ I(t) ≤ I(0) + κt +

∫ t

0

( pI(s)
I(s) + f

)
ds.

(3.5)

By using the generalized Gronwall Lemma [35], we get

I(t) < A, (3.6)

where, A is uniformly bounded. This completes the proof. �

4. Stability analysis

In this section, we will study the existence and stability behaviour of the system (2.1) at various
equilibrium points. In order to investigate the dynamics of the system (2.1), we set u(t) = u0, s(t) = s,
dI
dt = 0, dM

dt = 0, and dC
dt = 0. The equilibrium points of the system (2.1) are:

(1) The two equilibria E1(I1, 0, u0
γ

) and E2(I2, 0, u0
γ

), where cancerous tumor cells are not present, are
termed as healthy equilibria. Here, I1 and I2 are the roots of the equation:

(µ + d1
u0

γ
)I2 − (p + s − µ f − d1 f

u0

γ
)I − s f = 0.

Solving above equation, we get the roots I1 and I2 as,

I1 =
A +
√

B
2(µ + d1

u0
γ

)
, I2 =

A −
√

B
2(µ + d1

u0
γ

)
,

where
A = p + s − µ f − d1 f

u0

γ
, B = (p + s − µ f − d1 f

u0

γ
)2 + 4 f s(µ + d1

u0

γ
).

(2) The system exhibits the disease persistent equilibrium at E∗(I∗,M∗, u0
γ

), where both immune-
effector cells and cancerous tumor cells will present. Here,

I∗ =
(g + M∗){r(1 − bM∗) − d2

u0
γ
}

a
,

and

M∗ =
µI∗ + d1I∗ u0

γ
− s − pI∗

f +I∗

q
.
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Now, let us study the existence and stability of two equilibria E1 and E2.

E1(I1, 0, u0
γ

) exists only when I1 > 0 i.e., p + s +
√

(p + s − µ f − d1 f u0
γ

)2 + 4 f s(µ + d1
u0
γ

) >

µ f + d1 f u0
γ

.

The variational matrix of system (2.1) at E1(I1, 0, u0
γ

) is given by

V(E1) =


p f

(I1+ f )2 − µ − d1
u0
γ

q −d1I1

0 r − aI1
g − d2

u0
γ

0
0 0 −γ

 .
The eigenvalues of V(E1) are: λ1,1 =

p f
(I1+ f )2 − µ − d1

u0
γ

, λ2,1 = r − aI1
g − d2

u0
γ

, and λ3,1 = −γ.
Clearly, λ3,1 < 0. Now, E1 is stable if λ1,1 < 0 and λ2,1 < 0; this implies p f

(I1+ f )2 − µ − d1
u0
γ
< 0 and

r − aI1
g − d2

u0
γ
< 0; which gives u0 >

γ

d1

[ p f
(I1+ f )2 − µ

]
and r < aI1

g + d2
u0
γ

.

E2(I2, 0, u0
γ

) exists only when I2 > 0 i.e., p + s >
√

(p + s − µ f − d1 f u0
γ

)2 + 4 f s(µ + d1
u0
γ

) + µ f +

d1 f u0
γ

.

The variational matrix of the system (2.1) at E2(I2, 0, u0
γ

) is given by

V(E2) =


p f

(I2+ f )2 − µ − d1
u0
γ

q −d1I2

0 r − aI2
g − d2

u0
γ

0
0 0 −γ

 .
The eigenvalues of V(E2) are: λ1,2 =

p f
(I2+ f )2 − µ − d1

u0
γ

, λ2,2 = r − aI2
g − d2

u0
γ

, and λ3,2 = −γ. Clearly,
λ3,2 < 0. Now, E2 is stable if λ1,2 < 0 and λ2,2 < 0; this implies p f

(I2+ f )2−µ−d1
u0
γ
< 0 and r− aI2

g −d2
u0
γ
< 0;

which gives u0 >
γ

d1

[ p f
(I2+ f )2 − µ

]
and r < aI2

g + d2
u0
γ

. Thus, we have the following result.

Theorem 4.1. The healthy equilibrium E1 exists if

p + s +

√
(p + s − µ f − d1 f

u0

γ
)2 + 4 f s(µ + d1

u0

γ
) > µ f + d1 f

u0

γ
,

and it is locally asymptotically stable if

u0 >
γ

d1

[ p f
(I1 + f )2 − µ

]
and r <

aI1

g
+ d2

u0

γ
.

Other healthy equilibrium E2 exists if

p + s >
√

(p + s − µ f − d1 f
u0

γ
)2 + 4 f s(µ + d1

u0

γ
) + µ f + d1 f

u0

γ
,

and it is locally asymptotically stable if

u0 >
γ

d1

[ p f
(I2 + f )2 − µ

]
and r <

aI2

g
+ d2

u0

γ
.
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Next, we will also study the existence and stability behaviour at the disease persistent equilibria E∗.
E∗(I∗,M∗, u0

γ
) exists only when I∗ > 0 and M∗ > 0 i.e, r(1− bM) > d2

u0
γ

and µI∗ + d1I∗ u0
γ
> s +

pI∗

f +I∗ .
The variational matrix of the system (2.1) at E∗(I∗,M∗, u0

γ
) is given by

V(E∗) =


p f

(I∗+ f )2 − µ − d1
u0
γ

q −d1I∗

− aM∗
g+M∗ r − 2rbM∗ −

agI∗

(M∗+g)2 − d2
u0
γ
−d2M∗

0 0 −γ

 .
One eigenvalue of V(E∗) is −γ and the other two eigenvalues of the matrix can be calculated from

the follwing equation
λ2 + D1λ + D2 = 0, (4.1)

where 
D1 = µ −

p f
(I∗ + f )2 + d1

u0

γ
− r + 2rbM∗ +

agI∗

(M∗ + g)2 + d2
u0

γ
,

D2 =

(
r − 2rbM∗ −

agI∗

(M∗ + g)2 − d2
u0

γ

)(
− µ +

p f
(I∗ + f )2 − d1

u0

γ

)
+

qaM∗

g + M∗
.

Since −γ < 0, hence, the equilibrium E∗ will be asymptotically stable if D1 > 0 and D2 > 0. Hence,
we get the following result.

Theorem 4.2. The disease persistent equilibrium E∗ exists if

r(1 − bM) > d2
u0

γ
and µI∗ + d1I∗

u0

γ
> s +

pI∗

f + I∗
,

and it is locally asymptotically stable if
µ −

p f
(I∗ + f )2 + d1

u0

γ
− r + 2rbM∗ +

agI∗

(M∗ + g)2 + d2
u0

γ
> 0,(

r − 2rbM∗ −
agI∗

(M∗ + g)2 − d2
u0

γ

)(
− µ +

p f
(I∗ + f )2 − d1

u0

γ

)
+

qaM∗

g + M∗
> 0.

5. The control problem

This section is related to the study of the control problem related to our proposed model (2.1), when
we administer immunotherapy and chemotherapy treatments over a fixed period. For the biomedical
perspective, we use the concept of optimal control for the model. This addresses how the combination
of chemo-gene-immunotherapy may be an efficient treatment to assist the patient fighting against
cancer.

To construct and analyze the optimal control problem for our proposed model, we follow the
previous works [7, 8, 43]. As a higher dose of immunotherapy and chemotherapy causes many side
effects, the total amount of immuno-chemotherapy agents must be minimized to minimize the tumor
size. For that, we assume the immunotherapy and chemotherapeutic drugs are given as the functions
s(t) and u(t), which are time-dependent. For the control variables s(t) and u(t), we consider quadratic
controls to reflect the extremity of the imposed immunotherapy and chemotherapeutic drugs’ side
effects. Therefore, the objective functional which is to be minimized is defined as:
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Π(s(t), u(t)) =

∫ t f

0

[
ξ1M(t) +

1
2
ξ2s2(t) +

1
2
ξ3u2(t)

]
dt, (5.1)

where the constants ξ1, ξ2, and ξ3 represent the weight factors of the respective terms which are used
for balancing the size of the terms. The first term of the integrand signifies the number of cancerous
cells while the second and third reflect the effectiveness of the drugs. Here, we establish an optimal
control (s∗, u∗) such that

Π(s∗, u∗) = min{Π(s, t) : (s, u) ∈ Ω}, (5.2)

where Ω =

{
(s, u) : s and u are measurable, 50 ≤ s ≤ 100, 0 ≤ u ≤ 1, and t ∈ [0, t f ]

}
is the admissible

control set. Hence, the problem with the control (s(t), u(t)) becomes

dI
dt

= qM +
pI

I + f
− µI + s(t) − d1IC,

dM
dt

= rM(1 − bM) −
aIM

g + M
− d2MC,

dC
dt

= u(t) − γC,

(5.3)

with initial conditions,
I(0) = I0, M(0) = M0, C(0) = C0, (5.4)

and the objective functional

Π(s(t), u(t)) =

∫ t f

0

[
ξ1M +

1
2
ξ2s2 +

1
2
ξ3u2

]
dt. (5.5)

5.1. The existence of optimal control

In this subsection, we will discuss the existence of the optimal control of our system (5.3). The
solutions of the system (5.3) are bounded in a finite time interval. For proving this, we assume that

~g(t, ~W, s, u) =


p 0 0
0 r 0
0 0 −γ




I
M
C

 +


s
0
u

 , (5.6)

where ~W = (I M C)T . Using the boundedness of the solutions, we get

|~g(t, ~W, s, u)| ≤
∣∣∣∣∣


p 0 0
0 r 0
0 0 −γ




I
M
C


∣∣∣∣∣ +

∣∣∣∣∣


s
0
u


∣∣∣∣∣. (5.7)

As the above system is linear having bounded coefficients in a finite time interval, hence, we
conclude that the solutions of the system (5.3) are bounded. Using the theorem proposed by Lukes [46],
we get the admissible control class and the corresponding state equations with initial conditions (5.4)
are found to be non-empty. Moreover, by deffinition of the set Ω, it is clear that the control set Ω is
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convex and closed. Since the state solutions are bounded, hence, the continuity of R.H.S of the state
system (5.3) holds and is bounded above by a sum of the bounded control and state.
If π(s, u) denotes the integrand of Π(s, u), to prove the convexity of π(s, u) on Ω, we need to show

π[(1 − φ)v + φw] ≤ [(1 − φ)π(v) + φπ(w)], (5.8)

where v = (s1, u1) and w = (s2, u2) are two distinct elements of Ω and 0 ≤ φ ≤ 1. Now

π[(1 − φ)v+φw] − [(1 − φ)π(v) + φπ(w)]

= ξ1M +
ξ2

2

(
(1 − φ)s1 + φs2

)2

+
ξ3

2

(
(1 − φ)u1 + φu2

)2

− (1 − φ)
(
ξ1M +

ξ2

2
s2

1 +
ξ3

2
u2

1

)
− φ

(
ξ1M +

ξ2

2
s2

2 +
ξ3

2
u2

2

)
=
ξ2

2
φ(φ − 1)(s1 − s2)2 +

ξ3

2
φ(φ − 1)(u1 − u2)2

≤ 0, [since φ ∈ [0, 1], (s1 − s2)2, (u1 − u2)2 > 0]

which implies that the integrand of π(s, u) is convex on Ω. Again,

ξ1M(t) +
1
2
ξ2s2(t) +

1
2
ξ3u2(t) ≥

1
2
ξ2s2(t) +

1
2
ξ3u2(t)

≥ η1(s2(t) + u2(t)) ≥ η1(s2(t) + u2(t)) − η2,
(5.9)

where η1 = min{ ξ2
2 ,

ξ3
2 }. Therefore, the integrand Π(s, u) is bounded below by η1(s2(t) + u2(t)) − η2.

Hence, there exists an optimal control (s∗, u∗) for which Π(s, u) is minimized. From the above analysis,
we established the following theorem.

Theorem 5.1. There exists an optimal control (s∗, u∗) for a given objective functional

Π(s(t), u(t)) =

∫ t f

0

[
ξ1M +

1
2
ξ2s2 +

1
2
ξ3u2

]
dt, (5.10)

such that Π(s∗, u∗) = min{Π(s, u) : (s, u) ∈ Ω}, where Ω = {(s, u) : s and u are measurable, 50 ≤ s(t) ≤
100, 0 ≤ u(t) ≤ 1, and t ∈ [0, t f ]} subject to the system (5.3) with initial conditions (5.4).

5.2. Characterization of optimal control

Pontryagins Maximum Principle [47] is invoked on the system (5.3) to derive the conditions for
optimal control. For the system (5.3) the Hamiltonian is defined as follows:

H = ξ1M +
1
2
ξ2s2 +

1
2
ξ3u2 + θ1[qM +

pI
I + f

− µI + s − d1IC]

+ θ2[rM(1 − bM) −
aIM

g + M
− d2MC] + θ3[u − γC],

(5.11)

where θ1, θ2, and θ3 are the adjoint functions which are to be determined.

AIMS Mathematics Volume 6, Issue 10, 11530–11549.



11541

Using Pontryagins Maximum Principle [47], the adjoint system and the transversality conditions
can be obtained as follows:

dθ1

dt
= −

∂H

∂I
= θ1

[
µ + d1C −

p f
(I + f )2

]
+ θ2

aM
M + g

,

dθ2

dt
= −

∂H

∂M
= θ2

[
2rbM +

agI
(g + M)2 + d2C − r

]
− θ1q − ξ1,

dθ3

dt
= −

∂H

∂C
= θ1d1I + θ2d2M + θ3γ.

(5.12)

The transversality conditions are
θi(t f ) = 0, i = 1, 2, 3. (5.13)

From the optimality conditions of s and u, we have

∂H

∂s
= ξ2s∗ + θ1 = 0 =⇒ s∗(t) = −

θ1(t)
ξ2

,

∂H

∂u
= ξ3u∗ + θ3 = 0 =⇒ u∗(t) = −

θ3(t)
ξ3

.

(5.14)

Using the bounds of control s(t) and u(t), we get

s∗ =



−
θ1(t)
ξ2

, if 50 < −
θ1(t)
ξ2

< 100,

50, if −
θ1(t)
ξ2
≤ 50,

100, if −
θ1(t)
ξ2
≥ 100,

(5.15)

u∗ =



−
θ3(t)
ξ3

, if 0 < −
θ3(t)
ξ3

< 1,

0, if −
θ3(t)
ξ3
≤ 0,

1, if −
θ3(t)
ξ3
≥ 1.

(5.16)

Hence, from the above discussion, we get the following result:

Theorem 5.2. For a given optimal control (s∗, u∗) with the corresponding state variables
(I∗(t),M∗(t),C∗(t)), there exist co-states or adjoint variables θ1, θ2, and θ3 satisfying the following
system:

dθ1

dt
= θ1

[
µ + d1C −

p f
(I + f )2

]
+ θ2

aM
M + g

,

dθ2

dt
= θ2

[
2rbM +

agI
(g + M)2 + d2C − r

]
− θ1q − ξ1,

dθ3

dt
= θ1d1I + θ2d2M + θ3γ,

(5.17)
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with transversality conditions

θi(t f ) = 0, i = 1, 2, 3. (5.18)

Moreover,

s∗ = min
{

max
{
50,−

θ1(t)
ξ2

}
, 100

}
, u∗ = min

{
max

{
0,−

θ3(t)
ξ3

}
, 1

}
. (5.19)

In the next section, we have solved our uncontrolled system (2.1) by setting s(t) = s and u(t) = u0,
and controlled system (5.3) alongwith adjoint system (5.17) both numerically and graphically.

6. Numerical simulation

The following simulations have been done using the parameters of Table 1. For checking local
behaviour of the system (2.1), we set the external immunotherapy s(t) as the key parameter and
u(t) = u0. The time series diagrams of effector cells, tumor cells, and without control of drug
administration for different values of s(t) but with the same cancer clearance term a have been presented
in Figures 2–4. In Figure 2, it is seen that while the cancer clearance term is a = 5 (1/time) during
gene therapy with external immunotherapy s(t) = 1 (cells/time), both effector and tumor cells go in
tandem in the presence of chemotherapy. In this situation, there are two biologically feasible solutions
E1(37.48, 0, 1.65) and E∗(965.34, 556.72, 1.65) (assuming u0 = 0.01650) having unstable behavior. In
our second observation in Figure 3 with a = 5 (1/time) and immunotherapy s(t) = 25 (cells/time),
the system has two feasible equilibrium points E2(837.483, 0, 1.65) and E∗(960.709, 73.935, 1.65)
(assuming u0 = 0.01650) which are again found to be unstable. In Figure 4, we have observed that
with external immunity strength s(t) = 53 (cells/time), the cancer clearance term of gene therapy a = 5
(1/time), and in the presence of chemo-drug, the tumor cell goes to zero rather than oscillating about
zero in time around t = 120 and the effector cells converge to a stable position. This scenario implies
that there are only one biologically valid equilibrium E2(1770.82, 0, 1.65) (assuming u0 = 0.01650),
which is locally stable in nature.
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Table 1. Parameter values for the simulation.

Parameter Definition Value Range Source
q Cancer antigenicity 0.05 (1/time) [10−3, 0.5] [34]

s(t) Immunotherapy term [10−2, 102] (cells/time) [10−2, 102] [34]
p Proliferation rate of I 0.1245 (1/time) 0.1245 [34]
f Half saturation for I

proliferation term
10−3 (cells) [10−5, 1] [34]

µ Half life of effector cells I 0.03 (1/time) 0.03 [34]
r Cancer growth rate 0.18 (1/time) [10−1, 2] [34]
b Cancer cell capacity 10−9 (1/cells) 10−9 [34]
a Cancer clearance term 5 (1/time) [10−2, 102] [34]
g Half saturation for

cancer clearance
105 (cells) 105 [34]

d1 Response Coefficients of
Chemotherapy drugs to I

2 × 10−11/day 2 × 10−11/day [8]

d2 Response Coefficients of
Chemotherapy drugs to M

0.08/day 0.08/day [8]

γ Decay rate of
Chemotherapy drug

0.01/day 0.01/day [8]
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(a) Time series plot for cell population.
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(b) Chemotherapy drug concentration.

Figure 2. In presence of combination treatment with immunotherapy term s(t) = 1 (without
chemotherapy drug control), both the cell populations go in tandem.
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(b) Chemotherapy drug concentration.

Figure 3. In presence of combination treatment with immunotherapy term s(t) = 25 (without
chemotherapy drug control), immune cells can slightly reduce the tumor cells.
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(b) Chemotherapy drug concentration.

Figure 4. In presence of combination treatment with immunotherapy term s(t) = 53 (without
chemotherapy drug control), immune cells can eliminate the tumor cells.

The optimal system (5.3) associated with the adjoint system (5.17) and the separated boundary
conditions at time t = 0 and t = t f are solved. Forward method is used to solve the original optimal
system (5.3) and the backward method for the respective adjoint system (5.17) with t f = 200. Here,
we consider the treatment parameter a = 5 and the drug administration s(t) and u(t) which will be
controlled. As the variables associated with the optimal system (5.3) and in the objective functional
(5.1) have different scales, hence, to balance the objective functional, we have chosen the weight
constants ξ1 = 5, ξ2 = 10, and ξ3 = 10 in (5.1). In Figure 5(a),(b), we have presented the time
series plots of effector cells and tumor cells with drug control. We have seen that the tumor cells
vanish around time 15 < t f < 20. From Figure 6(a), it can be observed that the optimal drug dose
for immunotherapy is s(t) = 53 (cells/time) for which immune cell population becomes stable at a
sufficient level and tumor cell vanishes. Figure 6(b) shows that the chemo-drug concentration reduces
gradually depending upon the size of the tumor and hence it also goes to zero as the tumor vanishes
from the body.
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(a) Time series plot for effector cell population. (b) Time series plot for tumor cell population.

Figure 5. Time series plots for cell population with immuno-chemotherapy drug control.

(a) Graph for the optimal Immunotherapy drug control s(t). (b) Graph for the optimal chemotherapeutic drug control u(t).

Figure 6. Optimal graphs for drug concentration.

7. Conclusions

We have developed an ODE mathematical model for tumor growth under the action of effector
immune cells in the presence of gene therapy, immunotherapy and chemotherapy. We established the
basic characteristics of the dependent variables of the model. We presented the stability analysis of the
system, revealing the conditions that must hold well for the cure equilibrium to be attained. For the
numerical solution, we set up s(t) as the key parameter. We investigated the dynamics of the model
for the values (i) s(t) = 1 (cells/time), (ii) s(t) = 25 (cells/time), and (iii) s(t) = 53 (cells/time),
respectively. From the numerical simulation, it can be concluded that for the value of immunotherapy
term s(t) = 53 (cells/time), in the presence of gene and chemotherapy, tumor cells may eradicate from
the body. In [34], the authors found the values of treatment term for the two cases:

Case (i): s(t) = 100 and a(t) = 2 for tumor clearence at a slower rate (where global stability
conditions of the tumor-free state are not satisified ).

Case (ii): s(t) = 764.5072 and a(t) = 38.0040 for tumor clearence at a faster rate (where global
stability conditions of the tumor-free state are satisified ).

However, our results reveal that when chemotherapy is applied, the patient requires less amount of
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external source of immunotherapy to fight against cancer. This conclusion can be drawn by comparing
our results with those of [34].

We also have constructed an optimal control problem associated with the system to minimize the
tumor cell population, immunotherapy and the chemotherapeutic drug within a finite time interval
[0, 200]. According to our results, the tumor cells can be eliminated from the body in a shorter
period in the presence of chemo-immuno-gene therapy with the control of immuno-chemotherapy drug
parameter s(t) and u(t). From optimal control problem, it can be also verified that the optimum amount
of immunotherapy for which tumor is eradicated is 53 (cells/time). Our model is probably one of the
very few models in which gene therapy is combined with chemo-immunotherapy for finding optimal
cancer treatment. Also, our discussion and results are on the basis of a modified mathematical model
and hence it is a theoretical one. The results of the work can be a guiding factor for clinicians and the
usefulness of our theoretical prediction will depend on the practical results found by the experiment of
the clinicians.

Numerical results of our paper are dervied using the inbuilt functions of MATLAB as we are more
interested in discussing the qualitative dynamical behaviours of the considered model rather than the
precision, rate of convergence etc. of the derived numerical solutions. Researchers who are interested
in those issues are reffered to [48–50]. Qureshi and Yusuf [48] proposed a third order convergence
numerical solver for continuous dynamical systems. The authors performed the error analysis of the
proposed solver and found to contain the smallest errors when it is compared with two well-known
solvers (Heun and RK3HM) having the same order of convergence. Odibat and Baleanu [49] derived
a generalized Caputo-type fractional derivative. In addition to generalised Caputo-type fractional
derivatives, they successfully implemented the adaptive P-C algorithm for finding numerical solution
of some fractional order dynamical systems. In the work [50], the authors applied Mohand integral
transform for finding the exact solutions of fractional-order ordinary differential equations under the
Caputo type operator. Upon comparison, the obtained results were in agreement with results produced
by other existing well-known integral transforms. Our future work is to see the more realistic scenarios
using the fractional derivative to the model and investigate the related control problem. Interested
reader may also see the references [1,2] for finding various treatment combinations along with optimal
immunotherapy.
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