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Abstract: It is well known that conventional digital signature algorithms such as RSA and ECDSA
are vulnerable to quantum computing attacks. Hash-based signature schemes are attractive as
post-quantum signature schemes in that it is possible to calculate the quantitative security level and
the security is proven. SPHINCS is a stateless hash-based signature scheme and introduces HORST
few-time signature scheme which is an improvement of HORS. However, HORST as well as HORS
suffers from pretty large signature sizes. HORSIC is proposed to reduce the signature size, yet does
not provide in-depth security analysis. In this paper, we propose HORSIC+, which is an improvement
of HORSIC. HORSIC+ differs from HORSIC in that HORSIC+ does not apply f as a plain function to
the signature key, but uses a member of a function family. In addition, HORSIC+ uses the chaining
function similar to W-OTS+. These enable the strict security proof without the need for the used
function family to be a permutation or collision resistant. HORSIC+ is existentially unforgeable
under chosen message attacks, assuming a second-preimage resistant family of undetectable one-way
functions and cryptographic hash functions in the random oracle model. HORSIC+ reduces the
signature size by as much as 37.5% or 18.75% compared to HORS and by as much as 61.5% or 45.8%
compared to HORST for the same security level.

Keywords: post-quantum signature; hash-based signature; few-time signature; second preimage re-
sistant

1. Introduction

Nowadays, digital signatures are widely used in various security applications to
provide authentication, integrity, and non-repudiation. RSA [1] and ECDSA [2] are two of
the most widely used digital signature schemes. The security of RSA and ECDSA is based
on the difficulty of factoring and computing discrete logarithms, respectively. However,
in 1994, Shor proposed a polynomial-time quantum algorithm for integer factorization
and discrete logarithm problems [3]. If a large-scale quantum computer is built, RSA and
ECDSA cannot be used anymore. Thus, alternative digital signature schemes which are
resilient to attacks by quantum computers are needed. They are called post-quantum
cryptography [4,5].

Various post-quantum signature schemes such as lattice-based [6], multivariate [7],
code-based [8], and hash-based have been studied. Lattice-based signature schemes are
relatively fast with a reasonably small signature size. However, it is difficult to calculate
the quantitative security level and the security is not proven against quantum adversaries.
Multivariate signature schemes are relatively fast with an extremely small signature size.
However, it is also difficult to estimate the security of multivariate signature schemes
against quantum attacks. Code-based signature schemes have a reasonably small signature
size and it is possible to calculate the quantitative security level to some extent. However,
code-based signature schemes need too large keys to be secure against quantum attacks.
Hash-based signature schemes receive a lot of attention in that it is possible to calculate
the quantitative security level and the security is also proven [9]. Moreover, hash-based
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signature schemes are considered to be a good candidate for the security of IoT devices
due to their simplicity of implementation and customization [10,11].

The hash-based signature schemes XMSS (eXtended Merkle Signature Scheme) [12]
and SPHINCS [13] were introduced in 2011 and 2015, respectively. XMSS is stateful,
meaning that the signer and the verifier have to maintain their own state information,
while SPHINCS is stateless. SPHINCS introduces a few-time signature scheme named
HORST (HORS with Trees). HORST is an improvement of a few-time signature scheme
HORS (Hash to Obtain Random Subset) [14]. In the context of SPHINCS, each full signature
should contain not only a HORST signature but also a HORST public key. HORST uses a
Merkle tree to reduce the public key size to a single hash value. However, HORST as well
as HORS suffers from pretty large signature sizes.

HORSIC (Hash to Obtain Random Subset and Integer Composition) [15] is a few-
time signature scheme for broadcast authentication in wireless sensor networks. HORSIC
reduces the signature size compared to HORS and HORST. Whereas HORS and HORST use
only a cryptographic hash function H, making it infeasible to find two different messages
that will produce the same k-element subset, HORSIC decreases the probability of forgery
by using another cryptographic hash function G and a bijective function Ck,z as well as
H to make it infeasible to find two different messages that will produce the same k-part
integer composition as well as the same k-element subset. The security analysis of HORSIC
is performed on the unrealistic assumption that it is impossible for an adversary to invert
the one-way permutation f . In fact, the probability of inverting f is not zero, but negligible.
The security analysis should consider the probability of inverting f .

This paper proposes HORSIC+, an improvement of HORSIC. HORSIC+ differs from
HORSIC in that HORSIC+ does not apply f as a plain function to the signature key, but
uses a member of a function family which is second-preimage resistant, undetectable, and
one-way. In addition, HORSIC+ uses the chaining function cs(x,~r) similar to W-OTS+ [16].
These enable the strict security proof without the need for the used function family to be a
permutation or collision resistant. We prove HORSIC+ is existentially unforgeable under
chosen message attacks, if the used function family is a second-preimage resistant family
of undetectable one-way functions and H and G are cryptographic hash functions in the
random oracle model. HORSIC+ reduces the signature size by as much as 37.5% or 18.75%
compared to HORS and by as much as 61.5% or 45.8% compared to HORST for the same
security level.

The rest of the paper is organized as follows. Section 2 introduces some preliminaries
and presents two signature schemes that HORSIC+ is based on. Section 3 describes the
details of the proposed scheme HORSIC+. Section 4 discusses the security of HORSIC+
including a comparison with HORS and HORST. Section 5 presents the conclusions.

2. Preliminaries and Related Works

In this section, we discuss two signature schemes that HORSIC+ is based on. One is
the Winternitz one-time signature scheme (W-OTS) [17], and the other is HORSIC [15]. We
begin by introducing some preliminaries and then describe W-OTS and HORSIC.

2.1. Preliminaries

We start this subsection with several definitions and notions related to digital signature

schemes and function families [16,18,19]. From now on, we write x $← S if x is chosen
randomly from the finite set S using a uniform distribution.

Definition 1. LetM be a message space. A digital signature scheme Dss = (Kg, Sign, V f ) is a
triple of probabilistic polynomial time algorithms:

• Kg(1n) takes as input a security parameter 1n and outputs a signature key X and a verification
key Y;

• Sign(X, M) outputs a signature σ under the signature key X for message M ∈ M;
• V f (Y, M, σ) outputs 1 iff σ is a valid signature on M under the verification key Y;
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such that ∀(X, Y)← Kg(1n), ∀(M ∈ M) : V f (Y, M, Sign(X, M)) = 1.

Let Dss(1n) be a digital signature scheme with security parameter n. The standard
definition of security for digital signature schemes is existential unforgeability under
adaptive chosen message attack (EU-CMA). EU-CMA is defined using the following
experiment.

Experiment ExpEU−CMA
Dss(1n)

(A)
(X, Y)← Kg(1n)
(M′, σ′)← ASign(X,·)(Y)
Let {(Mi, σi)}

q
1 be the query-answer pairs of Sign(X, ·).

Return 1 iff V f (Y, M′, σ′) = 1 and M′ /∈ {Mi}
q
1.

The success probability of an adversary A in the above experiment can be written by:

SuccEU−CMA
Dss(1n)

(A) = Pr[ExpEU−CMA
Dss(1n)

(A) = 1]. (1)

Definition 2. Let n, T, q ∈ N and T, q = poly(n). A digital signature scheme Dss(1n) is EU-
CMA secure if the success probability of any adversary A running in time ≤ T and making at most
q queries to the oracle Sign in the above experiment is negligible in n:

InSecEU−CMA(Dss(1n); T, q)
de f
= max

A
{SuccEU−CMA

Dss(1n)
(A)} = negl(n). (2)

We then discuss several security properties for function families: preimage resis-
tance (one-wayness, OW), second preimage resistance (SPR), collision resistance (CR), and
undetectability (UD). Let n ∈ N be the security parameter and

Fn = { fκ : {0, 1}n → {0, 1}n | κ ∈ K} (3)

be a family of functions. The elements of K are called keys and each key κ specifies a
particular function fκ in the family Fn.

A function is preimage resistant (or one-way) if it is easy to compute but difficult to
invert. The success probability of an adversary against the preimage resistance of Fn is

SuccOW
Fn

(A) = Pr[κ $← K; x $← {0, 1}n, y← fκ(x); x′ $← A(κ, y) : y = fκ(x′)]. (4)

Definition 3. We call Fn preimage resistant (or one-way), if the success probability of any adver-
sary A running in time ≤ T against the preimage resistance of Fn is negligible in n:

InSecOW(Fn; T)
de f
= max

A
{SuccOW

Fn
(A)} = negl(n). (5)

A function is second preimage resistant if, given some x in the domain, it is difficult
to find some x′ unequal to x that maps the same value. The success probability of an
adversary against the second preimage resistance of Fn is

SuccSPR
Fn

(A) = Pr[κ $← K; x $← {0, 1}n; x′ $← A(κ, x) : x 6= x′ ∧ fκ(x) = fκ(x′)]. (6)

Definition 4. We call Fn second preimage resistant, if the success probability of any adversary A
running in time ≤ T against the second preimage resistance of Fn is negligible in n:

InSecSPR(Fn; T)
de f
= max

A
{SuccSPR

Fn
(A)} = negl(n). (7)
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A function is collision resistant if it is hard to find any pair (x, x′) in the domain that
maps to the same value. The success probability of an adversary against the collision
resistance of Fn is

SuccCR
Fn

(A) = Pr[κ $← K; (x, x′) $← A(κ) : x 6= x′ ∧ fκ(x) = fκ(x′)]. (8)

Definition 5. We call Fn collision resistant, if the success probability of any adversary A running
in time ≤ T against the collision resistance of Fn is negligible in n:

InSecCR(Fn; T)
de f
= max

A
{SuccCR

Fn
(A)} = negl(n). (9)

To define the undetectability property, we need to define the (distinguishing) advan-
tage of an adversary.

Definition 6. Let X and Y be two distributions. The advantage AdvX ,Y (A) of an adversary A
in distinguishing between these two distributions is defined as

AdvX ,Y (A) =| Pr[1← A(X )]− Pr[1← A(Y)] | . (10)

A function family is undetectable if no adversary can distinguish its outputs from
uniformly random values. Consider two distributions DUD,U and DUD,Fn over {0, 1}n ×K.

A sample (u, κ) from the first distribution DUD,U is obtained in the following way: u $←
{0, 1}n, κ

$← K. A sample (u, κ) from the second distribution DUD,Fn is obtained in the

following way: x $← {0, 1}n, κ
$← K, and then calculating u = fκ(x). The advantage of an

adversary against the undetectability of Fn is defined as the distinguishing advantage for
these two distributions:

AdvUD
Fn

(A) = AdvDUD,U ,DUD,Fn
(A). (11)

Definition 7. We call Fn undetectable, if the advantage of any adversary A running in time ≤ T
against the undetectability of Fn is negligible in n:

InSecUD(Fn; T)
de f
= max

A
{AdvUD

Fn
(A)} = negl(n). (12)

Table 1 summarizes the best known generic attacks against different functions given
different environments [20]. Using generic(brute-force) classical attacks, one requires Θ(2n)
evaluations of the function to compute preimages or second preimages. Because of the
birthday paradox, one requires Θ(2n/2) evaluations of the function to find a collision
with probability greater than 1

2 [21]. Using generic quantum attacks such as Grover’s
algorithm [9], one requires Θ(2n/2) evaluations of the function to compute preimages or
second preimages and Θ(2n/3) evaluations of the function to find a collision [22].

Table 1. Generic Security.

OW SPR CR

Classical Θ(2n) Θ(2n) Θ(2n/2)
Quantum Θ(2n/2) Θ(2n/2) Θ(2n/3)

2.2. Winternitz One-Time Signature Scheme (W-OTS)

In this subsection, we discuss W-OTS and its two variants, W-OTS$ and W-OTS+.
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2.2.1. W-OTS

W-OTS produces much shorter signatures than Lamport-Diffie one-time signature
scheme [23] by iteratively applying a function on a secret key, whereas the number of
iterations depends on the signed message [17]. W-OTS uses a one-way function

f : {0, 1}n → {0, 1}n. (13)

Key generation: A Winternitz parameter w, which is the number of bits to be signed
simultaneously is chosen. In the following, we restrict the length of the message to be
signed to m bits. It is straightforward to generalize to arbitrary sized messages by using a
collision resistant hash function.

The signature key X consists of l bit strings of length n chosen uniformly at random,

X = (x1, x2, . . . , xl)
$← {0, 1}ln, (14)

where l is computed as follows.

l1 = dm
w
e, l2 = d

blog2 l1c+ 1 + w
w

e, l = l1 + l2. (15)

The chaining function cs(x) for W-OTS is defined as follows.

cs(x) =

{
x, if s = 0
f (cs−1(x)) if 1 ≤ s ≤ 2w − 1

(16)

The verification key Y is calculated by applying the chaining function to each xi in the
signature key 2w − 1 times. Thus we have

Y = (y1, y2, . . . , yl) = (c2w−1(x1), c2w−1(x2), . . . , c2w−1(xl)). (17)

Signature generation: A message M is split into l1 bit strings of length w and each
bit string is converted to an integer in base-w. So we have

M = (m1, m2, . . . , ml1) (18)

where
mi ∈ {0, 1, . . . , 2w − 1}, 1 ≤ i ≤ l1. (19)

Then the checksum C is calculated as follows.

C =
l1

∑
i=1

(2w −mi) (20)

The checksum C is converted to base w. The base w representation of the checksum C
is C′ = (c1, c2, . . . , cl2). The signature of M is computed as

σ = (σ1, σ2, . . . , σl1 , σl1+1, σl1+2, . . . , σl)

= (cm1(x1), cm2(x2), . . . , cml1 (xl1), cc1(xl1+1), cc2(xl1+2), . . . , ccl2 (xl))
(21)

Signature verification: For the verification of the signature σ = (σ1, σ2, . . . , σl), the
base-w strings M = (m1, m2, . . . , ml1) and C′ = (c1, c2, . . . , cl2) are calculated as described
above. Then we check if

(c2w−1−m1(σ1), . . . , c2w−1−ml1 (σl1), c2w−1−c1(σl1+1), . . . , c2w−1−cl2 (σl))

= (y1, . . . , yl1 , yl1+1, . . . , yl)
(22)
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It is proved that W-OTS is strongly unforgeable under chosen message attacks if Fn is
a collision resistant family of undetectable one-way functions [20].

2.2.2. W-OTS$

W-OTS$ differs from W-OTS in that W-OTS$ uses a family of pseudo random functions
instead of a one-way function [24]. The chaining function cs(x) for W-OTS$ is defined
as follows.

cs(x) =

{
x, if s = 0
fcs−1(x)(r) if 1 ≤ s ≤ 2w − 1

(23)

It is proved that W-OTS$ is existentially unforgeable under chosen message attacks if
Fn is a pseudorandom function family [24].

2.2.3. W-OTS+

W-OTS+ uses a second preimage resistant family of undetectable one-way func-
tions [16]. It uses bitmasks to replace the collision resistant one-way function families. The
idea of using bitmasks comes from the “XOR tree” [25]. The chaining function cs(x,~r) for
W-OTS+ is defined as follows.

cs(x,~r) =

{
x, if s = 0
fκ(cs−1(x,~r)⊕ rs) if 1 ≤ s ≤ 2w − 1

(24)

where the bitmasks~r consist of 2w − 1 bit strings of length n chosen uniformly at random,

~r = (r1, r2, . . . , r2w−1)
$← {0, 1}(2w−1,n). (25)

It is proved that W-OTS+ is strongly unforgeable under chosen message attacks if Fn
is a second preimage resistant family of undetectable one-way functions [16].

2.3. HORSIC

HORSIC [15] is basically an extension of HORS [14]. Whereas HORS uses only a
cryptographic hash function H, making it infeasible to find two different messages that
will produce the same k-element subset, HORSIC decreases the probability of forgery by
using another cryptographic hash function G and a bijective function Ck,z as well as H to
make it infeasible to find two different messages that will produce the same k-part integer
composition as well as the same k-element subset.

Let f : {0, 1}n → {0, 1}n be a one-way permutation operating on n-bit strings. Let
H : {0, 1}∗ → {0, 1}k log2 t and G : {0, 1}∗ →

[
0, (z−1

k−1)
)

be cryptographic hash functions in
the random oracle model [26]. t, k, and z are security parameters. The public key size is
linear in t, and the signature size is linear in k.

HORSIC uses a bijective function Ck,z that, on input g, where 0 ≤ g < (z−1
k−1), outputs

the g-th solution of the following equation:

z =
k

∑
i=1

ai, ai is an integer such that ai ≥ 1. (26)

Note that the number of solutions to the above equation, which is the number of
compositions of z into exactly k parts, is denoted by the binomial coefficient (z−1

k−1) [27].
For example, suppose k = 3 and z = 5. The equation a1 + a2 + a3 = 5 has 6 solutions
((z−1

k−1) = (5−1
3−1) = (4

2) = 6) : C3,5(0) = (1, 1, 3), C3,5(1) = (1, 2, 2), C3,5(2) = (1, 3, 1),
C3,5(3) = (2, 1, 2), C3,5(4) = (2, 2, 1), and C3,5(5) = (3, 1, 1).

Algorithm 1 represents the key generation of HORSIC. If first generates t random
n-bit numbers and then creates a one-way chain of length w for each n-bit number.
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Algorithm 1: Key generation of HORSIC (KgHORSIC())
System Parameters: Parameters n, t, k, z, and w
Output: Signature key X and verification key Y

1: Choose X = (x1, x2, . . . , xt)
$← {0, 1}(t,n)

2: Compute Y = (y1, y2, . . . , yt) = ( f w(x1), f w(x2), . . . , f w(xt))
3: return (X, Y)

Algorithm 2 represents the signing of HORSIC. HORSIC uses a bijective function
Ck,z and two cryptographic hash functions H and G. A cryptographic hash function H is
used to map each message M to a k-element ordered subset (i1, i2, . . . , ik) of a t-element set
{1, 2, . . . , t}. A counter ctr is used to ensure that all ij are distinct. A cryptographic hash
function G and a bijective function Ck,z are used to map each message M to a k-part integer
composition (a1, a2, . . . , ak) of z.

Algorithm 2: Signing of HORSIC (SignHORSIC(X, M))
System Parameters: Parameters n, t, k, z, and w
Input: Signature key X and message M
Output: Signature σ

1: Compute g = G(M)
2: Compute (a1, a2, . . . , ak) = Ck,z(g)
3: Set ctr = 0
4: Compute h = H(M | ctr)
5: Split h into k pieces (h1, h2, . . . , hk) of length log2 t bits each
6: Interpret each hj as an integer ij for all j ∈ {1, 2, . . . , k}
7: if there exist p and q with p, q ∈ {1, 2, . . . , k} such that ip = iq and p 6= q then
8: ctr = ctr + 1 and go to Step 4
9: Compute sigj = f w−aj(xij) for all j ∈ {1, 2, . . . , k}

10: return σ = (ctr, sig1, sig2, . . . , sigk)

Algorithm 3 represents the verification of HORSIC. Each sigj is verified by applying
the one-way permutation aj times and comparing it with the verification key.

Algorithm 3: Verification of HORSIC (V fHORSIC(Y, M, σ))
System Parameters: Parameters n, t, k, z, and w
Input: Verification key Y, message M, and signature σ
Output: “accept” or “reject”

1: Compute g = G(M)
2: Compute (a1, a2, . . . , ak) = Ck,z(g)
3: Compute h = H(M | ctr)
4: Split h into k pieces (h1, h2, . . . , hk) of length log2 t bits each
5: Interpret each hj as an integer ij for all j ∈ {1, 2, . . . , k}
6: if there exist p and q with p, q ∈ {1, 2, . . . , k} such that ip = iq and p 6= q then
7: return “reject”
8: if there exist j ∈ {1, 2, . . . , k} such that f aj(sigj) 6= yij then
9: return “reject”

10: return “accept”

The probability of a forgery for HORSIC is k!(k−1)!(z−k)!
tk(z−1)!

[15]. Note that it does not
depend on the security parameter n. The security analysis of HORSIC is performed on
the unrealistic assumption that it is impossible for an adversary to invert the one-way
permutation f . In fact, the probability of inverting f is not zero, but negligible. The security
analysis should consider the probability of inverting f . Moreover, HORSIC requires f to be
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a one-way permutation. Whereas one-way functions can be based on various assumptions,
candidate one-way permutation families are remarkably rare [28].

3. The HORSIC+ Signature Scheme

In this section, we describe HORSIC+ focusing on the differences with HORSIC. Firstly,
HORSIC+ does not apply f as a plain function to the signature key, but uses a member
of a function family. Let Fn = { fκ : {0, 1}n → {0, 1}n | κ ∈ K} be a family of functions

which is second-preimage resistant, undetectable and one-way. The function key κ
$← K

specifies a particular function fκ in the family Fn. The function key κ is chosen at random
at key generation time and is the same for all function calls. In addition, HORSIC+ uses
the chaining function cs(x,~r) similar to W-OTS+ [16]. It enables the strict security proof
without the need for the used function family to be collision resistant.

cs(x,~r) =

{
x, if s = 0
fκ(cs−1(x,~r)⊕ rs) if 1 ≤ s ≤ w

(27)

where bitmasks~r is defined as

~r = (r1, r2, . . . , rw) ∈ {0, 1}(w,n) (28)

We denote~ra,b as the substring (ra, . . . , rb) of~r. We also define~ra,b to be the empty string
when a > b.

Let H : {0, 1}∗ → {0, 1}k log2 t and G : {0, 1}∗ →
[
0, (z−1

k−1)
)

be cryptographic hash
functions in the random oracle model. HORSIC+ uses a bijective function Ck,z same as
HORSIC. Algorithm 4 describes the implementation of the function Ck,z(g). It is based on
the following equation:(

z− 1
k− 1

)
=

(
z− 2
k− 2

)
+

(
z− 3
k− 2

)
+ . . . +

(
k− 2
k− 2

)
=

z−k+1

∑
j=1

(
z− 1− j

k− 2

)
(29)

In Equation (29), (z−2
k−2), (

z−3
k−2) and (k−2

k−2) are the number of solutions when a1 is 1, 2
and z− k + 1, respectively. First, Algorithm 4 checks whether g < (z−2

k−2). If so, a1 = 1 and
z− 1 = ∑k

i=2 ai. If not, Algorithm 4 checks whether g < (z−2
k−2) + (z−3

k−2). If so, a1 = 2 and
z− 2 = ∑k

i=2 ai, and so on.

Algorithm 4: Implementation of the function Ck,z(g)
System Parameters: Parameters k and z where k ≤ z
Input: g where 0 ≤ g < (z−1

k−1)
Output: (a1, a2, . . . , ak)

1: s = 0, r = k
2: for i = 1 to k− 2 do
3: for j = 1 to z− r + 1 do
4: if g < s + (z−1−j

r−2 ) then
5: ai = j, r = r− 1, z = z− j
6: break
7: s = s + (z−1−j

r−2 )
8: ak−1 = g− s + 1, ak = z− ak−1

Algorithm 5 represents the key generation of HORSIC+. It first chooses t and w n-bit
strings uniformly at random. The first t bit strings are used as the signature key and the
remaining w bit strings are used as the bitmasks~r = (r1, r2, . . . , rw). Then it also chooses

a function key κ
$← K. The function key κ specifies a particular function fκ in the family
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Fn. It is important to note that the verification key Y includes (κ,~r) and thus known to
everybody.

Algorithm 5: Key generation of HORSIC+ (KgHORSIC+())
System Parameters: Parameters n, t, k, z, and w
Output: Signature key X and verification key Y

1: Choose X = (x1, x2, . . . , xt)
$← {0, 1}(t,n)

2: Choose~r = (r1, r2, . . . , rw)
$← {0, 1}(w,n)

3: Choose κ
$← K

4: Compute Y = (y0, y1, y2, . . . , yt) = ((κ,~r), cw(x1,~r), cw(x2,~r), . . . , cw(xt,~r))
5: return (X, Y)

Figure 1 and Algorithm 6 represent the signing of HORSIC+. HORSIC+ uses a
bijective function Ck,z and two cryptographic hash functions H and G. A cryptographic
hash function H is used to map each message M to a k-element ordered subset (i1, i2, . . . , ik)
of a t-element set {1, 2, . . . , t}. A counter ctr is used to ensure that all ij are distinct. A
cryptographic hash function G and a bijective function Ck,z are used to map each message
M to a k-part integer composition (a1, a2, . . . , ak) of z. Each sigj is generated by applying
the chaining function w− aj times on xij .

Figure 1. Signing of HORSIC+.

Algorithm 7 represents the verification of HORSIC+. Each sigj is verified by applying
the chaining function aj times and comparing it with the verification key.
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Algorithm 6: Signing of HORSIC+ (SignHORSIC+(X, M, κ,~r))
System Parameters: Parameters n, t, k, z, and w
Input: Signature key X, message M, function key κ, and bitmasks~r
Output: Signature σ

1: Compute g = G(M)
2: Compute (a1, a2, . . . , ak) = Ck,z(g)
3: Set ctr = 0
4: Compute h = H(M | ctr)
5: Split h into k pieces (h1, h2, . . . , hk) of length log2 t bits each
6: Interpret each hj as an integer ij for all j ∈ {1, 2, . . . , k}
7: if there exist p and q with p, q ∈ {1, 2, . . . , k} such that ip = iq and p 6= q then
8: ctr = ctr + 1 and go to Step 4
9: Compute sigj = cw−aj(xij ,~r) for all j ∈ {1, 2, . . . , k}

10: return σ = (ctr, sig1, sig2, . . . , sigk)

Algorithm 7: Verification of HORSIC+ (V fHORSIC+(Y, M, σ))
System Parameters: Parameters n, t, k, z, and w
Input: Verification key Y, message M, and signature σ
Output: “accept” or “reject”

1: Compute g = G(M)
2: Compute (a1, a2, . . . , ak) = Ck,z(g)
3: Compute h = H(M | ctr)
4: Split h into k pieces (h1, h2, . . . , hk) of length log2 t bits each
5: Interpret each hj as an integer ij for all j ∈ {1, 2, . . . , k}
6: if there exist p and q with p, q ∈ {1, 2, . . . , k} such that ip = iq and p 6= q then
7: return “reject”
8: if there exist j ∈ {1, 2, . . . , k} such that caj(sigj,~rw−aj+1,w) 6= yij then
9: return “reject”

10: return “accept”

4. Analysis

In this section, we analyze the security of HORSIC+ and calculate its security level.
We also compare HORSIC+ with HORS and HORST for the same security levels.

4.1. Security Analysis

In this subsection, we analyze the security of HORSIC+. We prove HORSIC+ is
existentially unforgeable under chosen message attacks, if the used function family Fn is
a second-preimage resistant family of undetectable one-way functions and H and G are
cryptographic hash functions in the random oracle model.

Theorem 1. Suppose Fn = { fκ : {0, 1}n → {0, 1}n | κ ∈ K} is a second-preimage resistant,
undetectable one-way function family and H and G are cryptographic hash functions in the random
oracle model. Then the insecurity of HORSIC+ against an EU-CMA attack is bounded by

InSecEU−CMA(HORSIC+(1n, t, k, z, w); T, 1)

≤ max{T · k!(k− 1)!(z− k)!
tk(z− 1)!

,

w · InSecUD(Fn; T?) + wt ·max{InSecOW(Fn; T′), w · InSecSPR(Fn; T′)}}

(30)

with the time T′ = T + (t + 2k)w and T? = T + (t + 2k + 1)w− 1.

Proof of Theorem 1. The proof is provided in Appendix A.



Appl. Sci. 2021, 11, 7350 11 of 20

4.2. Security Level

In this subsection, we calculate the security level of HORSIC+ using Theorem 1.
According to [29], HORSIC+ has security level b if a successful attack on HORSIC+ is
expected to require 2b−1 evaluations of functions from Fn on average. The security
level of HORSIC+ can be calculated by finding a lower bound for T such that 1

2 ≤
InSecEU−CMA(HORSIC+(1n, t, k, z, w); T, 1).

Table 1 in Section 2.1 and [20] can be used to compute the insecurity of Fn under
generic attacks:

InSecOW(Fn; T) = InSecSPR(Fn; T) = InSecUD(Fn; T) =
T
2n . (31)

From now on, we assume T = T′ = T?, since (t + 2k)w and (t + 2k + 1)w− 1 are
negligible when compared to the value T. We calculate the lower bound on T.

1
2
≤ InSecEU−CMA(HORSIC+(1n, t, k, z, w); T, 1)

≤ max{T · k!(k− 1)!(z− k)!
tk(z− 1)!

, w · T
2n + wt ·max{ T

2n , w · T
2n }}

= max{T · k!(k− 1)!(z− k)!
tk(z− 1)!

,
wT
2n +

w2tT
2n }

= T ·max{ k!(k− 1)!(z− k)!
tk(z− 1)!

,
w2t + w

2n }.

(32)

Solving this for T gives us

T ≥ 1
2
·min{ tk(z− 1)!

k!(k− 1)!(z− k)!
,

2n

w2t + w
}

= 2min{log2(
tk(z−1)!

k!(k−1)!(z−k)! ),n−log2(w
2t+w)}−1

(33)

So, we can obtain the security level b for HORSIC+:

b ≥ min{log2(
tk(z− 1)!

k!(k− 1)!(z− k)!
), n− log2(w

2t + w)}. (34)

4.3. Comparison with HORS and HORST

In this subsection, we compare HORSIC+ with HORS and HORST for the same
security levels. Since the security level of HORS is the same as that of HORST with the
same parameters, we refer to HORS and HORST together as HORS/HORST.

4.3.1. Security Parameters for HORSIC+

In this sub-subsection, we choose security parameters for HORSIC+ having the same
security levels as HORS/HORST. Figure 2 shows the security level of HORSIC+ for various
choices of k and HORS/HORST for signing a single message. In this case, we set z = w +
k− 1 for HORSIC+. The X-axis represents the parameter w, which affects the computational
cost. The Y-axis corresponds to the security level.

The parameters for HORS/HORST in Figure 2 are chosen from (a) HORS [14] and (b)
HORST as used in SPHINCS [13]. The original HORS scheme recommends to use SHA-
1 [30] or RIPEMD-160 [31] as a cryptographic hash function H which has an output length
of 160 bits [14]. Thus, the original HORS scheme uses t = 210 and k = 16 (10× 16 = 160).
The parameters for SPHINCS-256 (t = 216, k = 32) are selected to provide long-term 2128

security against attackers with access to quantum computers.
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Figure 2. Security level of HORSIC+ for various choices of k and HORS/HORST for signing a single
message. The parameters are chosen from (a) HORS and (b) HORST as used in SPHINCS.

The security level of HORS/HORST can be obtained from the following equation [14,32]:

k(log2 t− log2 k). (35)

When using the parameters in Figure 2a,b, the security levels of HORS/HORST are 96
and 352, respectively.

16(log2 210 − log2 16) = 16(10− 4) = 96.

32(log2 216 − log2 32) = 32(16− 5) = 352.
(36)

In Figure 2, ‘HORSIC+ 1st’ refers to the first argument of the min function in Equation (34)

(i.e., log2(
tk(z−1)!

k!(k−1)!(z−k)! )). ‘HORSIC+ 2nd’ refers to the second argument of the min function

in Equation (34) (i.e., n− log2(w
2t + w)). ‘HORSIC+ 1st’ corresponds to the case where the

adversary succeeds in forging only with already revealed secret values. As the number of
signatures using the same HORSIC+ key increases, the number of revealed secret values
also increases. Thus, the security level of ‘HORSIC+ 1st’ decreases more rapidly than that
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of ‘HORSIC+ 2nd’. So it is more appropriate to compare the security level of ‘HORSIC+ 1st’
with that of HORS/HORST.

To get a security level of 96 bits for HORSIC+, w should be 3, 6, 13, 28, and 72, when k
is 12, 11, 10, 9, and 8, respectively. See the diamond marker in Figure 2a. To get a security
level of 352 bits for HORSIC+, w should be 2, 5, 10, 17, and 29, when k is 28, 27, 26, 25, and
24, respectively. See the diamond marker in Figure 2b.

In HORSIC+, as the parameter k decreases, the signature size also decreases, but the
parameter w should increase to offer the same security level. Figure 2 shows that increased
w results in increased security level of ‘HORSIC+ 1st’. However, it also results in increased
overhead in key generation, signing, and verification. We choose two sets of parameters
taking into account the relative importance of speed and signature size. The first is n = 128,
t = 210, k = 10, and w = 13, implying z = 22 which offers 96-bit security level. The second
is n = 256, t = 216, k = 26, and w = 10, implying z = 35 which offers 352-bit security level.
Based on these two sets of parameters, a comparison of HORSIC+ with HORS/HORST
will be presented in Section 4.3.3.

4.3.2. Security for Multiple Messages

HORSIC+ can be used as a few-time signature scheme in two ways. The first is
for the signer and the verifier to maintain their own state information as in [15,33]. It is
a good strategy when HORSIC+ is used in broadcast authentication in wireless sensor
networks. However, it is not appropriate when used as a general signature scheme because
maintaining the state information means it is stateful. If the state information update
fails, then HORSIC+ cannot be used anymore. The second is to use HORSIC+ many times
without state information as HORST in [13]. In this case, the security level decreases as the
number of signatures using the same key increases.

To investigate how rapidly the security level decreases as the number of signatures
using the same key (r) increases, we normalize the security level for r = 1 to 1 and compare
the normalized security level of HORSIC+ and HORS/HORST. For simplicity, we compute
the normalized security level of HORSIC+ by solving the subset-resilience problem.

Figure 3 shows the normalized security level of HORSIC+ and HORS/HORST for
multiple messages. The x-axis shows the number of signatures using the same key (r). We
can see that the normalized security level of HORSIC+ decreases more slowly than that of
HORS/HORST. It is because HORSIC+ uses smaller k than HORS/HORST for the same
security level.

4.3.3. Comparison

Table 2 compares HORSIC+ with HORS and HORST for the same security levels
(96 bit, 352 bit). For simplicity, we assume that HORST does not apply any optimizations
in [13]. The table shows that a HORSIC+ signature size is smaller than a HORS and
HORST signature size with a comparable security level. With parameters n = 128, t = 210,
k = 10, z = 22, w = 13, HORSIC+ signatures are 37.5% shorter than HORS signatures and
61.5% shorter than HORST signatures to offer a 96-bit security level. With parameters
n = 256, t = 216, k = 26, z = 35, w = 10, HORSIC+ signatures are 18.75% shorter than
HORS signatures and 45.8% shorter than HORST signatures to offer a 352-bit security level.
HORSIC+ reduces the signature size at the cost of increased overhead in key generation,
signing, and verification. The key generation overhead and the signing overhead of
HORSIC+ are larger than those of HORS and HORST. However, it does not affect the
usability of HORSIC+, since the key generation has to be performed only once and the
signing overhead is still tolerable. Since asymmetric key algorithms are typically hundreds
to thousands of times slower than symmetric key algorithms and hash algorithms [34],
the costs of signing HORSIC+ (130 with 96-bit security level and 260 with 352-bit security
level) are relatively low.
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Figure 3. Normalized security level of HORSIC+ and HORS/HORST for multiple messages.

Table 2. Comparison of HORS, HORST, and HORSIC+.

Scheme Key Gen. Signing Verification Sig. Size V. K. Size Security Level

HORS(1n, t, k) t 1 k + 1 kn tn k(log2 (t/k))
HORST(1n, t, k) 2t− 1 1 k(log2 t + 1) (k + log2 t)n n k(log2 (t/k))
HORSIC+(1n, t, k, z, w) wt kw kw kn (1 + w + t)n Equation (34)

HORS(1128, 210, 16) 1024 1 17 16× 128 1024× 128 96
HORST(1128, 210, 16) 2047 1 16× 11 26× 128 128 96
HORSIC+(1128, 210, 10, 22, 13) 13,312 10× 13 10× 13 10× 128 1038× 128 min{96, 111}

HORS(1256, 216, 32) 65,536 1 33 32× 256 65, 536× 256 352
HORST(1256, 216, 32) 131,071 1 32× 17 48× 256 256 352
HORSIC+(1256, 216, 26, 35, 10) 655,360 26× 10 26× 10 26× 256 65, 547× 256 min{353, 233}

5. Conclusions

In this paper, we proposed HORSIC+, an efficient post-quantum few-time signature
scheme. HORSIC+ differs from HORSIC in that HORSIC+ does not apply f as a plain
function to the signature key, but uses a member of a function family which is second-
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preimage resistant, undetectable, and one-way. Moreover, HORSIC+ uses the chaining
function cs(x,~r) similar to W-OTS+. These enable the strict security proof without the need
for the used function family to be a permutation or collision resistant. We proved HORSIC+
is existentially unforgeable under chosen message attacks, if the used function family is
a second-preimage resistant family of undetectable one-way functions and H and G are
cryptographic hash functions in the random oracle model. HORSIC+ reduces the signature
size by as much as 37.5% or 18.75% compared to HORS and by as much as 61.5% or 45.8%
compared to HORST for the same security level. Future work includes further analysis of
HORSIC+ and integration of HORSIC+ in SPHINCS.
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Appendix A. Proof of Theorem 1

In this appendix, we give the proof of Theorem 1. The proof follows similar lines
of the proof of Theorem 1 in [16]. Since each HORSIC+ signature have to reveal z secret
values, forging a signature can be accomplished in two mutually exclusive cases.

Case 1: The adversary is able to forge a signature to any of the k! permutations
of (sig1, sig2, sig3, . . . , sigk). For example, the adversary can create a valid signature σ′ =
(ctr′, sig2, sig1, sig3, . . . , sigk) for its own message M′ where H(M′ | ctr′) = (h2, h1, h3, . . . , hk)
and Ck,z(G(M′)) = (a2, a1, a3, . . . , ak). In this case, the adversary is able to forge a signature
by using only already revealed secret values by the signature to the signature query.

Case 2: The adversary is able to forge a signature that contains at least one secret value
which has not been revealed by the signature to the signature query. In this case, we try to
guess the position of the revealed secret value and place the preimage challenge yc there.
So we can respond to the signature query and hopefully get a preimage of yc. We also place
a second preimage challenge in the same chain to manipulate the randomization elements.

We slightly modify the distribution of the public key to manipulate our challenges.
It is proved that this does not significantly change the adversary’s success probability if
Fn is undetectable [16].

Proof of Theorem 1. We’ll prove by contradiction. Suppose there exists an adversary A
that can produce existential forgeries for HORSIC+(1n, t, k, z, w) by mounting an adaptive
chosen message attack in time≤ T with success probability εA = SuccEU−CMA

HORSIC+(1n ,t,k,z,w)
(A).

Then we can construct an oracle machineMA that either breaks the OW or SPR of Fn
using the adversary A. Algorithm A1 shows the pseudo-code description of MA and
Figure A1 shows its key structure.

The oracle machineMA first generates a pair of HORSIC+ keys (X, Y) (Line 1). Then,
MA randomly selects the positions to place the OW and the SPR challenges in the key
chain. The index of the key chain is α, the positions of the OW and the SPR challenges are
β and γ, respectively (Line 2, 6). MA places the OW challenge yc in the position β. MA

also places the SPR challenge xc at the input of the γth evaluation of the chain, replacing rγ

(Line 7). The modified public key Y′ is computed using the manipulated randomization
elements ~r′ (Line 8, Figure A1). ThenMA runs A on input Y′ (Line 9).
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The adversary A can ask to provide the signature on a message M of the adversary’s
choice (Line 10). MA knows the secret key values xi for all i ∈ {1, 2, . . . , t} except for α,
andMA only knows the βth intermediate value for the chain with the index α. Thus,MA

can answer the query for the j where ij = α, only when w− aj ≥ β (Line 12). Otherwise,
MA returns “fail” (Line 13). MA generates signature σ of message M as described in the
signature algorithm (Line 14).

If the adversary A returns an existential forgery (M′, σ′) (Line 16),MA first checks
whether the forged signature is generated by using only already revealed secret values by
the signature to the signature query (Line 18). If it is,MA returns “fail” (Line 19). Then,
MA looks for j ∈ {1, 2, . . . , k} where i′j = α. The forgery is only useful if such j exists and
w− a′j < β (Line 20).

If β = w, the forgery contains a preimage of yc. In this case, sig′j is an intermediate

value of the chain with the index α that ends in yc. SoMA calculates the preimage and
returns it (Line 23).

Otherwise, the chain continuing at sig′j either has or does not have yc as the βth
intermediate value. In the first case, we can compute the preimage again (Line 25). In the
second case, the chains continued from yc and sig′j must collide somewhere between β + 1
and w according to the pigeonhole principle. If they collide at position γ for the first time, a
second preimage for xc can be calculated (Line 27). Otherwise,MA returns “fail” (Line 28).

To easily calculate the success probability ofMA, we only calculate the probability
for a certain success case. If there exists j ∈ {1, 2, . . . , k} such that ij = α obtained from A’s
query, we assume aj = w− β. If not, we assume β = w. Since β is randomly chosen from a
uniform distribution, the probability of aj = w− β and β = w are both equal to 1

w .
Modification of the verification key Y might lead to changing the input distribution of

A, so we denote the probability thatA returns a valid forgery in line 16 of the Algorithm A1
as ε′A. In case where the forged signature (M′, σ′) is generated by using only already

revealed secret values, the probability that A returns a valid forgery is k!(k−1)!(z−k)!
tk(z−1)!

[15].

If not, the forged signature (M′, σ′) contains at least one secret value which has not been
revealed yet. The probability of the newly revealed secret value being in the chain with
the index α is at least 1

t . At this point there are two mutually exclusive cases, one of which
occurs with probability p and the other with probability (1− p).

Case 1: Either β = w or the chain continuing at sig′j has yc as the βth intermediate

value. In this case,MA returns a preimage for yc with probability 1.
Case 2: β < w and the chain continuing at sig′j does not have yc as the βth intermediate

value. In this case,MA returns a second preimage for xc if the chains continued from yc
and sig′j collide for the first time at position γ. This occurs with a greater probability of 1

w
as γ was randomly and uniformly chosen within the interval [β + 1, w].

Using the assumptions about the one-wayness and second preimage resistance of Fn
we can bound the success probability of A if called byMA:

ε′A ≤ max{T · k!(k− 1)!(z− k)!
tk(z− 1)!

,

wt ·max{InSecOW(Fn; T′), w · InSecSPR(Fn; T′)}}
(A1)

where the time T′ = T + (t + 2k)w is an upper bound obtained as the runtime of A plus
the time needed to run each algorithm of HORSIC+ once; KgHORSIC+, SignHORSIC+, and
V fHORSIC+ used inMA require at most tw, kw, and kw calculations of fκ , respectively.
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As a second step, we bound the difference between the success probability ε′A of A
when called byMA and its probabillity of success εA in the original experiment. It can be
directly obtained from [16], so we omit this proof. Finally, we can get a bound on εA which
leads to the required contradiction:

εA ≤ max{T · k!(k− 1)!(z− k)!
tk(z− 1)!

,

w · InSecUD(Fn; T?) + wt ·max{InSecOW(Fn; T′), w · InSecSPR(Fn; T′)}}
(A2)

where the time T′ = T + (t + 2k)w and T? = T + (t + 2k + 1)w− 1.

Figure A1. The basic construction of the modified public key.
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Algorithm A1:MA

Input: Parameters n, t, k, z, w, one-way challenge yc, and second preimage resistance challenge xc
Output: A value x that is either a preimage of yc or a second preimage for xc under fκ or “fail”

1: Generate HORSIC+ key pair : (X, Y) = KgHORSIC+()

2: Choose indices α
$← {1, . . . , t} and β

$← {1, . . . , w} uniformly at random
3: if β = w then
4: Set ~r′ =~r
5: else
6: Choose index γ

$← {β + 1, . . . , w} uniformly at random
7: Obtain ~r′ by setting r′i = ri for all i ∈ [1, w]− {γ} and r′γ = cγ−β−1(yc,~rβ+1,w)⊕ xc

8: Obtain Y′ by setting y′0 = (κ,~r′), y′i = cw(xi,~r′) for all i ∈ [1, t]− {α}, and y′α = cw−β(yc,~r′β+1,w)

9: Run ASign(X,·)(Y′)
10: if ASign(X,·)(Y′) queries Sign with message M then
11: Compute (i1, i2, . . . , ik), (a1, a2, . . . , ak), and ctr which corresponds to M
12: if there exist j ∈ {1, 2, . . . , k} such that ij = α and w− aj < β then
13: return “fail”
14: Generate signature σ of M:

a. Run σ = (ctr, sig1, sig2, . . . , sigk)← SignHORSIC+(X, M, κ,~r′)
b. if there exists j ∈ {1, 2, . . . , k} such that ij = α then

sigj = cw−aj−β(yc,~r′β+1,w)
15: Reply to the query string σ
16: if ASign(X,·)(Y′) returns valid (M′, σ′) then
17: Compute (i′1, i′2, . . . , i′k), (a′1, a′2, . . . , a′k), and ctr′ which corresponds to M′

18: if (sig′1, sig′2, . . . , sig′k) is a permutation of (sig1, sig2, . . . , sigk) then
19: return “fail”
20: else if there exists no j ∈ {1, 2, . . . , k} such that i′j = α or w− a′j ≥ β then
21: return “fail”
22: else if β = w then

23: return preimage ca′j−1
(sig′j,~r

′
w−a′j+1,w)⊕ r′w

24: else if cβ−w+a′j(sig′j,~r
′
w−a′j+1,w) = yc then

25: return preimage cβ−w+a′j−1
(sig′j,~r

′
w−a′j+1,w)⊕ r′β

26: else if cγ−w+a′j−1
(sig′j,~r

′
w−a′j+1,w)⊕ r′γ 6= xc and cγ−w+a′j(sig′j,~r

′
w−a′j+1,w) = cγ−β(yc,~r′β+1,w) then

27: return second preimage cγ−w+a′j−1
(sig′j,~r

′
w−a′j+1,w)⊕ r′γ

28: return “fail”

References
1. Rivest, R.L.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM

1978, 21, 120–126. [CrossRef]
2. Johnson, D.; Menezes, A.; Vanstone, S. The Elliptic Curve Digital Signature Algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.

[CrossRef]
3. Shor, P.W. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 Novemebr 1994; pp. 124–134. [CrossRef]
4. Cambou, B.; Gowanlock, M.; Yildiz, B.; Ghanaimiandoab, D.; Lee, K.; Nelson, S.; Philabaum, C.; Stenberg, A.; Wright, J. Post

Quantum Cryptographic Keys Generated with Physical Unclonable Functions. Appl. Sci. 2021, 11, 2801. [CrossRef]
5. Ghosh, S.; Zaman, M.; Sakauye, G.; Sampalli, S. An Intrusion Resistant SCADA Framework Based on Quantum and Post-Quantum

Scheme. Appl. Sci. 2021, 11, 2082. [CrossRef]
6. Hoffstein, J.; Howgrave-Graham, N.; Pipher, J.; Silverman, J.H.; Whyte, W. NTRUSign: Digital signatures using the NTRU

lattice. In Proceedings of the Cryptographers’ Track at the RSA Conference, San Francisco, CA, USA, 13–17 April 2003;
Volume 2612, pp. 122–140. [CrossRef]

7. Porras, J.; Baena, J.; Ding, J. ZHFE, A New Multivariate Public Key Encryption Scheme. In Proceedings of the International
Workshop on Post-Quantum Cryptography, Waterloo, ON, Canada, 1–3 October 2014; Volume 8772, pp. 229–245. [CrossRef]

http://doi.org/10.1145/359340.359342
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.3390/app11062801
http://dx.doi.org/10.3390/app11052082
http://dx.doi.org/10.1007/3-540-36563-x_9
http://dx.doi.org/10.1007/978-3-319-11659-4_14


Appl. Sci. 2021, 11, 7350 19 of 20

8. McEliece, R.J. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Coding THV 1978, 4244, 114–116.
9. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Annual ACM Symposium on

Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; Association for Computing Machinery: New York, NY, USA,
1996; pp. 212–219. Available online: https://arxiv.org/pdf/quant-ph/9605043.pdf (accessed on 10 August 2021).

10. Palmieri, P. Hash-Based Signatures for the Internet of Things: Position Paper. In Proceedings of the 15th ACM International
Conference on Computing Frontiers, Ischia Italy, 8–10 May 2018; Association for Computing Machinery: New York, NY, USA,
2018; pp. 332–335. [CrossRef]

11. Suhail, S.; Hussain, R.; Khan, A.; Hong, C.S. On the Role of Hash-Based Signatures in Quantum-Safe Internet of Things: Current
Solutions and Future Directions. IEEE Internet Things J. 2021, 8, 1–17. [CrossRef]

12. Buchmann, J.; Dahmen, E.; Hülsing, A. XMSS—A practical forward secure signature scheme based on minimal security
assumptions. In Proceedings of the International Workshop on Post-Quantum Cryptography, Taipei, Taiwan, 29 November–2
December 2011; Volume 7071, pp. 117–129. [CrossRef]

13. Bernstein, D.J.; Hopwood, D.; Hülsing, A.; Lange, T.; Niederhagen, R.; Papachristodoulou, L.; Schneider, M.; Schwabe, P.;
Wilcox-O’hearn, Z. SPHINCS: Practical stateless hash-based signatures. In Proceedings of the Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, 26–30 April 2015; Volume 9056, pp. 368–397.
[CrossRef]

14. Reyzin, L.; Reyzin, N. Better than BiBa: Short one-time signatures with fast signing and verifying. In Proceedings of the
Australasian Conference on Information Security and Privacy, Perth, WA, Australia, 3–5 July 2002; Volume 2384, pp. 144–153.
[CrossRef]

15. Lee, J.; Kim, S.; Cho, Y.; Chung, Y.; Park, Y. HORSIC: An efficient one-time signature scheme for wireless sensor networks. Inf.
Process. Lett. 2012, 112, 783–787. [CrossRef]

16. Hülsing, A. W-OTS+—Shorter signatures for hash-based signature schemes. In Proceedings of the International Conference on
Cryptology in Africa, Cairo, Egypt, 22–24 June 2013; Volume 7918, pp. 173–188. [CrossRef]

17. Merkle, R.C. A Certified Digital Signature. In Advances in Cryptology—CRYPTO’ 89 Proceedings; Brassard, G., Ed.; Springer: New
York, NY, USA, 1989; pp. 218–238.

18. Katz, J.; Lindell, Y. Introduction to Modern Cryptography, 3rd ed.; Chapman & Hall/CRC: London, UK, 2020.
19. Kudinov, M.A.; Kiktenko, E.O.; Fedorov, A.K. Security analysis of the W-OTS+ signature scheme: Updating security bounds.

arXiv 2020, arXiv:2002.07419.
20. Dods, C.; Smart, N.P.; Stam, M. Hash Based Digital Signature Schemes. In Cryptography and Coding; Smart, N.P., Ed.; Springer:

Berlin/Heidelberg, Germany, 2005; pp. 96–115.
21. Dahmen, E.; Okeya, K.; Takagi, T.; Vuillaume, C. Digital Signatures Out of Second-Preimage Resistant Hash Functions.

In Proceedings of the 2nd International Workshop on Post-Quantum Cryptography, Cincinnati, OH, USA, 17–19 October 2020;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 109–123. [CrossRef]

22. Brassard, G.; HØyer, P.; Tapp, A. Quantum cryptanalysis of hash and claw-free functions. In Latin American Symposium on
Theoretical Informatics; Springer: Berlin/Heidelberg, Germany, 1998; pp. 163–169. [CrossRef]

23. Lamport, L. Constructing Digital Signatures from a One Way Function; Technical Report CSL-98; SRI International Computer Science
Laboratory: Menlo Park, CA, USA, 1979.

24. Buchmann, J.; Dahmen, E.; Ereth, S.; Hülsing, A.; Rückert, M. On the security of the Winternitz one-time signature scheme. Int. J.
Appl. Cryptogr. 2013, 3, 84–96. [CrossRef]

25. Bellare, M.; Rogaway, P. Collision-Resistant hashing: Towards making UOWHFs practical. In Advances in Cryptology—CRYPTO
’97; Kaliski, B.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 470–484.

26. Bellare, M.; Rogaway, P. Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols. In Proceedings of the 1st
ACM Conference on Computer and Communications Security, Fairfax, VA, USA, 3–5 November 1993; Association for Computing
Machinery: New York, NY, USA, 1993; pp. 62–73. [CrossRef]

27. Andrews, G.E. The Theory of Partitions; Encyclopedia of Mathematics and Its Applications, Cambridge University Press:
Cambridge, UK, 1984. [CrossRef]

28. Asharov, G.; Segev, G. On Constructing One-Way Permutations from Indistinguishability Obfuscation. In TCC (A2); Springer:
Berlin/Heidelberg, Germany, 2016; pp. 512–541. [CrossRef]

29. Lenstra, A.K. Key Length. Contribution to The Handbook of Information Security. 2004. Available online: https://infoscience.
epfl.ch/record/164539/files/NPDF-32.pdf (accessed on 10 August 2021).

30. FIPS Publication 180-1, Secure Hash Standard. 1995. National Institute of Standards and Technology (NIST). Available online:
https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub180-1.pdf (accessed on 10 August 2021).

31. Dobbertin, H.; Bosselaers, A.; Preneel, B. RIPEMD-160: A strengthened version of RIPEMD. In Fast Software Encryption; Gollmann,
D., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 71–82.

32. Aumasson, J.P.; Endignoux, G. Clarifying the Subset-Resilience Problem; Report 2017/909; Cryptology ePrint Archive: Lyon, France,
2017.

https://arxiv.org/pdf/quant-ph/9605043.pdf
http://dx.doi.org/10.1145/3203217.3206427
http://dx.doi.org/10.1109/JIOT.2020.3013019
http://dx.doi.org/10.1007/978-3-642-25405-5_8
http://dx.doi.org/10.1007/978-3-662-46800-5_15
http://dx.doi.org/10.1007/3-540-45450-0_11
http://dx.doi.org/10.1016/j.ipl.2012.07.007
http://dx.doi.org/10.1007/978-3-642-38553-7_10
http://dx.doi.org/10.1007/978-3-540-88403-3_8
http://dx.doi.org/10.1007/bfb0054319
http://dx.doi.org/10.1504/IJACT.2013.053435
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1017/CBO9780511608650
http://dx.doi.org/10.1007/978-3-662-49099-0_19
https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf
https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub180-1.pdf


Appl. Sci. 2021, 11, 7350 20 of 20

33. Perrig, A. The BiBa one-time signature and broadcast authentication protocol. In Proceedings of the 8th ACM Conference on
Computer and Communications Security—CCS ’01, Philadelphia, PA, USA, 5–8 November 2001; Association for Computing
Machinery (ACM): New York, New York, USA, 2001; p. 28. [CrossRef]

34. Crypto++ 5.6.0 Benchmarks. Available online: https://www.cryptopp.com/benchmarks.html (accessed on 6 August 2021).

http://dx.doi.org/10.1145/501983.501988
https://www.cryptopp.com/benchmarks.html

	Introduction
	Preliminaries and Related Works
	Preliminaries
	Winternitz One-Time Signature Scheme (W-OTS)
	W-OTS
	W-OTS$
	W-OTS+

	HORSIC

	The HORSIC+ Signature Scheme
	Analysis
	Security Analysis
	Security Level
	Comparison with HORS and HORST
	Security Parameters for HORSIC+
	Security for Multiple Messages
	Comparison


	Conclusions
	Proof of Theorem 1
	References

